1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196//: Arithmetic primitives
:(before "End Primitive Recipe Declarations")
ADD,
:(before "End Primitive Recipe Numbers")
Recipe_number["add"] = ADD;
:(before "End Primitive Recipe Implementations")
case ADD: {
double result = 0;
for (long long int i = 0; i < SIZE(ingredients); ++i) {
assert(scalar(pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This include file implements the semantic checking for magics.
# included from sem.nim
proc semAddr(c: PContext; n: PNode; isUnsafeAddr=false): PNode =
result = newNodeI(nkAddr, n.info)
let x = semExprWithType(c, n)
if x.kind == nkSym:
x.sym.flags.incl(sfAddrTaken)
if isAssignable(c, x, isUnsafeAddr) notin {arLValue, arLocalLValue}:
localError(c.config, n.info, errExprHasNoAddress)
result.add x
result.typ = makePtrType(c, x.typ)
proc semTypeOf(c: PContext; n: PNode): PNode =
var m = BiggestInt 1 # typeOfIter
if n.len == 3:
let mode = semConstExpr(c, n[2])
if mode.kind != nkIntLit:
localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
else:
m = mode.intVal
result = newNodeI(nkTypeOfExpr, n.info)
let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
result.add typExpr
result.typ = makeTypeDesc(c, typExpr.typ)
type
SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode
proc skipAddr(n: PNode): PNode {.inline.} =
(if n.kind == nkHiddenAddr: n.sons[0] else: n)
proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode =
result = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: result.add(n[i])
result = semSubscript(c, result, flags)
if result.isNil:
let x = copyTree(n)
x.sons[0] = newIdentNode(getIdent(c.cache, "[]"), n.info)
bracketNotFoundError(c, x)
#localError(c.config, n.info, "could not resolve: " & $n)
result = n
proc semArrPut(c: PContext; n: PNode; flags: TExprFlags): PNode =
# rewrite `[]=`(a, i, x) back to ``a[i] = x``.
let b = newNodeI(nkBracketExpr, n.info)
b.add(n[1].skipAddr)
for i in 2..n.len-2: b.add(n[i])
result = newNodeI(nkAsgn, n.info, 2)
result.sons[0] = b
result.sons[1] = n.lastSon
result = semAsgn(c, result, noOverloadedSubscript)
proc semAsgnOpr(c: PContext; n: PNode): PNode =
result = newNodeI(nkAsgn, n.info, 2)
result.sons[0] = n[1]
result.sons[1] = n[2]
result = semAsgn(c, result, noOverloadedAsgn)
proc semIsPartOf(c: PContext, n: PNode, flags: TExprFlags): PNode =
var r = isPartOf(n[1], n[2])
result = newIntNodeT(ord(r), n, c.graph)
proc expectIntLit(c: PContext, n: PNode): int =
let x = c.semConstExpr(c, n)
case x.kind
of nkIntLit..nkInt64Lit: result = int(x.intVal)
else: localError(c.config, n.info, errIntLiteralExpected)
proc semInstantiationInfo(c: PContext, n: PNode): PNode =
result = newNodeIT(nkTupleConstr, n.info, n.typ)
let idx = expectIntLit(c, n.sons[1])
let useFullPaths = expectIntLit(c, n.sons[2])
let info = getInfoContext(c.config, idx)
var filename = newNodeIT(nkStrLit, n.info, getSysType(c.graph, n.info, tyString))
filename.strVal = if useFullPaths != 0: toFullPath(c.config, info) else: toFilename(c.config, info)
var line = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
line.intVal = toLinenumber(info)
var column = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
column.intVal = toColumn(info)
result.add(filename)
result.add(line)
result.add(column)
proc toNode(t: PType, i: TLineInfo): PNode =
result = newNodeIT(nkType, i, t)
const
# these are types that use the bracket syntax for instantiation
# they can be subjected to the type traits `genericHead` and
# `Uninstantiated`
tyUserDefinedGenerics* = {tyGenericInst, tyGenericInvocation,
tyUserTypeClassInst}
tyMagicGenerics* = {tySet, tySequence, tyArray, tyOpenArray}
tyGenericLike* = tyUserDefinedGenerics +
tyMagicGenerics +
{tyCompositeTypeClass}
proc uninstantiate(t: PType): PType =
result = case t.kind
of tyMagicGenerics: t
of tyUserDefinedGenerics: t.base
of tyCompositeTypeClass: uninstantiate t.sons[1]
else: t
proc evalTypeTrait(c: PContext; traitCall: PNode, operand: PType, context: PSym): PNode =
const skippedTypes = {tyTypeDesc, tyAlias, tySink}
let trait = traitCall[0]
internalAssert c.config, trait.kind == nkSym
var operand = operand.skipTypes(skippedTypes)
template operand2: PType =
traitCall.sons[2].typ.skipTypes({tyTypeDesc})
template typeWithSonsResult(kind, sons): PNode =
newTypeWithSons(context, kind, sons).toNode(traitCall.info)
let s = trait.sym.name.s
case s
of "or", "|":
return typeWithSonsResult(tyOr, @[operand, operand2])
of "and":
return typeWithSonsResult(tyAnd, @[operand, operand2])
of "not":
return typeWithSonsResult(tyNot, @[operand])
of "name", "$":
result = newStrNode(nkStrLit, operand.typeToString(preferTypeName))
result.typ = newType(tyString, context)
result.info = traitCall.info
of "arity":
result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc))
result.typ = newType(tyInt, context)
result.info = traitCall.info
of "genericHead":
var res = uninstantiate(operand)
if res == operand and res.kind notin tyMagicGenerics:
localError(c.config, traitCall.info,
"genericHead expects a generic type. The given type was " &
typeToString(operand))
return newType(tyError, context).toNode(traitCall.info)
result = res.base.toNode(traitCall.info)
of "stripGenericParams":
result = uninstantiate(operand).toNode(traitCall.info)
of "supportsCopyMem":
let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
let complexObj = containsGarbageCollectedRef(t) or
hasDestructor(t)
result = newIntNodeT(ord(not complexObj), traitCall, c.graph)
else:
localError(c.config, traitCall.info, "unknown trait: " & s)
result = newNodeI(nkEmpty, traitCall.info)
proc semTypeTraits(c: PContext, n: PNode): PNode =
checkMinSonsLen(n, 2, c.config)
let t = n.sons[1].typ
internalAssert c.config, t != nil and t.kind == tyTypeDesc
if t.sonsLen > 0:
# This is either a type known to sem or a typedesc
# param to a regular proc (again, known at instantiation)
result = evalTypeTrait(c, n, t, getCurrOwner(c))
else:
# a typedesc variable, pass unmodified to evals
result = n
proc semOrd(c: PContext, n: PNode): PNode =
result = n
let parType = n.sons[1].typ
if isOrdinalType(parType, allowEnumWithHoles=true):
discard
elif parType.kind == tySet:
result.typ = makeRangeType(c, firstOrd(c.config, parType), lastOrd(c.config, parType), n.info)
else:
localError(c.config, n.info, errOrdinalTypeExpected)
result.typ = errorType(c)
proc semBindSym(c: PContext, n: PNode): PNode =
result = copyNode(n)
result.add(n.sons[0])
let sl = semConstExpr(c, n.sons[1])
if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}:
localError(c.config, n.sons[1].info, errStringLiteralExpected)
return errorNode(c, n)
let isMixin = semConstExpr(c, n.sons[2])
if isMixin.kind != nkIntLit or isMixin.intVal < 0 or
isMixin.intVal > high(TSymChoiceRule).int:
localError(c.config, n.sons[2].info, errConstExprExpected)
return errorNode(c, n)
let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info)
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal))
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
return sc
result.add(sc)
else:
errorUndeclaredIdentifier(c, n.sons[1].info, sl.strVal)
proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode =
if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}:
localError(c.config, info.info, errStringOrIdentNodeExpected)
return errorNode(c, n)
if isMixin < 0 or isMixin > high(TSymChoiceRule).int:
localError(c.config, info.info, errConstExprExpected)
return errorNode(c, n)
let id = if n.kind == nkIdent: n
else: newIdentNode(getIdent(c.cache, n.strVal), info.info)
let tmpScope = c.currentScope
c.currentScope = scope
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
result = symChoice(c, id, s, TSymChoiceRule(isMixin))
else:
errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s
else: n.strVal)
c.currentScope = tmpScope
proc semDynamicBindSym(c: PContext, n: PNode): PNode =
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
return semBindSym(c, n)
if c.graph.vm.isNil:
setupGlobalCtx(c.module, c.graph)
let
vm = PCtx c.graph.vm
# cache the current scope to
# prevent it lost into oblivion
scope = c.currentScope
# cannot use this
# vm.config.features.incl dynamicBindSym
proc bindSymWrapper(a: VmArgs) =
# capture PContext and currentScope
# param description:
# 0. ident, a string literal / computed string / or ident node
# 1. bindSym rule
# 2. info node
a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2))
let
# altough we use VM callback here, it is not
# executed like 'normal' VM callback
idx = vm.registerCallback("bindSymImpl", bindSymWrapper)
# dummy node to carry idx information to VM
idxNode = newIntTypeNode(nkIntLit, idx, c.graph.getSysType(TLineInfo(), tyInt))
result = copyNode(n)
for x in n: result.add x
result.add n # info node
result.add idxNode
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semOf(c: PContext, n: PNode): PNode =
if sonsLen(n) == 3:
n.sons[1] = semExprWithType(c, n.sons[1])
n.sons[2] = semExprWithType(c, n.sons[2], {efDetermineType})
#restoreOldStyleType(n.sons[1])
#restoreOldStyleType(n.sons[2])
let a = skipTypes(n.sons[1].typ, abstractPtrs)
let b = skipTypes(n.sons[2].typ, abstractPtrs)
let x = skipTypes(n.sons[1].typ, abstractPtrs-{tyTypeDesc})
let y = skipTypes(n.sons[2].typ, abstractPtrs-{tyTypeDesc})
if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
localError(c.config, n.info, "'of' takes object types")
elif b.kind != tyObject or a.kind != tyObject:
localError(c.config, n.info, "'of' takes object types")
else:
let diff = inheritanceDiff(a, b)
# | returns: 0 iff `a` == `b`
# | returns: -x iff `a` is the x'th direct superclass of `b`
# | returns: +x iff `a` is the x'th direct subclass of `b`
# | returns: `maxint` iff `a` and `b` are not compatible at all
if diff <= 0:
# optimize to true:
message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n))
result = newIntNode(nkIntLit, 1)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
return result
elif diff == high(int):
if commonSuperclass(a, b) == nil:
localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a))
else:
message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n))
result = newIntNode(nkIntLit, 0)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
else:
localError(c.config, n.info, "'of' takes 2 arguments")
n.typ = getSysType(c.graph, n.info, tyBool)
result = n
proc magicsAfterOverloadResolution(c: PContext, n: PNode,
flags: TExprFlags): PNode =
## This is the preferred code point to implement magics.
## ``c`` the current module, a symbol table to a very good approximation
## ``n`` the ast like it would be passed to a real macro
## ``flags`` Some flags for more contextual information on how the
## "macro" is calld.
case n[0].sym.magic
of mAddr:
checkSonsLen(n, 2, c.config)
result = semAddr(c, n.sons[1], n[0].sym.name.s == "unsafeAddr")
of mTypeOf:
result = semTypeOf(c, n)
of mSizeOf:
# TODO there is no proper way to find out if a type cannot be queried for the size.
let size = getSize(c.config, n[1].typ)
# We just assume here that the type might come from the c backend
if size == szUnknownSize:
# Forward to the c code generation to emit a `sizeof` in the C code.
result = n
elif size >= 0:
result = newIntNode(nkIntLit, size)
result.info = n.info
result.typ = n.typ
else:
localError(c.config, n.info, "cannot evaluate 'sizeof' because its type is not defined completely, type: " & n[1].typ.typeToString)
result = n
of mAlignOf:
result = newIntNode(nkIntLit, getAlign(c.config, n[1].typ))
result.info = n.info
result.typ = n.typ
of mOffsetOf:
var dotExpr: PNode
block findDotExpr:
if n[1].kind == nkDotExpr:
dotExpr = n[1]
elif n[1].kind == nkCheckedFieldExpr:
dotExpr = n[1][0]
else:
illFormedAst(n, c.config)
assert dotExpr != nil
let value = dotExpr[0]
let member = dotExpr[1]
discard computeSize(c.config, value.typ)
result = newIntNode(nkIntLit, member.sym.offset)
result.info = n.info
result.typ = n.typ
of mArrGet:
result = semArrGet(c, n, flags)
of mArrPut:
result = semArrPut(c, n, flags)
of mAsgn:
if n[0].sym.name.s == "=":
result = semAsgnOpr(c, n)
else:
result = semShallowCopy(c, n, flags)
of mIsPartOf: result = semIsPartOf(c, n, flags)
of mTypeTrait: result = semTypeTraits(c, n)
of mAstToStr:
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mInstantiationInfo: result = semInstantiationInfo(c, n)
of mOrd: result = semOrd(c, n)
of mOf: result = semOf(c, n)
of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic)
of mShallowCopy: result = semShallowCopy(c, n, flags)
of mNBindSym:
if dynamicBindSym notin c.features:
result = semBindSym(c, n)
else:
result = semDynamicBindSym(c, n)
of mProcCall:
result = n
result.typ = n[1].typ
of mDotDot:
result = n
of mRoof:
localError(c.config, n.info, "builtin roof operator is not supported anymore")
of mPlugin:
let plugin = getPlugin(c.cache, n[0].sym)
if plugin.isNil:
localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s)
result = n
else:
result = plugin(c, n)
of mNewFinalize:
# Make sure the finalizer procedure refers to a procedure
if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}:
localError(c.config, n.info, "finalizer must be a direct reference to a procedure")
result = n
else: result = n
|