summary refs log tree commit diff stats
path: root/compiler/semparallel.nim
blob: 36c63d03819526524496b229bf7f6f76aebfddd3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
-- Keyboard driver

function App.keypressed(key, scancode, isrepeat)
  if key == 'lctrl' or key == 'rctrl' or key == 'lalt' or key == 'ralt' or key == 'lshift' or key == 'rshift' or key == 'lgui' or key == 'rgui' then
    -- do nothing when the modifier is pressed
  end
  -- include the modifier(s) when the non-modifer is pressed
  App.keychord_pressed(App.combine_modifiers(key))
end

function App.combine_modifiers(key)
  local result = ''
  local down = love.keyboard.isDown
  if down('lctrl') or down('rctrl') then
    result = result..'C-'
  end
  if down('lalt') or down('ralt') then
    result = result..'M-'
  end
  if down('lgui') or down('rgui') then
    result = result..'S-'
  end
  result = result..key
  return result
end

function App.modifier_down()
  local down = love.keyboard.isDown
  return down('lctrl') or down('rctrl') or down('lalt') or down('ralt') or down('lgui') or down('rgui')
end
a> 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Semantic checking for 'parallel'.

# - codegen needs to support mSlice (+)
# - lowerings must not perform unnecessary copies (+)
# - slices should become "nocopy" to openArray (+)
#   - need to perform bound checks (+)
#
# - parallel needs to insert a barrier (+)
# - passed arguments need to be ensured to be "const"
#   - what about 'f(a)'? --> f shouldn't have side effects anyway
# - passed arrays need to be ensured not to alias
# - passed slices need to be ensured to be disjoint (+)
# - output slices need special logic (+)

import
  ast, astalgo, idents, lowerings, magicsys, guards, sempass2, msgs,
  renderer, types
from trees import getMagic
from strutils import `%`

discard """

one major problem:
  spawn f(a[i])
  inc i
  spawn f(a[i])
is valid, but
  spawn f(a[i])
  spawn f(a[i])
  inc i
is not! However,
  spawn f(a[i])
  if guard: inc i
  spawn f(a[i])
is not valid either! --> We need a flow dependent analysis here.

However:
  while foo:
    spawn f(a[i])
    inc i
    spawn f(a[i])

Is not valid either! --> We should really restrict 'inc' to loop endings?

The heuristic that we implement here (that has no false positives) is: Usage
of 'i' in a slice *after* we determined the stride is invalid!
"""

type
  TDirection = enum
    ascending, descending
  MonotonicVar = object
    v, alias: PSym        # to support the ordinary 'countup' iterator
                          # we need to detect aliases
    lower, upper, stride: PNode
    dir: TDirection
    blacklisted: bool     # blacklisted variables that are not monotonic
  AnalysisCtx = object
    locals: seq[MonotonicVar]
    slices: seq[tuple[x,a,b: PNode, spawnId: int, inLoop: bool]]
    guards: TModel      # nested guards
    args: seq[PSym]     # args must be deeply immutable
    spawns: int         # we can check that at last 1 spawn is used in
                        # the 'parallel' section
    currentSpawnId: int
    inLoop: int

let opSlice = createMagic("slice", mSlice)

proc initAnalysisCtx(): AnalysisCtx =
  result.locals = @[]
  result.slices = @[]
  result.args = @[]
  result.guards = @[]

proc lookupSlot(c: AnalysisCtx; s: PSym): int =
  for i in 0.. <c.locals.len:
    if c.locals[i].v == s or c.locals[i].alias == s: return i
  return -1

proc getSlot(c: var AnalysisCtx; v: PSym): ptr MonotonicVar =
  let s = lookupSlot(c, v)
  if s >= 0: return addr(c.locals[s])
  let L = c.locals.len
  c.locals.setLen(L+1)
  c.locals[L].v = v
  return addr(c.locals[L])

proc gatherArgs(c: var AnalysisCtx; n: PNode) =
  for i in 0.. <n.safeLen:
    let root = getRoot n[i]
    if root != nil:
      block addRoot:
        for r in items(c.args):
          if r == root: break addRoot
        c.args.add root
    gatherArgs(c, n[i])

proc isSingleAssignable(n: PNode): bool =
  n.kind == nkSym and (let s = n.sym;
    s.kind in {skTemp, skForVar, skLet} and
          {sfAddrTaken, sfGlobal} * s.flags == {})

proc isLocal(n: PNode): bool =
  n.kind == nkSym and (let s = n.sym;
    s.kind in {skResult, skTemp, skForVar, skVar, skLet} and
          {sfAddrTaken, sfGlobal} * s.flags == {})

proc checkLocal(c: AnalysisCtx; n: PNode) =
  if isLocal(n):
    let s = c.lookupSlot(n.sym)
    if s >= 0 and c.locals[s].stride != nil:
      localError(n.info, "invalid usage of counter after increment")
  else:
    for i in 0 .. <n.safeLen: checkLocal(c, n.sons[i])

template `?`(x): expr = x.renderTree

proc checkLe(c: AnalysisCtx; a, b: PNode) =
  case proveLe(c.guards, a, b)
  of impUnknown:
    localError(a.info, "cannot prove: " & ?a & " <= " & ?b)
  of impYes: discard
  of impNo:
    localError(a.info, "can prove: " & ?a & " > " & ?b)

proc checkBounds(c: AnalysisCtx; arr, idx: PNode) =
  checkLe(c, arr.lowBound, idx)
  checkLe(c, idx, arr.highBound)

proc addLowerBoundAsFacts(c: var AnalysisCtx) =
  for v in c.locals:
    if not v.blacklisted:
      c.guards.addFactLe(v.lower, newSymNode(v.v))

proc addSlice(c: var AnalysisCtx; n: PNode; x, le, ri: PNode) =
  checkLocal(c, n)
  let le = le.canon
  let ri = ri.canon
  # perform static bounds checking here; and not later!
  let oldState = c.guards.len
  addLowerBoundAsFacts(c)
  c.checkBounds(x, le)
  c.checkBounds(x, ri)
  c.guards.setLen(oldState)
  c.slices.add((x, le, ri, c.currentSpawnId, c.inLoop > 0))

proc overlap(m: TModel; x,y,c,d: PNode) =
  #  X..Y and C..D overlap iff (X <= D and C <= Y)
  case proveLe(m, x, d)
  of impUnknown:
    localError(x.info,
      "cannot prove: $# > $#; required for ($#)..($#) disjoint from ($#)..($#)" %
        [?x, ?d, ?x, ?y, ?c, ?d])
  of impYes:
    case proveLe(m, c, y)
    of impUnknown:
      localError(x.info,
        "cannot prove: $# > $#; required for ($#)..($#) disjoint from ($#)..($#)" %
          [?c, ?y, ?x, ?y, ?c, ?d])
    of impYes:
      localError(x.info, "($#)..($#) not disjoint from ($#)..($#)" % [?x, ?y, ?c, ?d])
    of impNo: discard
  of impNo: discard

proc stride(c: AnalysisCtx; n: PNode): BiggestInt =
  if isLocal(n):
    let s = c.lookupSlot(n.sym)
    if s >= 0 and c.locals[s].stride != nil:
      result = c.locals[s].stride.intVal
  else:
    for i in 0 .. <n.safeLen: result += stride(c, n.sons[i])

proc subStride(c: AnalysisCtx; n: PNode): PNode =
  # substitute with stride:
  if isLocal(n):
    let s = c.lookupSlot(n.sym)
    if s >= 0 and c.locals[s].stride != nil:
      result = n +@ c.locals[s].stride.intVal
    else:
      result = n
  elif n.safeLen > 0:
    result = shallowCopy(n)
    for i in 0 .. <n.len: result.sons[i] = subStride(c, n.sons[i])
  else:
    result = n

proc checkSlicesAreDisjoint(c: var AnalysisCtx) =
  # this is the only thing that we need to perform after we have traversed
  # the whole tree so that the strides are available.
  # First we need to add all the computed lower bounds:
  addLowerBoundAsFacts(c)
  # Every slice used in a loop needs to be disjoint with itself:
  for x,a,b,id,inLoop in items(c.slices):
    if inLoop: overlap(c.guards, a,b, c.subStride(a), c.subStride(b))
  # Another tricky example is:
  #   while true:
  #     spawn f(a[i])
  #     spawn f(a[i+1])
  #     inc i  # inc i, 2  would be correct here
  #
  # Or even worse:
  #   while true:
  #     spawn f(a[i+1 .. i+3])
  #     spawn f(a[i+4 .. i+5])
  #     inc i, 4
  # Prove that i*k*stride + 3 != i*k'*stride + 5
  # For the correct example this amounts to
  #   i*k*2 != i*k'*2 + 1
  # which is true.
  # For now, we don't try to prove things like that at all, even though it'd
  # be feasible for many useful examples. Instead we attach the slice to
  # a spawn and if the attached spawns differ, we bail out:
  for i in 0 .. high(c.slices):
    for j in i+1 .. high(c.slices):
      let x = c.slices[i]
      let y = c.slices[j]
      if x.spawnId != y.spawnId and guards.sameTree(x.x, y.x):
        if not x.inLoop or not y.inLoop:
          # XXX strictly speaking, 'or' is not correct here and it needs to
          # be 'and'. However this prevents too many obviously correct programs
          # like f(a[0..x]); for i in x+1 .. a.high: f(a[i])
          overlap(c.guards, x.a, x.b, y.a, y.b)
        elif (let k = simpleSlice(x.a, x.b); let m = simpleSlice(y.a, y.b);
              k >= 0 and m >= 0):
          # ah I cannot resist the temptation and add another sweet heuristic:
          # if both slices have the form (i+k)..(i+k)  and (i+m)..(i+m) we
          # check they are disjoint and k < stride and m < stride:
          overlap(c.guards, x.a, x.b, y.a, y.b)
          let stride = min(c.stride(x.a), c.stride(y.a))
          if k < stride and m < stride:
            discard
          else:
            localError(x.x.info, "cannot prove ($#)..($#) disjoint from ($#)..($#)" %
              [?x.a, ?x.b, ?y.a, ?y.b])
        else:
          localError(x.x.info, "cannot prove ($#)..($#) disjoint from ($#)..($#)" %
            [?x.a, ?x.b, ?y.a, ?y.b])

proc analyse(c: var AnalysisCtx; n: PNode)

proc analyseSons(c: var AnalysisCtx; n: PNode) =
  for i in 0 .. <safeLen(n): analyse(c, n[i])

proc min(a, b: PNode): PNode =
  if a.isNil: result = b
  elif a.intVal < b.intVal: result = a
  else: result = b

proc fromSystem(op: PSym): bool = sfSystemModule in getModule(op).flags

template pushSpawnId(c: expr, body: stmt) {.immediate, dirty.} =
  inc c.spawns
  let oldSpawnId = c.currentSpawnId
  c.currentSpawnId = c.spawns
  body
  c.currentSpawnId = oldSpawnId

proc analyseCall(c: var AnalysisCtx; n: PNode; op: PSym) =
  if op.magic == mSpawn:
    pushSpawnId(c):
      gatherArgs(c, n[1])
      analyseSons(c, n)
  elif op.magic == mInc or (op.name.s == "+=" and op.fromSystem):
    if n[1].isLocal:
      let incr = n[2].skipConv
      if incr.kind in {nkCharLit..nkUInt32Lit} and incr.intVal > 0:
        let slot = c.getSlot(n[1].sym)
        slot.stride = min(slot.stride, incr)
    analyseSons(c, n)
  elif op.name.s == "[]" and op.fromSystem:
    c.addSlice(n, n[1], n[2][1], n[2][2])
    analyseSons(c, n)
  elif op.name.s == "[]=" and op.fromSystem:
    c.addSlice(n, n[1], n[2][1], n[2][2])
    analyseSons(c, n)
  else:
    analyseSons(c, n)

proc analyseCase(c: var AnalysisCtx; n: PNode) =
  analyse(c, n.sons[0])
  let oldFacts = c.guards.len
  for i in 1.. <n.len:
    let branch = n.sons[i]
    setLen(c.guards, oldFacts)
    addCaseBranchFacts(c.guards, n, i)
    for i in 0 .. <branch.len:
      analyse(c, branch.sons[i])
  setLen(c.guards, oldFacts)

proc analyseIf(c: var AnalysisCtx; n: PNode) =
  analyse(c, n.sons[0].sons[0])
  let oldFacts = c.guards.len
  addFact(c.guards, canon(n.sons[0].sons[0]))

  analyse(c, n.sons[0].sons[1])
  for i in 1.. <n.len:
    let branch = n.sons[i]
    setLen(c.guards, oldFacts)
    for j in 0..i-1:
      addFactNeg(c.guards, canon(n.sons[j].sons[0]))
    if branch.len > 1:
      addFact(c.guards, canon(branch.sons[0]))
    for i in 0 .. <branch.len:
      analyse(c, branch.sons[i])
  setLen(c.guards, oldFacts)

proc analyse(c: var AnalysisCtx; n: PNode) =
  case n.kind
  of nkAsgn, nkFastAsgn:
    let y = n[1].skipConv
    if n[0].isSingleAssignable and y.isLocal:
      let slot = c.getSlot(y.sym)
      slot.alias = n[0].sym
    elif n[0].isLocal:
      # since we already ensure sfAddrTaken is not in s.flags, we only need to
      # prevent direct assignments to the monotonic variable:
      let slot = c.getSlot(n[0].sym)
      slot.blacklisted = true
    invalidateFacts(c.guards, n[0])
    let value = n[1]
    if getMagic(value) == mSpawn:
      pushSpawnId(c):
        gatherArgs(c, value[1])
        analyseSons(c, value[1])
        analyse(c, n[0])
    else:
      analyseSons(c, n)
    addAsgnFact(c.guards, n[0], y)
  of nkCallKinds:
    # direct call:
    if n[0].kind == nkSym: analyseCall(c, n, n[0].sym)
    else: analyseSons(c, n)
  of nkBracketExpr:
    c.addSlice(n, n[0], n[1], n[1])
    analyseSons(c, n)
  of nkReturnStmt, nkRaiseStmt, nkTryStmt:
    localError(n.info, "invalid control flow for 'parallel'")
    # 'break' that leaves the 'parallel' section is not valid either
    # or maybe we should generate a 'try' XXX
  of nkVarSection, nkLetSection:
    for it in n:
      let value = it.lastSon
      let isSpawned = getMagic(value) == mSpawn
      if isSpawned:
        pushSpawnId(c):
          gatherArgs(c, value[1])
          analyseSons(c, value[1])
      if value.kind != nkEmpty:
        for j in 0 .. it.len-3:
          if it[j].isLocal:
            let slot = c.getSlot(it[j].sym)
            if slot.lower.isNil: slot.lower = value
            else: internalError(it.info, "slot already has a lower bound")
        if not isSpawned: analyse(c, value)
  of nkCaseStmt: analyseCase(c, n)
  of nkWhen, nkIfStmt, nkIfExpr: analyseIf(c, n)
  of nkWhileStmt:
    analyse(c, n.sons[0])
    # 'while true' loop?
    inc c.inLoop
    if isTrue(n.sons[0]):
      analyseSons(c, n.sons[1])
    else:
      # loop may never execute:
      let oldState = c.locals.len
      let oldFacts = c.guards.len
      addFact(c.guards, canon(n.sons[0]))
      analyse(c, n.sons[1])
      setLen(c.locals, oldState)
      setLen(c.guards, oldFacts)
      # we know after the loop the negation holds:
      if not hasSubnodeWith(n.sons[1], nkBreakStmt):
        addFactNeg(c.guards, canon(n.sons[0]))
    dec c.inLoop
  of nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef, nkIteratorDef,
      nkMacroDef, nkTemplateDef, nkConstSection, nkPragma:
    discard
  else:
    analyseSons(c, n)

proc transformSlices(n: PNode): PNode =
  if n.kind in nkCallKinds and n[0].kind == nkSym:
    let op = n[0].sym
    if op.name.s == "[]" and op.fromSystem:
      result = copyNode(n)
      result.add opSlice.newSymNode
      result.add n[1]
      result.add n[2][1]
      result.add n[2][2]
      return result
  if n.safeLen > 0:
    result = shallowCopy(n)
    for i in 0 .. < n.len:
      result.sons[i] = transformSlices(n.sons[i])
  else:
    result = n

proc transformSpawn(owner: PSym; n, barrier: PNode): PNode
proc transformSpawnSons(owner: PSym; n, barrier: PNode): PNode =
  result = shallowCopy(n)
  for i in 0 .. < n.len:
    result.sons[i] = transformSpawn(owner, n.sons[i], barrier)

proc transformSpawn(owner: PSym; n, barrier: PNode): PNode =
  case n.kind
  of nkVarSection, nkLetSection:
    result = nil
    for it in n:
      let b = it.lastSon
      if getMagic(b) == mSpawn:
        if it.len != 3: localError(it.info, "invalid context for 'spawn'")
        let m = transformSlices(b)
        if result.isNil:
          result = newNodeI(nkStmtList, n.info)
          result.add n
        let t = b[1][0].typ.sons[0]
        if spawnResult(t, true) == srByVar:
          result.add wrapProcForSpawn(owner, m, b.typ, barrier, it[0])
          it.sons[it.len-1] = emptyNode
        else:
          it.sons[it.len-1] = wrapProcForSpawn(owner, m, b.typ, barrier, nil)
    if result.isNil: result = n
  of nkAsgn, nkFastAsgn:
    let b = n[1]
    if getMagic(b) == mSpawn and (let t = b[1][0].typ.sons[0];
        spawnResult(t, true) == srByVar):
      let m = transformSlices(b)
      return wrapProcForSpawn(owner, m, b.typ, barrier, n[0])
    result = transformSpawnSons(owner, n, barrier)
  of nkCallKinds:
    if getMagic(n) == mSpawn:
      result = transformSlices(n)
      return wrapProcForSpawn(owner, result, n.typ, barrier, nil)
    result = transformSpawnSons(owner, n, barrier)
  elif n.safeLen > 0:
    result = transformSpawnSons(owner, n, barrier)
  else:
    result = n

proc checkArgs(a: var AnalysisCtx; n: PNode) =
  discard "too implement"

proc generateAliasChecks(a: AnalysisCtx; result: PNode) =
  discard "too implement"

proc liftParallel*(owner: PSym; n: PNode): PNode =
  # this needs to be called after the 'for' loop elimination

  # first pass:
  # - detect monotonic local integer variables
  # - detect used slices
  # - detect used arguments
  #echo "PAR ", renderTree(n)

  var a = initAnalysisCtx()
  let body = n.lastSon
  analyse(a, body)
  if a.spawns == 0:
    localError(n.info, "'parallel' section without 'spawn'")
  checkSlicesAreDisjoint(a)
  checkArgs(a, body)

  var varSection = newNodeI(nkVarSection, n.info)
  var temp = newSym(skTemp, getIdent"barrier", owner, n.info)
  temp.typ = magicsys.getCompilerProc("Barrier").typ
  incl(temp.flags, sfFromGeneric)
  let tempNode = newSymNode(temp)
  varSection.addVar tempNode

  let barrier = genAddrOf(tempNode)
  result = newNodeI(nkStmtList, n.info)
  generateAliasChecks(a, result)
  result.add varSection
  result.add callCodegenProc("openBarrier", barrier)
  result.add transformSpawn(owner, body, barrier)
  result.add callCodegenProc("closeBarrier", barrier)