summary refs log tree commit diff stats
path: root/compiler/semfold.nim
blob: 444940144019658527b1401dc9c1ccfbf6488a4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
1
#!/bin/perl

# Copyright (c) 2010,2011,2012 Todd T. Fries <todd@fries.net>
#
# Permission to use, copy, modify, and distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

# read in 'mandoc -Tascii' formatted man pages, spit out txt useful for further
# processing by other utilities

use strict;
use warnings;

our $fileinfo = $ARGV[0];

our $verbose = 0;

my $line;
my @lines;
while(<STDIN>) {
	$line = $_;
	push @lines,$line;
}
my $oline = "";
my $fmtline = "%s";
foreach $line (@lines) {

	my $newline = "";
	foreach my $seg (split(/(.\x08.)/,$line)) {
		my $newseg = $seg;
		$newseg =~ m/^(.)\x08(.)$/;
		if (!defined($1) || !defined($2)) {
			$newline .= $seg;
			next;
		}
		if ($1 eq $2) {
			$newline .= "${2}";
			next;
		}
		if ($1 eq "_") {
			$newline .= "${2}";
			next;
		}
		$newline .= $seg;
		next;
	}
	if ($verbose > 0) {
		printf STDERR "==> text{bf,it}\n   line: <%s>\nnewline: <%s>\n",$line,$newline;
	}
	$line = $newline;
	$line =~ m/(.)\x08/;
	if (defined($1)) {
		printf STDERR "Removing %s\\x08\n",$1;
	}
	$line =~ s/.\x08//g;

	# combine adjacent entries
	foreach my $macro (("textbf", "textit")) {
		$oline = "";
		while ($oline ne $line) {
			#printf STDERR "combine adjacent\n";
			$oline = $line;
			$line =~ s/\xab\\${macro}\{([^\}]*)\}\xbb\xab\\${macro}\{([^\}]*)\}\xbb/\xab\\${macro}\{$1$2\}\xbb/g;
		}
	}
	# combine space separated
	foreach my $macro (("textbf")) {
		#printf STDERR "combine space\n";
		$oline = "";
		while ($oline ne $line) {
			$oline = $line;
			$line =~ s/\xab\\${macro}\{([^\}]*)\}\xbb[ ]+\xab\\${macro}\{([^\}]*)\}\xbb/\xab\\${macro}\{$1 $2\}\xbb/g;
		}
	}

	# do the substitution one at a time to be sure to add all man pages, not just the last ones per line.
	# XXX provide an exceptions list, audio(9) has mono(1) and stereo(2)
	# XXX references, which are _not_ man pages
	$oline = "";
	while ($oline ne $line) {
		$oline=$line;
		$line =~ s/\{(http|ftp|https):\/\/(.*)\}/ $1:\/\/$2 /;
		if (0) {
		if ($line =~ m/ ([a-z][a-z0-9\.\-\_]*)\(([1-9])\)([,\.\) ])/) {
			my $quote = texquote($1);
			$line =~ s/ ([a-z][a-z0-9\.\-\_]*)\(([1-9])\)([,\.\) ])/ \xab\\man{$quote}{$2}\xbb$3/;
		}
		
		if<
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module folds constants; used by semantic checking phase
# and evaluation phase

import
  strutils, options, ast, astalgo, trees, treetab, nimsets, times,
  nversion, platform, math, msgs, os, condsyms, idents, renderer, types,
  commands, magicsys, modulegraphs, strtabs, lineinfos

proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  case skipTypes(n.typ, abstractVarRange).kind
  of tyInt:
    result = newIntNode(nkIntLit, intVal)
    # See bug #6989. 'pred' et al only produce an int literal type if the
    # original type was 'int', not a distinct int etc.
    if n.typ.kind == tyInt:
      result.typ = getIntLitType(g, result)
    else:
      result.typ = n.typ
    # hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ...
    #setIntLitType(result)
  of tyChar:
    result = newIntNode(nkCharLit, intVal)
    result.typ = n.typ
  else:
    result = newIntNode(nkIntLit, intVal)
    result.typ = n.typ
  result.info = n.info

proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode =
  result = newFloatNode(nkFloatLit, floatVal)
  if skipTypes(n.typ, abstractVarRange).kind == tyFloat:
    result.typ = getFloatLitType(g, result)
  else:
    result.typ = n.typ
  result.info = n.info

proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode =
  result = newStrNode(nkStrLit, strVal)
  result.typ = n.typ
  result.info = n.info

proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode
  # evaluates the constant expression or returns nil if it is no constant
  # expression
proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode

proc checkInRange(conf: ConfigRef; n: PNode, res: BiggestInt): bool =
  if res in firstOrd(conf, n.typ)..lastOrd(conf, n.typ):
    result = true

proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a +% b
  if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a -% b
  if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldUnarySub(a: BiggestInt, n: PNode, g: ModuleGraph): PNode =
  if a != firstOrd(g.config, n.typ):
    result = newIntNodeT(-a, n, g)

proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if a != firstOrd(g.config, n.typ):
    result = newIntNodeT(abs(a), n, g)

proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a mod b, n, g)

proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a %% b, n, g)

proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64 and (a != firstOrd(g.config, n.typ) or b != -1'i64):
    result = newIntNodeT(a div b, n, g)

proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a /% b, n, g)

proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a *% b
  let floatProd = toBiggestFloat(a) * toBiggestFloat(b)
  let resAsFloat = toBiggestFloat(res)

  # Fast path for normal case: small multiplicands, and no info
  # is lost in either method.
  if resAsFloat == floatProd and checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

  # Somebody somewhere lost info. Close enough, or way off? Note
  # that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
  # The difference either is or isn't significant compared to the
  # true value (of which floatProd is a good approximation).

  # abs(diff)/abs(prod) <= 1/32 iff
  #   32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
  if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and
      checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

proc ordinalValToString*(a: PNode; g: ModuleGraph): string =
  # because $ has the param ordinal[T], `a` is not necessarily an enum, but an
  # ordinal
  var x = getInt(a)

  var t = skipTypes(a.typ, abstractRange)
  case t.kind
  of tyChar:
    result = $chr(int(x) and 0xff)
  of tyEnum:
    var n = t.n
    for i in countup(0, sonsLen(n) - 1):
      if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString")
      var field = n.sons[i].sym
      if field.position == x:
        if field.ast == nil:
          return field.name.s
        else:
          return field.ast.strVal
    internalError(g.config, a.info, "no symbol for ordinal value: " & $x)
  else:
    result = $x

proc isFloatRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {tyFloat..tyFloat128}

proc isIntRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {
      tyInt..tyInt64, tyUInt8..tyUInt32}

proc pickIntRange(a, b: PType): PType =
  if isIntRange(a): result = a
  elif isIntRange(b): result = b
  else: result = a

proc isIntRangeOrLit(t: PType): bool =
  result = isIntRange(t) or isIntLit(t)

proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType =
  let minA = min(first, last)
  let maxA = max(first, last)
  let lowerNode = newIntNode(nkIntLit, minA)
  if typ.kind == tyInt and minA == maxA:
    result = getIntLitType(g, lowerNode)
  elif typ.kind in {tyUint, tyUInt64}:
    # these are not ordinal types, so you get no subrange type for these:
    result = typ
  else:
    var n = newNode(nkRange)
    addSon(n, lowerNode)
    addSon(n, newIntNode(nkIntLit, maxA))
    result = newType(tyRange, typ.owner)
    result.n = n
    addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType =
  var n = newNode(nkRange)
  addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float)))
  addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float)))
  result = newType(tyRange, typ.owner)
  result.n = n
  addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc evalIs(n: PNode, lhs: PSym, g: ModuleGraph): PNode =
  # XXX: This should use the standard isOpImpl
  internalAssert g.config,
    n.sonsLen == 3 and
    lhs.typ != nil and
    n[2].kind in {nkStrLit..nkTripleStrLit, nkType}

  var
    res = false
    t1 = lhs.typ
    t2 = n[2].typ

  if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
    t1 = t1.base

  if n[2].kind in {nkStrLit..nkTripleStrLit}:
    case n[2].strVal.normalize
    of "closure":
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure and
            tfIterator notin t.flags
    of "iterator":
      let t = skipTypes(t1, abstractRange)
      res = t.kind == tyProc and
            t.callConv == ccClosure and
            tfIterator in t.flags
    else:
      res = false
  else:
    # XXX semexprs.isOpImpl is slightly different and requires a context. yay.
    let t2 = n[2].typ
    res = sameType(t1, t2)

  result = newIntNode(nkIntLit, ord(res))
  result.typ = n.typ

proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode =
  # b and c may be nil
  result = nil
  case m
  of mOrd: result = newIntNodeT(getOrdValue(a), n, g)
  of mChr: result = newIntNodeT(getInt(a), n, g)
  of mUnaryMinusI, mUnaryMinusI64: result = foldUnarySub(getInt(a), n, g)
  of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g)
  of mNot: result = newIntNodeT(1 - getInt(a), n, g)
  of mCard: result = newIntNodeT(nimsets.cardSet(g.config, a), n, g)
  of mBitnotI:
    case skipTypes(n.typ, abstractRange).kind
    of tyUInt..tyUInt64:
      result = newIntNodeT((not getInt(a)) and lastOrd(g.config, a.typ, fixedUnsigned=true), n, g)
    else:
      result = newIntNodeT(not getInt(a), n, g)
  of mLengthArray: result = newIntNodeT(lengthOrd(g.config, a.typ), n, g)
  of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr:
    if a.kind == nkNilLit:
      result = newIntNodeT(0, n, g)
    elif a.kind in {nkStrLit..nkTripleStrLit}:
      result = newIntNodeT(len a.strVal, n, g)
    else:
      result = newIntNodeT(sonsLen(a), n, g)
  of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away
  of mToFloat, mToBiggestFloat:
    result = newFloatNodeT(toFloat(int(getInt(a))), n, g)
  # XXX: Hides overflow/underflow
  of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g)
  of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g)
  of mAbsI: result = foldAbs(getInt(a), n, g)
  of mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64:
    # byte(-128) = 1...1..1000_0000'64 --> 0...0..1000_0000'64
    result = newIntNodeT(getInt(a) and (`shl`(1, getSize(g.config, a.typ) * 8) - 1), n, g)
  of mToU8: result = newIntNodeT(getInt(a) and 0x000000FF, n, g)
  of mToU16: result = newIntNodeT(getInt(a) and 0x0000FFFF, n, g)
  of mToU32: result = newIntNodeT(getInt(a) and 0x00000000FFFFFFFF'i64, n, g)
  of mUnaryLt: result = foldSub(getOrdValue(a), 1, n, g)
  of mSucc: result = foldAdd(getOrdValue(a), getInt(b), n, g)
  of mPred: result = foldSub(getOrdValue(a), getInt(b), n, g)
  of mAddI: result = foldAdd(getInt(a), getInt(b), n, g)
  of mSubI: result = foldSub(getInt(a), getInt(b), n, g)
  of mMulI: result = foldMul(getInt(a), getInt(b), n, g)
  of mMinI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g)
    else: result = newIntNodeT(getInt(a), n, g)
  of mMaxI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g)
    else: result = newIntNodeT(getInt(b), n, g)
  of mShlI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g)
    of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g)
    of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g)
    of tyInt64, tyInt:
      result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g)
    of tyUInt..tyUInt64:
      result = newIntNodeT(`shl`(getInt(a), getInt(b)) and lastOrd(g.config, a.typ, fixedUnsigned=true), n, g)
    else: internalError(g.config, n.info, "constant folding for shl")
  of mShrI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(int8(getInt(a)) shr int8(getInt(b)), n, g)
    of tyInt16: result = newIntNodeT(int16(getInt(a)) shr int16(getInt(b)), n, g)
    of tyInt32: result = newIntNodeT(int32(getInt(a)) shr int32(getInt(b)), n, g)
    of tyInt64, tyInt, tyUInt..tyUInt64:
      result = newIntNodeT(`shr`(getInt(a), getInt(b)), n, g)
    else: internalError(g.config, n.info, "constant folding for shr")
  of mAshrI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(ashr(int8(getInt(a)), int8(getInt(b))), n, g)
    of tyInt16: result = newIntNodeT(ashr(int16(getInt(a)), int16(getInt(b))), n, g)
    of tyInt32: result = newIntNodeT(ashr(int32(getInt(a)), int32(getInt(b))), n, g)
    of tyInt64, tyInt:
      result = newIntNodeT(ashr(getInt(a), getInt(b)), n, g)
    else: internalError(g.config, n.info, "constant folding for ashr")
  of mDivI: result = foldDiv(getInt(a), getInt(b), n, g)
  of mModI: result = foldMod(getInt(a), getInt(b), n, g)
  of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g)
  of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g)
  of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g)
  of mDivF64:
    if getFloat(b) == 0.0:
      if getFloat(a) == 0.0: result = newFloatNodeT(NaN, n, g)
      elif getFloat(b).classify == fcNegZero: result = newFloatNodeT(-Inf, n, g)
      else: result = newFloatNodeT(Inf, n, g)
    else:
      result = newFloatNodeT(getFloat(a) / getFloat(b), n, g)
  of mMaxF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g)
    else: result = newFloatNodeT(getFloat(b), n, g)
  of mMinF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g)
    else: result = newFloatNodeT(getFloat(a), n, g)
  of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g)
  of mLtI, mLtB, mLtEnum, mLtCh:
    result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g)
  of mLeI, mLeB, mLeEnum, mLeCh:
    result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g)
  of mEqI, mEqB, mEqEnum, mEqCh:
    result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g)
  of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g)
  of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g)
  of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g)
  of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g)
  of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g)
  of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g)
  of mLtU, mLtU64:
    result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mLeU, mLeU64:
    result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mBitandI, mAnd: result = newIntNodeT(a.getInt and b.getInt, n, g)
  of mBitorI, mOr: result = newIntNodeT(getInt(a) or getInt(b), n, g)
  of mBitxorI, mXor: result = newIntNodeT(a.getInt xor b.getInt, n, g)
  of mAddU: result = newIntNodeT(`+%`(getInt(a), getInt(b)), n, g)
  of mSubU: result = newIntNodeT(`-%`(getInt(a), getInt(b)), n, g)
  of mMulU: result = newIntNodeT(`*%`(getInt(a), getInt(b)), n, g)
  of mModU: result = foldModU(getInt(a), getInt(b), n, g)
  of mDivU: result = foldDivU(getInt(a), getInt(b), n, g)
  of mLeSet: result = newIntNodeT(ord(containsSets(g.config, a, b)), n, g)
  of mEqSet: result = newIntNodeT(ord(equalSets(g.config, a, b)), n, g)
  of mLtSet:
    result = newIntNodeT(ord(containsSets(g.config, a, b) and not equalSets(g.config, a, b)), n, g)
  of mMulSet:
    result = nimsets.intersectSets(g.config, a, b)
    result.info = n.info
  of mPlusSet:
    result = nimsets.unionSets(g.config, a, b)
    result.info = n.info
  of mMinusSet:
    result = nimsets.diffSets(g.config, a, b)
    result.info = n.info
  of mSymDiffSet:
    result = nimsets.symdiffSets(g.config, a, b)
    result.info = n.info
  of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g)
  of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g)
  of mRepr:
    # BUGFIX: we cannot eval mRepr here for reasons that I forgot.
    discard
  of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g)
  of mBoolToStr:
    if getOrdValue(a) == 0: result = newStrNodeT("false", n, g)
    else: result = newStrNodeT("true", n, g)
  of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g)
  of mCopyStrLast:
    result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)),
                                           int(getOrdValue(c))), n, g)
  of mFloatToStr: result = newStrNodeT($getFloat(a), n, g)
  of mCStrToStr, mCharToStr:
    if a.kind == nkBracket:
      var s = ""
      for b in a.sons:
        s.add b.getStrOrChar
      result = newStrNodeT(s, n, g)
    else:
      result = newStrNodeT(getStrOrChar(a), n, g)
  of mStrToStr: result = a
  of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g)
  of mArrToSeq:
    result = copyTree(a)
    result.typ = n.typ
  of mCompileOption:
    result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g)
  of mCompileOptionArg:
    result = newIntNodeT(ord(
      testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g)
  of mEqProc:
    result = newIntNodeT(ord(
        exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g)
  else: discard

proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil
  for i in countup(0, sonsLen(n) - 1):
    var it = n.sons[i]
    if it.len == 2:
      var e = getConstExpr(c, it.sons[0], g)
      if e == nil: return nil
      if getOrdValue(e) != 0:
        if result == nil:
          result = getConstExpr(c, it.sons[1], g)
          if result == nil: return
    elif it.len == 1:
      if result == nil: result = getConstExpr(c, it.sons[0], g)
    else: internalError(g.config, it.info, "getConstIfExpr()")

proc leValueConv*(a, b: PNode): bool =
  result = false
  case a.kind
  of nkCharLit..nkUInt64Lit:
    case b.kind
    of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal
    of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int
    else: result = false #internalError(a.info, "leValueConv")
  of nkFloatLit..nkFloat128Lit:
    case b.kind
    of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal
    of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
    else: result = false # internalError(a.info, "leValueConv")
  else: result = false # internalError(a.info, "leValueConv")

proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if sonsLen(n) <= 1: return

  var s = n.sons[0].sym
  var a = getConstExpr(m, n.sons[1], g)
  var b, c: PNode
  if a == nil: return
  if sonsLen(n) > 2:
    b = getConstExpr(m, n.sons[2], g)
    if b == nil: return
    if sonsLen(n) > 3:
      c = getConstExpr(m, n.sons[3], g)
      if c == nil: return
  result = evalOp(s.magic, n, a, b, c, g)

proc getAppType(n: PNode; g: ModuleGraph): PNode =
  if g.config.globalOptions.contains(optGenDynLib):
    result = newStrNodeT("lib", n, g)
  elif g.config.globalOptions.contains(optGenStaticLib):
    result = newStrNodeT("staticlib", n, g)
  elif g.config.globalOptions.contains(optGenGuiApp):
    result = newStrNodeT("gui", n, g)
  else:
    result = newStrNodeT("console", n, g)

proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) =
  var err = false
  if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}:
    err = value <% firstOrd(g.config, n.typ) or value >% lastOrd(g.config, n.typ, fixedUnsigned=true)
  else:
    err = value < firstOrd(g.config, n.typ) or value > lastOrd(g.config, n.typ)
  if err:
    localError(g.config, n.info, "cannot convert " & $value &
                                     " to " & typeToString(n.typ))

proc foldConv*(n, a: PNode; g: ModuleGraph; check = false): PNode =
  # XXX range checks?
  case skipTypes(n.typ, abstractRange).kind
  of tyInt..tyInt64, tyUInt..tyUInt64:
    case skipTypes(a.typ, abstractRange).kind
    of tyFloat..tyFloat64:
      result = newIntNodeT(int(getFloat(a)), n, g)
    of tyChar: result = newIntNodeT(getOrdValue(a), n, g)
    else:
      result = a
      result.typ = n.typ
    if check and result.kind in {nkCharLit..nkUInt64Lit}:
      rangeCheck(n, result.intVal, g)
  of tyFloat..tyFloat64:
    case skipTypes(a.typ, abstractRange).kind
    of tyInt..tyInt64, tyEnum, tyBool, tyChar:
      result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g)
    else:
      result = a
      result.typ = n.typ
  of tyOpenArray, tyVarargs, tyProc:
    discard
  else:
    result = a
    result.typ = n.typ

proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if n.kind == nkBracket:
    result = n
  else:
    result = getConstExpr(m, n, g)
    if result == nil: result = n

proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc:
    return

  var y = getConstExpr(m, n.sons[1], g)
  if y == nil: return

  var idx = getOrdValue(y)
  case x.kind
  of nkPar, nkTupleConstr:
    if idx >= 0 and idx < sonsLen(x):
      result = x.sons[int(idx)]
      if result.kind == nkExprColonExpr: result = result.sons[1]
    else:
      localError(g.config, n.info, "index out of bounds: " & $n)
  of nkBracket:
    idx = idx - firstOrd(g.config, x.typ)
    if idx >= 0 and idx < x.len: result = x.sons[int(idx)]
    else: localError(g.config, n.info, "index out of bounds: " & $n)
  of nkStrLit..nkTripleStrLit:
    result = newNodeIT(nkCharLit, x.info, n.typ)
    if idx >= 0 and idx < len(x.strVal):
      result.intVal = ord(x.strVal[int(idx)])
    elif idx == len(x.strVal) and optLaxStrings in g.config.options:
      discard
    else:
      localError(g.config, n.info, "index out of bounds: " & $n)
  else: discard

proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  # a real field access; proc calls have already been transformed
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return

  var field = n.sons[1].sym
  for i in countup(ord(x.kind == nkObjConstr), sonsLen(x) - 1):
    var it = x.sons[i]
    if it.kind != nkExprColonExpr:
      # lookup per index:
      result = x.sons[field.position]
      if result.kind == nkExprColonExpr: result = result.sons[1]
      return
    if it.sons[0].sym.name.id == field.name.id:
      result = x.sons[i].sons[1]
      return
  localError(g.config, n.info, "field not found: " & field.name.s)

proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = newNodeIT(nkStrLit, n.info, n.typ)
  result.strVal = ""
  for i in countup(1, sonsLen(n) - 1):
    let a = getConstExpr(m, n.sons[i], g)
    if a == nil: return nil
    result.strVal.add(getStrOrChar(a))

proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode =
  result = newSymNode(s, info)
  if s.typ.kind != tyTypeDesc:
    result.typ = newType(tyTypeDesc, s.owner)
    result.typ.addSonSkipIntLit(s.typ)
  else:
    result.typ = s.typ

proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil

  proc getSrcTimestamp(): DateTime =
    try:
      result = utc(fromUnix(parseInt(getEnv("SOURCE_DATE_EPOCH",
                                            "not a number"))))
    except ValueError:
      # Environment variable malformed.
      # https://reproducible-builds.org/specs/source-date-epoch/: "If the
      # value is malformed, the build process SHOULD exit with a non-zero
      # error code", which this doesn't do. This uses local time, because
      # that maintains compatibility with existing usage.
      result = local(getTime())

  case n.kind
  of nkSym:
    var s = n.sym
    case s.kind
    of skEnumField:
      result = newIntNodeT(s.position, n, g)
    of skConst:
      case s.magic
      of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g)
      of mCompileDate: result = newStrNodeT(format(getSrcTimestamp(),
                                                   "yyyy-MM-dd"), n, g)
      of mCompileTime: result = newStrNodeT(format(getSrcTimestamp(),
                                                   "HH:mm:ss"), n, g)
      of mCpuEndian: result = newIntNodeT(ord(CPU[g.config.target.targetCPU].endian), n, g)
      of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.targetOS].name), n, g)
      of mHostCPU: result = newStrNodeT(platform.CPU[g.config.target.targetCPU].name.toLowerAscii, n, g)
      of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.hostOS].name), n, g)
      of mBuildCPU: result = newStrNodeT(platform.CPU[g.config.target.hostCPU].name.toLowerAscii, n, g)
      of mAppType: result = getAppType(n, g)
      of mNaN: result = newFloatNodeT(NaN, n, g)
      of mInf: result = newFloatNodeT(Inf, n, g)
      of mNegInf: result = newFloatNodeT(NegInf, n, g)
      of mIntDefine:
        if isDefined(g.config, s.name.s):
          try:
            result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g)
          except ValueError:
            localError(g.config, n.info, "expression is not an integer literal")
      of mStrDefine:
        if isDefined(g.config, s.name.s):
          result = newStrNodeT(g.config.symbols[s.name.s], n, g)
      else:
        result = copyTree(s.ast)
    of skProc, skFunc, skMethod:
      result = n
    of skParam:
      if s.typ != nil and s.typ.kind == tyTypeDesc:
        result = newSymNodeTypeDesc(s, n.info)
    of skType:
      # XXX gensym'ed symbols can come here and cannot be resolved. This is
      # dirty, but correct.
      if s.typ != nil:
        result = newSymNodeTypeDesc(s, n.info)
    of skGenericParam:
      if s.typ.kind == tyStatic:
        if s.typ.n != nil and tfUnresolved notin s.typ.flags:
          result = s.typ.n
          result.typ = s.typ.base
      elif s.typ.isIntLit:
        result = s.typ.n
      else:
        result = newSymNodeTypeDesc(s, n.info)
    else: discard
  of nkCharLit..nkNilLit:
    result = copyNode(n)
  of nkIfExpr:
    result = getConstIfExpr(m, n, g)
  of nkCallKinds:
    if n.sons[0].kind != nkSym: return
    var s = n.sons[0].sym
    if s.kind != skProc and s.kind != skFunc: return
    try:
      case s.magic
      of mNone:
        # If it has no sideEffect, it should be evaluated. But not here.
        return
      of mSizeOf:
        var a = n.sons[1]
        if computeSize(g.config, a.typ) < 0:
          localError(g.config, a.info, "cannot evaluate 'sizeof' because its type is not defined completely")
          result = nil
        elif skipTypes(a.typ, typedescInst+{tyRange, tyArray}).kind in
             IntegralTypes+NilableTypes+{tySet}:
          #{tyArray,tyObject,tyTuple}:
          result = newIntNodeT(getSize(g.config, a.typ), n, g)
        else:
          result = nil
          # XXX: size computation for complex types is still wrong
      of mLow:
        result = newIntNodeT(firstOrd(g.config, n.sons[1].typ), n, g)
      of mHigh:
        if skipTypes(n.sons[1].typ, abstractVar+{tyUserTypeClassInst}).kind notin
            {tySequence, tyString, tyCString, tyOpenArray, tyVarargs}:
          result = newIntNodeT(lastOrd(g.config, skipTypes(n[1].typ, abstractVar)), n, g)
        else:
          var a = getArrayConstr(m, n.sons[1], g)
          if a.kind == nkBracket:
            # we can optimize it away:
            result = newIntNodeT(sonsLen(a)-1, n, g)
      of mLengthOpenArray:
        var a = getArrayConstr(m, n.sons[1], g)
        if a.kind == nkBracket:
          # we can optimize it away! This fixes the bug ``len(134)``.
          result = newIntNodeT(sonsLen(a), n, g)
        else:
          result = magicCall(m, n, g)
      of mLengthArray:
        # It doesn't matter if the argument is const or not for mLengthArray.
        # This fixes bug #544.
        result = newIntNodeT(lengthOrd(g.config, n.sons[1].typ), n, g)
      of mAstToStr:
        result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g)
      of mConStrStr:
        result = foldConStrStr(m, n, g)
      of mIs:
        let lhs = getConstExpr(m, n[1], g)
        if lhs != nil and lhs.kind == nkSym:
          result = evalIs(n, lhs.sym, g)
      else:
        result = magicCall(m, n, g)
    except OverflowError:
      localError(g.config, n.info, "over- or underflow")
    except DivByZeroError:
      localError(g.config, n.info, "division by zero")
  of nkAddr:
    var a = getConstExpr(m, n.sons[0], g)
    if a != nil:
      result = n
      n.sons[0] = a
  of nkBracket:
    result = copyTree(n)
    for i in countup(0, sonsLen(n) - 1):
      var a = getConstExpr(m, n.sons[i], g)
      if a == nil: return nil
      result.sons[i] = a
    incl(result.flags, nfAllConst)
  of nkRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    var b = getConstExpr(m, n.sons[1], g)
    if b == nil: return
    result = copyNode(n)
    addSon(result, a)
    addSon(result, b)
  of nkCurly:
    result = copyTree(n)
    for i in countup(0, sonsLen(n) - 1):
      var a = getConstExpr(m, n.sons[i], g)
      if a == nil: return nil
      result.sons[i] = a
    incl(result.flags, nfAllConst)
  #of nkObjConstr:
  #  result = copyTree(n)
  #  for i in countup(1, sonsLen(n) - 1):
  #    var a = getConstExpr(m, n.sons[i].sons[1])
  #    if a == nil: return nil
  #    result.sons[i].sons[1] = a
  #  incl(result.flags, nfAllConst)
  of nkPar, nkTupleConstr:
    # tuple constructor
    result = copyTree(n)
    if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
      for i in countup(0, sonsLen(n) - 1):
        var a = getConstExpr(m, n.sons[i].sons[1], g)
        if a == nil: return nil
        result.sons[i].sons[1] = a
    else:
      for i in countup(0, sonsLen(n) - 1):
        var a = getConstExpr(m, n.sons[i], g)
        if a == nil: return nil
        result.sons[i] = a
    incl(result.flags, nfAllConst)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
      result = a              # a <= x and x <= b
      result.typ = n.typ
    else:
      localError(g.config, n.info,
        "conversion from $1 to $2 is invalid" %
          [typeToString(n.sons[0].typ), typeToString(n.typ)])
  of nkStringToCString, nkCStringToString:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    result = a
    result.typ = n.typ
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    result = foldConv(n, a, g, check=n.kind == nkHiddenStdConv)
  of nkCast:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    if n.typ != nil and n.typ.kind in NilableTypes:
      # we allow compile-time 'cast' for pointer types:
      result = a
      result.typ = n.typ
  of nkBracketExpr: result = foldArrayAccess(m, n, g)
  of nkDotExpr: result = foldFieldAccess(m, n, g)
  of nkStmtListExpr:
    if n.len == 2 and n[0].kind == nkComesFrom:
      result = getConstExpr(m, n[1], g)
  else:
    discard