summary refs log tree commit diff stats
path: root/compiler/semfold.nim
blob: c7efa1a870ae8847565b32c6f3cd7169fedba841 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module folds constants; used by semantic checking phase
# and evaluation phase

import
  strutils, options, ast, trees, nimsets,
  platform, math, msgs, idents, renderer, types,
  commands, magicsys, modulegraphs, strtabs, lineinfos

proc newIntNodeT*(intVal: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  case skipTypes(n.typ, abstractVarRange).kind
  of tyInt:
    result = newIntNode(nkIntLit, intVal)
    # See bug #6989. 'pred' et al only produce an int literal type if the
    # original type was 'int', not a distinct int etc.
    if n.typ.kind == tyInt:
      result.typ = getIntLitType(g, result)
    else:
      result.typ = n.typ
    # hrm, this is not correct: 1 + high(int) shouldn't produce tyInt64 ...
    #setIntLitType(result)
  of tyChar:
    result = newIntNode(nkCharLit, intVal)
    result.typ = n.typ
  else:
    result = newIntNode(nkIntLit, intVal)
    result.typ = n.typ
  result.info = n.info

proc newFloatNodeT*(floatVal: BiggestFloat, n: PNode; g: ModuleGraph): PNode =
  result = newFloatNode(nkFloatLit, floatVal)
  result.typ = n.typ
  result.info = n.info

proc newStrNodeT*(strVal: string, n: PNode; g: ModuleGraph): PNode =
  result = newStrNode(nkStrLit, strVal)
  result.typ = n.typ
  result.info = n.info

proc getConstExpr*(m: PSym, n: PNode; g: ModuleGraph): PNode
  # evaluates the constant expression or returns nil if it is no constant
  # expression
proc evalOp*(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode

proc checkInRange(conf: ConfigRef; n: PNode, res: BiggestInt): bool =
  if res in firstOrd(conf, n.typ)..lastOrd(conf, n.typ):
    result = true

proc foldAdd(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a +% b
  if ((res xor a) >= 0'i64 or (res xor b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldSub*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a -% b
  if ((res xor a) >= 0'i64 or (res xor not b) >= 0'i64) and
      checkInRange(g.config, n, res):
    result = newIntNodeT(res, n, g)

proc foldUnarySub(a: BiggestInt, n: PNode, g: ModuleGraph): PNode =
  if a != firstOrd(g.config, n.typ):
    result = newIntNodeT(-a, n, g)

proc foldAbs*(a: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if a != firstOrd(g.config, n.typ):
    result = newIntNodeT(abs(a), n, g)

proc foldMod*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a mod b, n, g)

proc foldModU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a %% b, n, g)

proc foldDiv*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64 and (a != firstOrd(g.config, n.typ) or b != -1'i64):
    result = newIntNodeT(a div b, n, g)

proc foldDivU*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  if b != 0'i64:
    result = newIntNodeT(a /% b, n, g)

proc foldMul*(a, b: BiggestInt, n: PNode; g: ModuleGraph): PNode =
  let res = a *% b
  let floatProd = toBiggestFloat(a) * toBiggestFloat(b)
  let resAsFloat = toBiggestFloat(res)

  # Fast path for normal case: small multiplicands, and no info
  # is lost in either method.
  if resAsFloat == floatProd and checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

  # Somebody somewhere lost info. Close enough, or way off? Note
  # that a != 0 and b != 0 (else resAsFloat == floatProd == 0).
  # The difference either is or isn't significant compared to the
  # true value (of which floatProd is a good approximation).

  # abs(diff)/abs(prod) <= 1/32 iff
  #   32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough"
  if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd) and
      checkInRange(g.config, n, res):
    return newIntNodeT(res, n, g)

proc ordinalValToString*(a: PNode; g: ModuleGraph): string =
  # because $ has the param ordinal[T], `a` is not necessarily an enum, but an
  # ordinal
  var x = getInt(a)

  var t = skipTypes(a.typ, abstractRange)
  case t.kind
  of tyChar:
    result = $chr(int(x) and 0xff)
  of tyEnum:
    var n = t.n
    for i in 0 ..< sonsLen(n):
      if n.sons[i].kind != nkSym: internalError(g.config, a.info, "ordinalValToString")
      var field = n.sons[i].sym
      if field.position == x:
        if field.ast == nil:
          return field.name.s
        else:
          return field.ast.strVal
    localError(g.config, a.info,
      "Cannot convert int literal to $1. The value is invalid." %
        [typeToString(t)])
  else:
    result = $x

proc isFloatRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {tyFloat..tyFloat128}

proc isIntRange(t: PType): bool {.inline.} =
  result = t.kind == tyRange and t.sons[0].kind in {
      tyInt..tyInt64, tyUInt8..tyUInt32}

proc pickIntRange(a, b: PType): PType =
  if isIntRange(a): result = a
  elif isIntRange(b): result = b
  else: result = a

proc isIntRangeOrLit(t: PType): bool =
  result = isIntRange(t) or isIntLit(t)

proc makeRange(typ: PType, first, last: BiggestInt; g: ModuleGraph): PType =
  let minA = min(first, last)
  let maxA = max(first, last)
  let lowerNode = newIntNode(nkIntLit, minA)
  if typ.kind == tyInt and minA == maxA:
    result = getIntLitType(g, lowerNode)
  elif typ.kind in {tyUInt, tyUInt64}:
    # these are not ordinal types, so you get no subrange type for these:
    result = typ
  else:
    var n = newNode(nkRange)
    addSon(n, lowerNode)
    addSon(n, newIntNode(nkIntLit, maxA))
    result = newType(tyRange, typ.owner)
    result.n = n
    addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc makeRangeF(typ: PType, first, last: BiggestFloat; g: ModuleGraph): PType =
  var n = newNode(nkRange)
  addSon(n, newFloatNode(nkFloatLit, min(first.float, last.float)))
  addSon(n, newFloatNode(nkFloatLit, max(first.float, last.float)))
  result = newType(tyRange, typ.owner)
  result.n = n
  addSonSkipIntLit(result, skipTypes(typ, {tyRange}))

proc fitLiteral(c: ConfigRef, n: PNode): PNode =
  # Trim the literal value in order to make it fit in the destination type
  if n == nil:
    # `n` may be nil if the overflow check kicks in
    return

  doAssert n.kind in {nkIntLit, nkCharLit}

  result = n

  let typ = n.typ.skipTypes(abstractRange)
  if typ.kind in tyUInt..tyUInt32:
    result.intVal = result.intVal and lastOrd(c, typ, fixedUnsigned=true)

proc evalOp(m: TMagic, n, a, b, c: PNode; g: ModuleGraph): PNode =
  template doAndFit(op: untyped): untyped =
    # Implements wrap-around behaviour for unsigned types
    fitLiteral(g.config, op)
  # b and c may be nil
  result = nil
  case m
  of mOrd: result = newIntNodeT(getOrdValue(a), n, g)
  of mChr: result = newIntNodeT(getInt(a), n, g)
  of mUnaryMinusI, mUnaryMinusI64: result = foldUnarySub(getInt(a), n, g)
  of mUnaryMinusF64: result = newFloatNodeT(- getFloat(a), n, g)
  of mNot: result = newIntNodeT(1 - getInt(a), n, g)
  of mCard: result = newIntNodeT(nimsets.cardSet(g.config, a), n, g)
  of mBitnotI: result = doAndFit(newIntNodeT(not getInt(a), n, g))
  of mLengthArray: result = newIntNodeT(lengthOrd(g.config, a.typ), n, g)
  of mLengthSeq, mLengthOpenArray, mXLenSeq, mLengthStr, mXLenStr:
    if a.kind == nkNilLit:
      result = newIntNodeT(0, n, g)
    elif a.kind in {nkStrLit..nkTripleStrLit}:
      result = newIntNodeT(len a.strVal, n, g)
    else:
      result = newIntNodeT(sonsLen(a), n, g)
  of mUnaryPlusI, mUnaryPlusF64: result = a # throw `+` away
  of mToFloat, mToBiggestFloat:
    result = newFloatNodeT(toFloat(int(getInt(a))), n, g)
  # XXX: Hides overflow/underflow
  of mToInt, mToBiggestInt: result = newIntNodeT(system.toInt(getFloat(a)), n, g)
  of mAbsF64: result = newFloatNodeT(abs(getFloat(a)), n, g)
  of mAbsI: result = foldAbs(getInt(a), n, g)
  of mUnaryLt: result = doAndFit(foldSub(getOrdValue(a), 1, n, g))
  of mSucc: result = doAndFit(foldAdd(getOrdValue(a), getInt(b), n, g))
  of mPred: result = doAndFit(foldSub(getOrdValue(a), getInt(b), n, g))
  of mAddI: result = foldAdd(getInt(a), getInt(b), n, g)
  of mSubI: result = foldSub(getInt(a), getInt(b), n, g)
  of mMulI: result = foldMul(getInt(a), getInt(b), n, g)
  of mMinI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(b), n, g)
    else: result = newIntNodeT(getInt(a), n, g)
  of mMaxI:
    if getInt(a) > getInt(b): result = newIntNodeT(getInt(a), n, g)
    else: result = newIntNodeT(getInt(b), n, g)
  of mShlI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(int8(getInt(a)) shl int8(getInt(b)), n, g)
    of tyInt16: result = newIntNodeT(int16(getInt(a)) shl int16(getInt(b)), n, g)
    of tyInt32: result = newIntNodeT(int32(getInt(a)) shl int32(getInt(b)), n, g)
    of tyInt64, tyInt:
      result = newIntNodeT(`shl`(getInt(a), getInt(b)), n, g)
    of tyUInt..tyUInt64:
      result = doAndFit(newIntNodeT(`shl`(getInt(a), getInt(b)), n, g))
    else: internalError(g.config, n.info, "constant folding for shl")
  of mShrI:
    var a = cast[uint64](getInt(a))
    let b = cast[uint64](getInt(b))
    # To support the ``-d:nimOldShiftRight`` flag, we need to mask the
    # signed integers to cut off the extended sign bit in the internal
    # representation.
    if 0'u64 < b: # do not cut off the sign extension, when there is
              # no bit shifting happening.
      case skipTypes(n.typ, abstractRange).kind
      of tyInt8: a = a and 0xff'u64
      of tyInt16: a = a and 0xffff'u64
      of tyInt32: a = a and 0xffffffff'u64
      of tyInt:
        if g.config.target.intSize == 4:
          a = a and 0xffffffff'u64
      else:
        # unsigned and 64 bit integers don't need masking
        discard
    let c = cast[BiggestInt](a shr b)
    result = newIntNodeT(c, n, g)
  of mAshrI:
    case skipTypes(n.typ, abstractRange).kind
    of tyInt8: result = newIntNodeT(ashr(int8(getInt(a)), int8(getInt(b))), n, g)
    of tyInt16: result = newIntNodeT(ashr(int16(getInt(a)), int16(getInt(b))), n, g)
    of tyInt32: result = newIntNodeT(ashr(int32(getInt(a)), int32(getInt(b))), n, g)
    of tyInt64, tyInt:
      result = newIntNodeT(ashr(getInt(a), getInt(b)), n, g)
    else: internalError(g.config, n.info, "constant folding for ashr")
  of mDivI: result = foldDiv(getInt(a), getInt(b), n, g)
  of mModI: result = foldMod(getInt(a), getInt(b), n, g)
  of mAddF64: result = newFloatNodeT(getFloat(a) + getFloat(b), n, g)
  of mSubF64: result = newFloatNodeT(getFloat(a) - getFloat(b), n, g)
  of mMulF64: result = newFloatNodeT(getFloat(a) * getFloat(b), n, g)
  of mDivF64:
    result = newFloatNodeT(getFloat(a) / getFloat(b), n, g)
  of mMaxF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(a), n, g)
    else: result = newFloatNodeT(getFloat(b), n, g)
  of mMinF64:
    if getFloat(a) > getFloat(b): result = newFloatNodeT(getFloat(b), n, g)
    else: result = newFloatNodeT(getFloat(a), n, g)
  of mIsNil: result = newIntNodeT(ord(a.kind == nkNilLit), n, g)
  of mLtI, mLtB, mLtEnum, mLtCh:
    result = newIntNodeT(ord(getOrdValue(a) < getOrdValue(b)), n, g)
  of mLeI, mLeB, mLeEnum, mLeCh:
    result = newIntNodeT(ord(getOrdValue(a) <= getOrdValue(b)), n, g)
  of mEqI, mEqB, mEqEnum, mEqCh:
    result = newIntNodeT(ord(getOrdValue(a) == getOrdValue(b)), n, g)
  of mLtF64: result = newIntNodeT(ord(getFloat(a) < getFloat(b)), n, g)
  of mLeF64: result = newIntNodeT(ord(getFloat(a) <= getFloat(b)), n, g)
  of mEqF64: result = newIntNodeT(ord(getFloat(a) == getFloat(b)), n, g)
  of mLtStr: result = newIntNodeT(ord(getStr(a) < getStr(b)), n, g)
  of mLeStr: result = newIntNodeT(ord(getStr(a) <= getStr(b)), n, g)
  of mEqStr: result = newIntNodeT(ord(getStr(a) == getStr(b)), n, g)
  of mLtU, mLtU64:
    result = newIntNodeT(ord(`<%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mLeU, mLeU64:
    result = newIntNodeT(ord(`<=%`(getOrdValue(a), getOrdValue(b))), n, g)
  of mBitandI, mAnd: result = doAndFit(newIntNodeT(a.getInt and b.getInt, n, g))
  of mBitorI, mOr: result = doAndFit(newIntNodeT(getInt(a) or getInt(b), n, g))
  of mBitxorI, mXor: result = doAndFit(newIntNodeT(a.getInt xor b.getInt, n, g))
  of mAddU: result = doAndFit(newIntNodeT(`+%`(getInt(a), getInt(b)), n, g))
  of mSubU: result = doAndFit(newIntNodeT(`-%`(getInt(a), getInt(b)), n, g))
  of mMulU: result = doAndFit(newIntNodeT(`*%`(getInt(a), getInt(b)), n, g))
  of mModU: result = doAndFit(foldModU(getInt(a), getInt(b), n, g))
  of mDivU: result = doAndFit(foldDivU(getInt(a), getInt(b), n, g))
  of mLeSet: result = newIntNodeT(ord(containsSets(g.config, a, b)), n, g)
  of mEqSet: result = newIntNodeT(ord(equalSets(g.config, a, b)), n, g)
  of mLtSet:
    result = newIntNodeT(ord(containsSets(g.config, a, b) and not equalSets(g.config, a, b)), n, g)
  of mMulSet:
    result = nimsets.intersectSets(g.config, a, b)
    result.info = n.info
  of mPlusSet:
    result = nimsets.unionSets(g.config, a, b)
    result.info = n.info
  of mMinusSet:
    result = nimsets.diffSets(g.config, a, b)
    result.info = n.info
  of mSymDiffSet:
    result = nimsets.symdiffSets(g.config, a, b)
    result.info = n.info
  of mConStrStr: result = newStrNodeT(getStrOrChar(a) & getStrOrChar(b), n, g)
  of mInSet: result = newIntNodeT(ord(inSet(a, b)), n, g)
  of mRepr:
    # BUGFIX: we cannot eval mRepr here for reasons that I forgot.
    discard
  of mIntToStr, mInt64ToStr: result = newStrNodeT($(getOrdValue(a)), n, g)
  of mBoolToStr:
    if getOrdValue(a) == 0: result = newStrNodeT("false", n, g)
    else: result = newStrNodeT("true", n, g)
  of mCopyStr: result = newStrNodeT(substr(getStr(a), int(getOrdValue(b))), n, g)
  of mCopyStrLast:
    result = newStrNodeT(substr(getStr(a), int(getOrdValue(b)),
                                           int(getOrdValue(c))), n, g)
  of mFloatToStr: result = newStrNodeT($getFloat(a), n, g)
  of mCStrToStr, mCharToStr:
    if a.kind == nkBracket:
      var s = ""
      for b in a.sons:
        s.add b.getStrOrChar
      result = newStrNodeT(s, n, g)
    else:
      result = newStrNodeT(getStrOrChar(a), n, g)
  of mStrToStr: result = newStrNodeT(getStrOrChar(a), n, g)
  of mEnumToStr: result = newStrNodeT(ordinalValToString(a, g), n, g)
  of mArrToSeq:
    result = copyTree(a)
    result.typ = n.typ
  of mCompileOption:
    result = newIntNodeT(ord(commands.testCompileOption(g.config, a.getStr, n.info)), n, g)
  of mCompileOptionArg:
    result = newIntNodeT(ord(
      testCompileOptionArg(g.config, getStr(a), getStr(b), n.info)), n, g)
  of mEqProc:
    result = newIntNodeT(ord(
        exprStructuralEquivalent(a, b, strictSymEquality=true)), n, g)
  else: discard

proc getConstIfExpr(c: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil
  for i in 0 ..< sonsLen(n):
    var it = n.sons[i]
    if it.len == 2:
      var e = getConstExpr(c, it.sons[0], g)
      if e == nil: return nil
      if getOrdValue(e) != 0:
        if result == nil:
          result = getConstExpr(c, it.sons[1], g)
          if result == nil: return
    elif it.len == 1:
      if result == nil: result = getConstExpr(c, it.sons[0], g)
    else: internalError(g.config, it.info, "getConstIfExpr()")

proc leValueConv*(a, b: PNode): bool =
  result = false
  case a.kind
  of nkCharLit..nkUInt64Lit:
    case b.kind
    of nkCharLit..nkUInt64Lit: result = a.intVal <= b.intVal
    of nkFloatLit..nkFloat128Lit: result = a.intVal <= round(b.floatVal).int
    else: result = false #internalError(a.info, "leValueConv")
  of nkFloatLit..nkFloat128Lit:
    case b.kind
    of nkFloatLit..nkFloat128Lit: result = a.floatVal <= b.floatVal
    of nkCharLit..nkUInt64Lit: result = a.floatVal <= toFloat(int(b.intVal))
    else: result = false # internalError(a.info, "leValueConv")
  else: result = false # internalError(a.info, "leValueConv")

proc magicCall(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if sonsLen(n) <= 1: return

  var s = n.sons[0].sym
  var a = getConstExpr(m, n.sons[1], g)
  var b, c: PNode
  if a == nil: return
  if sonsLen(n) > 2:
    b = getConstExpr(m, n.sons[2], g)
    if b == nil: return
    if sonsLen(n) > 3:
      c = getConstExpr(m, n.sons[3], g)
      if c == nil: return
  result = evalOp(s.magic, n, a, b, c, g)

proc getAppType(n: PNode; g: ModuleGraph): PNode =
  if g.config.globalOptions.contains(optGenDynLib):
    result = newStrNodeT("lib", n, g)
  elif g.config.globalOptions.contains(optGenStaticLib):
    result = newStrNodeT("staticlib", n, g)
  elif g.config.globalOptions.contains(optGenGuiApp):
    result = newStrNodeT("gui", n, g)
  else:
    result = newStrNodeT("console", n, g)

proc rangeCheck(n: PNode, value: BiggestInt; g: ModuleGraph) =
  var err = false
  if n.typ.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}:
    err = value <% firstOrd(g.config, n.typ) or value >% lastOrd(g.config, n.typ, fixedUnsigned=true)
  else:
    err = value < firstOrd(g.config, n.typ) or value > lastOrd(g.config, n.typ)
  if err:
    localError(g.config, n.info, "cannot convert " & $value &
                                    " to " & typeToString(n.typ))

proc foldConv(n, a: PNode; g: ModuleGraph; check = false): PNode =
  let dstTyp = skipTypes(n.typ, abstractRange)
  let srcTyp = skipTypes(a.typ, abstractRange)

  # XXX range checks?
  case dstTyp.kind
  of tyInt..tyInt64, tyUInt..tyUInt64:
    case srcTyp.kind
    of tyFloat..tyFloat64:
      result = newIntNodeT(int(getFloat(a)), n, g)
    of tyChar:
      result = newIntNodeT(getOrdValue(a), n, g)
    of tyUInt..tyUInt64, tyInt..tyInt64:
      let toSigned = dstTyp.kind in tyInt..tyInt64
      var val = a.getOrdValue

      if dstTyp.kind in {tyInt, tyInt64, tyUInt, tyUInt64}:
        # No narrowing needed
        discard
      elif dstTyp.kind in {tyInt..tyInt64}:
        # Signed type: Overflow check (if requested) and conversion
        if check: rangeCheck(n, val, g)
        let mask = (`shl`(1, getSize(g.config, dstTyp) * 8) - 1)
        let valSign = val < 0
        val = abs(val) and mask
        if valSign: val = -val
      else:
        # Unsigned type: Conversion
        let mask = (`shl`(1, getSize(g.config, dstTyp) * 8) - 1)
        val = val and mask

      result = newIntNodeT(val, n, g)
    else:
      result = a
      result.typ = n.typ
    if check and result.kind in {nkCharLit..nkUInt64Lit}:
      rangeCheck(n, result.intVal, g)
  of tyFloat..tyFloat64:
    case srcTyp.kind
    of tyInt..tyInt64, tyEnum, tyBool, tyChar:
      result = newFloatNodeT(toBiggestFloat(getOrdValue(a)), n, g)
    else:
      result = a
      result.typ = n.typ
  of tyOpenArray, tyVarargs, tyProc, tyPointer:
    discard
  else:
    result = a
    result.typ = n.typ

proc getArrayConstr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  if n.kind == nkBracket:
    result = n
  else:
    result = getConstExpr(m, n, g)
    if result == nil: result = n

proc foldArrayAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyTypeDesc:
    return

  var y = getConstExpr(m, n.sons[1], g)
  if y == nil: return

  var idx = getOrdValue(y)
  case x.kind
  of nkPar, nkTupleConstr:
    if idx >= 0 and idx < sonsLen(x):
      result = x.sons[int(idx)]
      if result.kind == nkExprColonExpr: result = result.sons[1]
    else:
      localError(g.config, n.info, formatErrorIndexBound(idx, sonsLen(x)-1) & $n)
  of nkBracket:
    idx = idx - firstOrd(g.config, x.typ)
    if idx >= 0 and idx < x.len: result = x.sons[int(idx)]
    else: localError(g.config, n.info, formatErrorIndexBound(idx, x.len-1) & $n)
  of nkStrLit..nkTripleStrLit:
    result = newNodeIT(nkCharLit, x.info, n.typ)
    if idx >= 0 and idx < len(x.strVal):
      result.intVal = ord(x.strVal[int(idx)])
    elif idx == len(x.strVal) and optLaxStrings in g.config.options:
      discard
    else:
      localError(g.config, n.info, formatErrorIndexBound(idx, len(x.strVal)-1) & $n)
  else: discard

proc foldFieldAccess(m: PSym, n: PNode; g: ModuleGraph): PNode =
  # a real field access; proc calls have already been transformed
  var x = getConstExpr(m, n.sons[0], g)
  if x == nil or x.kind notin {nkObjConstr, nkPar, nkTupleConstr}: return

  var field = n.sons[1].sym
  for i in ord(x.kind == nkObjConstr) ..< sonsLen(x):
    var it = x.sons[i]
    if it.kind != nkExprColonExpr:
      # lookup per index:
      result = x.sons[field.position]
      if result.kind == nkExprColonExpr: result = result.sons[1]
      return
    if it.sons[0].sym.name.id == field.name.id:
      result = x.sons[i].sons[1]
      return
  localError(g.config, n.info, "field not found: " & field.name.s)

proc foldConStrStr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = newNodeIT(nkStrLit, n.info, n.typ)
  result.strVal = ""
  for i in 1 ..< sonsLen(n):
    let a = getConstExpr(m, n.sons[i], g)
    if a == nil: return nil
    result.strVal.add(getStrOrChar(a))

proc newSymNodeTypeDesc*(s: PSym; info: TLineInfo): PNode =
  result = newSymNode(s, info)
  if s.typ.kind != tyTypeDesc:
    result.typ = newType(tyTypeDesc, s.owner)
    result.typ.addSonSkipIntLit(s.typ)
  else:
    result.typ = s.typ

proc getConstExpr(m: PSym, n: PNode; g: ModuleGraph): PNode =
  result = nil
  case n.kind
  of nkSym:
    var s = n.sym
    case s.kind
    of skEnumField:
      result = newIntNodeT(s.position, n, g)
    of skConst:
      case s.magic
      of mIsMainModule: result = newIntNodeT(ord(sfMainModule in m.flags), n, g)
      of mCompileDate: result = newStrNodeT(getDateStr(), n, g)
      of mCompileTime: result = newStrNodeT(getClockStr(), n, g)
      of mCpuEndian: result = newIntNodeT(ord(CPU[g.config.target.targetCPU].endian), n, g)
      of mHostOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.targetOS].name), n, g)
      of mHostCPU: result = newStrNodeT(platform.CPU[g.config.target.targetCPU].name.toLowerAscii, n, g)
      of mBuildOS: result = newStrNodeT(toLowerAscii(platform.OS[g.config.target.hostOS].name), n, g)
      of mBuildCPU: result = newStrNodeT(platform.CPU[g.config.target.hostCPU].name.toLowerAscii, n, g)
      of mAppType: result = getAppType(n, g)
      of mIntDefine:
        if isDefined(g.config, s.name.s):
          try:
            result = newIntNodeT(g.config.symbols[s.name.s].parseInt, n, g)
          except ValueError:
            localError(g.config, s.info,
              "{.intdefine.} const was set to an invalid integer: '" &
                g.config.symbols[s.name.s] & "'")
      of mStrDefine:
        if isDefined(g.config, s.name.s):
          result = newStrNodeT(g.config.symbols[s.name.s], n, g)
      of mBoolDefine:
        if isDefined(g.config, s.name.s):
          try:
            result = newIntNodeT(g.config.symbols[s.name.s].parseBool.int, n, g)
          except ValueError:
            localError(g.config, s.info,
              "{.booldefine.} const was set to an invalid bool: '" &
                g.config.symbols[s.name.s] & "'")
      else:
        result = copyTree(s.ast)
    of skProc, skFunc, skMethod:
      result = n
    of skParam:
      if s.typ != nil and s.typ.kind == tyTypeDesc:
        result = newSymNodeTypeDesc(s, n.info)
    of skType:
      # XXX gensym'ed symbols can come here and cannot be resolved. This is
      # dirty, but correct.
      if s.typ != nil:
        result = newSymNodeTypeDesc(s, n.info)
    of skGenericParam:
      if s.typ.kind == tyStatic:
        if s.typ.n != nil and tfUnresolved notin s.typ.flags:
          result = s.typ.n
          result.typ = s.typ.base
      elif s.typ.isIntLit:
        result = s.typ.n
      else:
        result = newSymNodeTypeDesc(s, n.info)
    else: discard
  of nkCharLit..nkNilLit:
    result = copyNode(n)
  of nkIfExpr:
    result = getConstIfExpr(m, n, g)
  of nkCallKinds:
    if n.sons[0].kind != nkSym: return
    var s = n.sons[0].sym
    if s.kind != skProc and s.kind != skFunc: return
    try:
      case s.magic
      of mNone:
        # If it has no sideEffect, it should be evaluated. But not here.
        return
      of mLow:
        if skipTypes(n.sons[1].typ, abstractVarRange).kind in tyFloat..tyFloat64:
          result = newFloatNodeT(firstFloat(n.sons[1].typ), n, g)
        else:
          result = newIntNodeT(firstOrd(g.config, n.sons[1].typ), n, g)
      of mHigh:
        if skipTypes(n.sons[1].typ, abstractVar+{tyUserTypeClassInst}).kind notin
            {tySequence, tyString, tyCString, tyOpenArray, tyVarargs}:
          if skipTypes(n.sons[1].typ, abstractVarRange).kind in tyFloat..tyFloat64:
            result = newFloatNodeT(lastFloat(n.sons[1].typ), n, g)
          else:
            result = newIntNodeT(lastOrd(g.config, skipTypes(n[1].typ, abstractVar)), n, g)
        else:
          var a = getArrayConstr(m, n.sons[1], g)
          if a.kind == nkBracket:
            # we can optimize it away:
            result = newIntNodeT(sonsLen(a)-1, n, g)
      of mLengthOpenArray:
        var a = getArrayConstr(m, n.sons[1], g)
        if a.kind == nkBracket:
          # we can optimize it away! This fixes the bug ``len(134)``.
          result = newIntNodeT(sonsLen(a), n, g)
        else:
          result = magicCall(m, n, g)
      of mLengthArray:
        # It doesn't matter if the argument is const or not for mLengthArray.
        # This fixes bug #544.
        result = newIntNodeT(lengthOrd(g.config, n.sons[1].typ), n, g)
      of mSizeOf:
        result = foldSizeOf(g.config, n, nil)
      of mAlignOf:
        result = foldAlignOf(g.config, n, nil)
      of mOffsetOf:
        result = foldOffsetOf(g.config, n, nil)
      of mAstToStr:
        result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, g)
      of mConStrStr:
        result = foldConStrStr(m, n, g)
      of mIs:
        # The only kind of mIs node that comes here is one depending on some
        # generic parameter and that's (hopefully) handled at instantiation time
        discard
      else:
        result = magicCall(m, n, g)
    except OverflowError:
      localError(g.config, n.info, "over- or underflow")
    except DivByZeroError:
      localError(g.config, n.info, "division by zero")
  of nkAddr:
    var a = getConstExpr(m, n.sons[0], g)
    if a != nil:
      result = n
      n.sons[0] = a
  of nkBracket, nkCurly:
    result = copyNode(n)
    for i, son in n.pairs:
      var a = getConstExpr(m, son, g)
      if a == nil: return nil
      result.add a
    incl(result.flags, nfAllConst)
  of nkRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    var b = getConstExpr(m, n.sons[1], g)
    if b == nil: return
    result = copyNode(n)
    addSon(result, a)
    addSon(result, b)
  #of nkObjConstr:
  #  result = copyTree(n)
  #  for i in 1 ..< sonsLen(n):
  #    var a = getConstExpr(m, n.sons[i].sons[1])
  #    if a == nil: return nil
  #    result.sons[i].sons[1] = a
  #  incl(result.flags, nfAllConst)
  of nkPar, nkTupleConstr:
    # tuple constructor
    result = copyNode(n)
    if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
      for i, expr in n.pairs:
        let exprNew = copyNode(expr) # nkExprColonExpr
        exprNew.add expr[0]
        let a = getConstExpr(m, expr[1], g)
        if a == nil: return nil
        exprNew.add a
        result.add exprNew
    else:
      for i, expr in n.pairs:
        let a = getConstExpr(m, expr, g)
        if a == nil: return nil
        result.add a
    incl(result.flags, nfAllConst)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    if leValueConv(n.sons[1], a) and leValueConv(a, n.sons[2]):
      result = a              # a <= x and x <= b
      result.typ = n.typ
    else:
      localError(g.config, n.info,
        "conversion from $1 to $2 is invalid" %
          [typeToString(n.sons[0].typ), typeToString(n.typ)])
  of nkStringToCString, nkCStringToString:
    var a = getConstExpr(m, n.sons[0], g)
    if a == nil: return
    result = a
    result.typ = n.typ
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    # XXX: we should enable `check` for other conversion types too
    result = foldConv(n, a, g, check=n.kind == nkHiddenStdConv)
  of nkCast:
    var a = getConstExpr(m, n.sons[1], g)
    if a == nil: return
    if n.typ != nil and n.typ.kind in NilableTypes:
      # we allow compile-time 'cast' for pointer types:
      result = a
      result.typ = n.typ
  of nkBracketExpr: result = foldArrayAccess(m, n, g)
  of nkDotExpr: result = foldFieldAccess(m, n, g)
  of nkStmtListExpr:
    if n.len == 2 and n[0].kind == nkComesFrom:
      result = getConstExpr(m, n[1], g)
  else:
    discard