summary refs log tree commit diff stats
path: root/compiler/semstmts.nim
blob: 68d485f48fa9c2d60a1c6a05ed2fc345f010a6ae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
#
#
#           The Nimrod Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## this module does the semantic checking of statements
#  included from sem.nim

proc semCommand(c: PContext, n: PNode): PNode =
  result = semExprNoType(c, n)

proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
  # If semCheck is set to false, ``when`` will return the verbatim AST of
  # the correct branch. Otherwise the AST will be passed through semStmt.
  result = nil
  
  template setResult(e: expr) =
    if semCheck: result = semStmt(c, e) # do not open a new scope!
    else: result = e

  for i in countup(0, sonsLen(n) - 1): 
    var it = n.sons[i]
    case it.kind
    of nkElifBranch, nkElifExpr: 
      checkSonsLen(it, 2)
      var e = semConstExpr(c, it.sons[0])
      if e.kind != nkIntLit: InternalError(n.info, "semWhen")
      elif e.intVal != 0 and result == nil:
        setResult(it.sons[1]) 
    of nkElse, nkElseExpr:
      checkSonsLen(it, 1)
      if result == nil: 
        setResult(it.sons[0])
    else: illFormedAst(n)
  if result == nil: 
    result = newNodeI(nkNilLit, n.info) 
  # The ``when`` statement implements the mechanism for platform dependent
  # code. Thus we try to ensure here consistent ID allocation after the
  # ``when`` statement.
  IDsynchronizationPoint(200)

proc semIf(c: PContext, n: PNode): PNode = 
  result = n
  for i in countup(0, sonsLen(n) - 1): 
    var it = n.sons[i]
    case it.kind
    of nkElifBranch: 
      checkSonsLen(it, 2)
      it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
      openScope(c.tab)
      it.sons[1] = semStmt(c, it.sons[1])
      closeScope(c.tab)
    of nkElse: 
      if sonsLen(it) == 1: it.sons[0] = semStmtScope(c, it.sons[0])
      else: illFormedAst(it)
    else: illFormedAst(n)
  
proc semDiscard(c: PContext, n: PNode): PNode = 
  result = n
  checkSonsLen(n, 1)
  if n.sons[0].kind != nkEmpty:
    n.sons[0] = semExprWithType(c, n.sons[0])
    if isEmptyType(n.sons[0].typ): localError(n.info, errInvalidDiscard)
  
proc semBreakOrContinue(c: PContext, n: PNode): PNode =
  result = n
  checkSonsLen(n, 1)
  if n.sons[0].kind != nkEmpty: 
    var s: PSym
    case n.sons[0].kind
    of nkIdent: s = lookUp(c, n.sons[0])
    of nkSym: s = n.sons[0].sym
    else: illFormedAst(n)
    if s.kind == skLabel and s.owner.id == c.p.owner.id: 
      var x = newSymNode(s)
      x.info = n.info
      incl(s.flags, sfUsed)
      n.sons[0] = x
      suggestSym(x, s)
    else:
      localError(n.info, errInvalidControlFlowX, s.name.s)
  elif (c.p.nestedLoopCounter <= 0) and (c.p.nestedBlockCounter <= 0): 
    localError(n.info, errInvalidControlFlowX, 
               renderTree(n, {renderNoComments}))
  
proc semBlock(c: PContext, n: PNode): PNode = 
  result = n
  Inc(c.p.nestedBlockCounter)
  checkSonsLen(n, 2)
  openScope(c.tab)            # BUGFIX: label is in the scope of block!
  if n.sons[0].kind != nkEmpty:
    var labl = newSymG(skLabel, n.sons[0], c)
    if sfGenSym notin labl.flags:
      addDecl(c, labl)
      n.sons[0] = newSymNode(labl, n.sons[0].info)
    suggestSym(n.sons[0], labl)
  n.sons[1] = semStmt(c, n.sons[1])
  closeScope(c.tab)
  Dec(c.p.nestedBlockCounter)

proc semAsm(con: PContext, n: PNode): PNode = 
  checkSonsLen(n, 2)
  var marker = pragmaAsm(con, n.sons[0])
  if marker == '\0': marker = '`' # default marker
  result = semAsmOrEmit(con, n, marker)
  
proc semWhile(c: PContext, n: PNode): PNode = 
  result = n
  checkSonsLen(n, 2)
  openScope(c.tab)
  n.sons[0] = forceBool(c, semExprWithType(c, n.sons[0]))
  inc(c.p.nestedLoopCounter)
  n.sons[1] = semStmt(c, n.sons[1])
  dec(c.p.nestedLoopCounter)
  closeScope(c.tab)

proc toCover(t: PType): biggestInt = 
  var t2 = skipTypes(t, abstractVarRange)
  if t2.kind == tyEnum and enumHasHoles(t2): 
    result = sonsLen(t2.n)
  else:
    result = lengthOrd(skipTypes(t, abstractVar))

proc semCase(c: PContext, n: PNode): PNode = 
  # check selector:
  result = n
  checkMinSonsLen(n, 2)
  openScope(c.tab)
  n.sons[0] = semExprWithType(c, n.sons[0])
  var chckCovered = false
  var covered: biggestint = 0
  case skipTypes(n.sons[0].Typ, abstractVarRange).Kind
  of tyInt..tyInt64, tyChar, tyEnum: 
    chckCovered = true
  of tyFloat..tyFloat128, tyString, tyError: 
    nil
  else: 
    LocalError(n.info, errSelectorMustBeOfCertainTypes)
    return
  for i in countup(1, sonsLen(n) - 1): 
    var x = n.sons[i]
    case x.kind
    of nkOfBranch: 
      checkMinSonsLen(x, 2)
      semCaseBranch(c, n, x, i, covered)
      var length = sonsLen(x)
      x.sons[length - 1] = semStmtScope(c, x.sons[length - 1])
    of nkElifBranch: 
      chckCovered = false
      checkSonsLen(x, 2)
      x.sons[0] = forceBool(c, semExprWithType(c, x.sons[0]))
      x.sons[1] = semStmtScope(c, x.sons[1])
    of nkElse: 
      chckCovered = false
      checkSonsLen(x, 1)
      x.sons[0] = semStmtScope(c, x.sons[0])
    else: illFormedAst(x)
  if chckCovered and (covered != toCover(n.sons[0].typ)): 
    localError(n.info, errNotAllCasesCovered)
  closeScope(c.tab)
  
proc fitRemoveHiddenConv(c: PContext, typ: Ptype, n: PNode): PNode = 
  result = fitNode(c, typ, n)
  if result.kind in {nkHiddenStdConv, nkHiddenSubConv}: 
    changeType(result.sons[1], typ)
    result = result.sons[1]
  elif not sameType(result.typ, typ): 
    changeType(result, typ)

proc findShadowedVar(c: PContext, v: PSym): PSym =
  for i in countdown(c.tab.tos - 2, 0):
    let shadowed = StrTableGet(c.tab.stack[i], v.name)
    if shadowed != nil and shadowed.kind in skLocalVars:
      return shadowed

proc semIdentDef(c: PContext, n: PNode, kind: TSymKind): PSym =
  if isTopLevel(c): 
    result = semIdentWithPragma(c, kind, n, {sfExported})
    incl(result.flags, sfGlobal)
  else:
    result = semIdentWithPragma(c, kind, n, {})
  suggestSym(n, result)

proc semVarOrLet(c: PContext, n: PNode, symkind: TSymKind): PNode = 
  var b: PNode
  result = copyNode(n)
  for i in countup(0, sonsLen(n)-1): 
    var a = n.sons[i]
    if gCmd == cmdIdeTools: suggestStmt(c, a)
    if a.kind == nkCommentStmt: continue 
    if a.kind notin {nkIdentDefs, nkVarTuple, nkConstDef}: IllFormedAst(a)
    checkMinSonsLen(a, 3)
    var length = sonsLen(a)
    var typ: PType
    if a.sons[length-2].kind != nkEmpty:
      typ = semTypeNode(c, a.sons[length-2], nil)
    else: 
      typ = nil
    var def: PNode
    if a.sons[length-1].kind != nkEmpty: 
      def = semExprWithType(c, a.sons[length-1])
      # BUGFIX: ``fitNode`` is needed here!
      # check type compability between def.typ and typ:
      if typ != nil: def = fitNode(c, typ, def)
      else: typ = skipIntLit(def.typ)
    else:
      def = ast.emptyNode
      if symkind == skLet: LocalError(a.info, errLetNeedsInit)
      
    # this can only happen for errornous var statements:
    if typ == nil: continue
    if not typeAllowed(typ, symkind): 
      LocalError(a.info, errXisNoType, typeToString(typ))
    var tup = skipTypes(typ, {tyGenericInst})
    if a.kind == nkVarTuple: 
      if tup.kind != tyTuple: 
        localError(a.info, errXExpected, "tuple")
      elif length-2 != sonsLen(tup): 
        localError(a.info, errWrongNumberOfVariables)
      else:
        b = newNodeI(nkVarTuple, a.info)
        newSons(b, length)
        b.sons[length-2] = a.sons[length-2] # keep type desc for doc generator
        b.sons[length-1] = def
        addSon(result, b)
    elif tup.kind == tyTuple and def.kind == nkPar and 
        a.kind == nkIdentDefs and a.len > 3:
      Message(a.info, warnEachIdentIsTuple)
    for j in countup(0, length-3):
      var v = semIdentDef(c, a.sons[j], symkind)
      if sfGenSym notin v.flags: addInterfaceDecl(c, v)
      when oKeepVariableNames:
        if c.InUnrolledContext > 0: v.flags.incl(sfShadowed)
        else:
          let shadowed = findShadowedVar(c, v)
          if shadowed != nil:
            shadowed.flags.incl(sfShadowed)
            Message(a.info, warnShadowIdent, v.name.s)
      if def != nil and def.kind != nkEmpty:
        # this is only needed for the evaluation pass:
        v.ast = def
        if sfThread in v.flags: LocalError(def.info, errThreadvarCannotInit)
      if a.kind != nkVarTuple:
        v.typ = typ
        b = newNodeI(nkIdentDefs, a.info)
        if gCmd == cmdDoc:
          # keep documentation information:
          b.comment = a.comment
        addSon(b, newSymNode(v))
        addSon(b, a.sons[length-2])      # keep type desc for doc generator
        addSon(b, copyTree(def))
        addSon(result, b)
      else: 
        v.typ = tup.sons[j]
        b.sons[j] = newSymNode(v)
    
proc semConst(c: PContext, n: PNode): PNode = 
  result = copyNode(n)
  for i in countup(0, sonsLen(n) - 1): 
    var a = n.sons[i]
    if gCmd == cmdIdeTools: suggestStmt(c, a)
    if a.kind == nkCommentStmt: continue 
    if (a.kind != nkConstDef): IllFormedAst(a)
    checkSonsLen(a, 3)
    var v = semIdentDef(c, a.sons[0], skConst)
    var typ: PType = nil
    if a.sons[1].kind != nkEmpty: typ = semTypeNode(c, a.sons[1], nil)

    var def = semConstExpr(c, a.sons[2])
    if def == nil:
      LocalError(a.sons[2].info, errConstExprExpected)
      continue
    # check type compatibility between def.typ and typ:
    if typ != nil:
      def = fitRemoveHiddenConv(c, typ, def)
    else:
      typ = def.typ
    if typ == nil: continue
    if not typeAllowed(typ, skConst):
      LocalError(a.info, errXisNoType, typeToString(typ))
      continue
    v.typ = typ
    v.ast = def               # no need to copy
    if sfGenSym notin v.flags: addInterfaceDecl(c, v)
    var b = newNodeI(nkConstDef, a.info)
    if gCmd == cmdDoc: b.comment = a.comment
    addSon(b, newSymNode(v))
    addSon(b, ast.emptyNode)            # no type description
    addSon(b, copyTree(def))
    addSon(result, b)

proc transfFieldLoopBody(n: PNode, forLoop: PNode,
                         tupleType: PType,
                         tupleIndex, first: int): PNode = 
  case n.kind
  of nkEmpty..pred(nkIdent), succ(nkIdent)..nkNilLit: result = n
  of nkIdent:
    result = n
    var L = sonsLen(forLoop)
    # field name:
    if first > 0:
      if n.ident.id == forLoop[0].ident.id:
        if tupleType.n == nil: 
          # ugh, there are no field names:
          result = newStrNode(nkStrLit, "")
        else:
          result = newStrNode(nkStrLit, tupleType.n.sons[tupleIndex].sym.name.s)
        return
    # other fields:
    for i in first..L-3:
      if n.ident.id == forLoop[i].ident.id:
        var call = forLoop.sons[L-2]
        var tupl = call.sons[i+1-first]
        result = newNodeI(nkBracketExpr, n.info)
        result.add(tupl)
        result.add(newIntNode(nkIntLit, tupleIndex))
        break
  else:
    result = copyNode(n)
    newSons(result, sonsLen(n))
    for i in countup(0, sonsLen(n)-1):
      result.sons[i] = transfFieldLoopBody(n.sons[i], forLoop,
                                           tupleType, tupleIndex, first)

proc semForFields(c: PContext, n: PNode, m: TMagic): PNode = 
  # so that 'break' etc. work as expected, we produce 
  # a 'while true: stmt; break' loop ...
  result = newNodeI(nkWhileStmt, n.info)
  var trueSymbol = StrTableGet(magicsys.systemModule.Tab, getIdent"true")
  if trueSymbol == nil: 
    LocalError(n.info, errSystemNeeds, "true")
    trueSymbol = newSym(skUnknown, getIdent"true", getCurrOwner(), n.info)
    trueSymbol.typ = getSysType(tyBool)

  result.add(newSymNode(trueSymbol, n.info))
  var stmts = newNodeI(nkStmtList, n.info)
  result.add(stmts)
  
  var length = sonsLen(n)
  var call = n.sons[length-2]
  if length-2 != sonsLen(call)-1 + ord(m==mFieldPairs):
    LocalError(n.info, errWrongNumberOfVariables)
    return result
  
  var tupleTypeA = skipTypes(call.sons[1].typ, abstractVar)
  if tupleTypeA.kind != tyTuple: InternalError(n.info, "no tuple type!")
  for i in 1..call.len-1:
    var tupleTypeB = skipTypes(call.sons[i].typ, abstractVar)
    if not SameType(tupleTypeA, tupleTypeB):
      typeMismatch(call.sons[i], tupleTypeA, tupleTypeB)
  
  Inc(c.p.nestedLoopCounter)
  var loopBody = n.sons[length-1]
  for i in 0..sonsLen(tupleTypeA)-1:
    openScope(c.tab)
    var body = transfFieldLoopBody(loopBody, n, tupleTypeA, i,
                                   ord(m==mFieldPairs))
    inc c.InUnrolledContext
    stmts.add(SemStmt(c, body))
    dec c.InUnrolledContext
    closeScope(c.tab)
  Dec(c.p.nestedLoopCounter)
  var b = newNodeI(nkBreakStmt, n.info)
  b.add(ast.emptyNode)
  stmts.add(b)

proc semForVars(c: PContext, n: PNode): PNode =
  result = n
  var length = sonsLen(n)
  var iter = skipTypes(n.sons[length-2].typ, {tyGenericInst})
  # length == 3 means that there is one for loop variable
  # and thus no tuple unpacking:
  if iter.kind != tyTuple or length == 3: 
    if length == 3:
      var v = newSymG(skForVar, n.sons[0], c)
      if getCurrOwner().kind == skModule: incl(v.flags, sfGlobal)
      # BUGFIX: don't use `iter` here as that would strip away
      # the ``tyGenericInst``! See ``tests/compile/tgeneric.nim``
      # for an example:
      v.typ = n.sons[length-2].typ
      n.sons[0] = newSymNode(v)
      if sfGenSym notin v.flags: addDecl(c, v)
    else:
      LocalError(n.info, errWrongNumberOfVariables)
  elif length-2 != sonsLen(iter):
    LocalError(n.info, errWrongNumberOfVariables)
  else:
    for i in countup(0, length - 3): 
      var v = newSymG(skForVar, n.sons[i], c)
      if getCurrOwner().kind == skModule: incl(v.flags, sfGlobal)
      v.typ = iter.sons[i]
      n.sons[i] = newSymNode(v)
      if sfGenSym notin v.flags: addDecl(c, v)
  Inc(c.p.nestedLoopCounter)
  n.sons[length-1] = SemStmt(c, n.sons[length-1])
  Dec(c.p.nestedLoopCounter)

proc implicitIterator(c: PContext, it: string, arg: PNode): PNode =
  result = newNodeI(nkCall, arg.info)
  result.add(newIdentNode(it.getIdent, arg.info))
  result.add(arg)
  result = semExprNoDeref(c, result, {efWantIterator})

proc semFor(c: PContext, n: PNode): PNode = 
  result = n
  checkMinSonsLen(n, 3)
  var length = sonsLen(n)
  openScope(c.tab)
  n.sons[length-2] = semExprNoDeref(c, n.sons[length-2], {efWantIterator})
  var call = n.sons[length-2]
  if call.kind in nkCallKinds and call.sons[0].typ.callConv == ccClosure:
    # first class iterator:
    result = semForVars(c, n)
  elif call.kind notin nkCallKinds or call.sons[0].kind != nkSym or
      call.sons[0].sym.kind != skIterator: 
    if length == 3:
      n.sons[length-2] = implicitIterator(c, "items", n.sons[length-2])
    elif length == 4:
      n.sons[length-2] = implicitIterator(c, "pairs", n.sons[length-2])
    else:
      LocalError(n.sons[length-2].info, errIteratorExpected)
    result = semForVars(c, n)
  elif call.sons[0].sym.magic != mNone:
    if call.sons[0].sym.magic == mOmpParFor:
      result = semForVars(c, n)
      result.kind = nkParForStmt
    else:
      result = semForFields(c, n, call.sons[0].sym.magic)
  else:
    result = semForVars(c, n)
  closeScope(c.tab)

proc semRaise(c: PContext, n: PNode): PNode = 
  result = n
  checkSonsLen(n, 1)
  if n.sons[0].kind != nkEmpty: 
    n.sons[0] = semExprWithType(c, n.sons[0])
    var typ = n.sons[0].typ
    if typ.kind != tyRef or typ.sons[0].kind != tyObject: 
      localError(n.info, errExprCannotBeRaised)

proc semTry(c: PContext, n: PNode): PNode = 
  result = n
  inc c.p.inTryStmt
  checkMinSonsLen(n, 2)
  n.sons[0] = semStmtScope(c, n.sons[0])
  var check = initIntSet()
  for i in countup(1, sonsLen(n) - 1): 
    var a = n.sons[i]
    checkMinSonsLen(a, 1)
    var length = sonsLen(a)
    if a.kind == nkExceptBranch:
      if length == 2 and a.sons[0].kind == nkBracket:
        a.sons[0..0] = a.sons[0].sons
        length = a.sonsLen

      for j in countup(0, length - 2):
        var typ = semTypeNode(c, a.sons[j], nil)
        if typ.kind == tyRef: typ = typ.sons[0]
        if typ.kind != tyObject:
          LocalError(a.sons[j].info, errExprCannotBeRaised)
        a.sons[j] = newNodeI(nkType, a.sons[j].info)
        a.sons[j].typ = typ
        if ContainsOrIncl(check, typ.id):
          localError(a.sons[j].info, errExceptionAlreadyHandled)
    elif a.kind != nkFinally: 
      illFormedAst(n) 
    # last child of an nkExcept/nkFinally branch is a statement:
    a.sons[length - 1] = semStmtScope(c, a.sons[length - 1])
  dec c.p.inTryStmt

proc addGenericParamListToScope(c: PContext, n: PNode) =
  if n.kind != nkGenericParams: illFormedAst(n)
  for i in countup(0, sonsLen(n)-1):
    var a = n.sons[i]
    if a.kind == nkSym: addDecl(c, a.sym)
    else: illFormedAst(a)

proc typeSectionLeftSidePass(c: PContext, n: PNode) = 
  # process the symbols on the left side for the whole type section, before
  # we even look at the type definitions on the right
  for i in countup(0, sonsLen(n) - 1): 
    var a = n.sons[i]
    if gCmd == cmdIdeTools: suggestStmt(c, a)
    if a.kind == nkCommentStmt: continue 
    if a.kind != nkTypeDef: IllFormedAst(a)
    checkSonsLen(a, 3)
    var s = semIdentDef(c, a.sons[0], skType)
    s.typ = newTypeS(tyForward, c)
    s.typ.sym = s             # process pragmas:
    if a.sons[0].kind == nkPragmaExpr:
      pragma(c, s, a.sons[0].sons[1], typePragmas)
    # add it here, so that recursive types are possible:
    if sfGenSym notin s.flags: addInterfaceDecl(c, s)
    a.sons[0] = newSymNode(s)

proc typeSectionRightSidePass(c: PContext, n: PNode) =
  for i in countup(0, sonsLen(n) - 1): 
    var a = n.sons[i]
    if a.kind == nkCommentStmt: continue 
    if (a.kind != nkTypeDef): IllFormedAst(a)
    checkSonsLen(a, 3)
    if (a.sons[0].kind != nkSym): IllFormedAst(a)
    var s = a.sons[0].sym
    if s.magic == mNone and a.sons[2].kind == nkEmpty: 
      LocalError(a.info, errImplOfXexpected, s.name.s)
    if s.magic != mNone: processMagicType(c, s)
    if a.sons[1].kind != nkEmpty: 
      # We have a generic type declaration here. In generic types,
      # symbol lookup needs to be done here.
      openScope(c.tab)
      pushOwner(s)
      if s.magic == mNone: s.typ.kind = tyGenericBody
      if s.typ.containerID != 0: 
        InternalError(a.info, "semTypeSection: containerID")
      s.typ.containerID = s.typ.id
      # XXX for generic type aliases this is not correct! We need the
      # underlying Id really: 
      #
      # type
      #   TGObj[T] = object
      #   TAlias[T] = TGObj[T]
      # 
      a.sons[1] = semGenericParamList(c, a.sons[1], s.typ)
      s.typ.size = -1 # could not be computed properly
      # we fill it out later. For magic generics like 'seq', it won't be filled
      # so we use tyEmpty instead of nil to not crash for strange conversions
      # like: mydata.seq
      rawAddSon(s.typ, newTypeS(tyEmpty, c))
      s.ast = a
      inc c.InGenericContext
      var body = semTypeNode(c, a.sons[2], nil)
      dec c.InGenericContext
      if body != nil:
        body.sym = s
        body.size = -1 # could not be computed properly
      s.typ.sons[sonsLen(s.typ) - 1] = body
      popOwner()
      closeScope(c.tab)
    elif a.sons[2].kind != nkEmpty: 
      # process the type's body:
      pushOwner(s)
      var t = semTypeNode(c, a.sons[2], s.typ)
      if s.typ == nil: 
        s.typ = t
      elif t != s.typ: 
        # this can happen for e.g. tcan_alias_specialised_generic:
        assignType(s.typ, t)
        #debug s.typ
      s.ast = a
      popOwner()

proc typeSectionFinalPass(c: PContext, n: PNode) = 
  for i in countup(0, sonsLen(n) - 1): 
    var a = n.sons[i]
    if a.kind == nkCommentStmt: continue 
    if a.sons[0].kind != nkSym: IllFormedAst(a)
    var s = a.sons[0].sym
    # compute the type's size and check for illegal recursions:
    if a.sons[1].kind == nkEmpty: 
      if a.sons[2].kind in {nkSym, nkIdent, nkAccQuoted}:
        # type aliases are hard:
        #MessageOut('for type ' + typeToString(s.typ));
        var t = semTypeNode(c, a.sons[2], nil)
        if t.kind in {tyObject, tyEnum}: 
          assignType(s.typ, t)
          s.typ.id = t.id     # same id
      checkConstructedType(s.info, s.typ)
    let aa = a.sons[2]
    if aa.kind in {nkRefTy, nkPtrTy} and aa.len == 1 and
       aa.sons[0].kind == nkObjectTy:
      # give anonymous object a dummy symbol:
      assert s.typ.sons[0].sym == nil
      s.typ.sons[0].sym = newSym(skType, getIdent(s.name.s & ":ObjectType"), 
                                 getCurrOwner(), s.info)

proc SemTypeSection(c: PContext, n: PNode): PNode =
  typeSectionLeftSidePass(c, n)
  typeSectionRightSidePass(c, n)
  typeSectionFinalPass(c, n)
  result = n

proc semParamList(c: PContext, n, genericParams: PNode, s: PSym) =
  s.typ = semProcTypeNode(c, n, genericParams, nil, s.kind)

proc addParams(c: PContext, n: PNode, kind: TSymKind) = 
  for i in countup(1, sonsLen(n)-1): 
    if n.sons[i].kind == nkSym: addParamOrResult(c, n.sons[i].sym, kind)
    else: illFormedAst(n)

proc semBorrow(c: PContext, n: PNode, s: PSym) = 
  # search for the correct alias:
  var b = SearchForBorrowProc(c, s, c.tab.tos - 2)
  if b != nil: 
    # store the alias:
    n.sons[bodyPos] = newSymNode(b)
  else:
    LocalError(n.info, errNoSymbolToBorrowFromFound) 
  
proc addResult(c: PContext, t: PType, info: TLineInfo, owner: TSymKind) = 
  if t != nil: 
    var s = newSym(skResult, getIdent"result", getCurrOwner(), info)
    s.typ = t
    incl(s.flags, sfUsed)
    addParamOrResult(c, s, owner)
    c.p.resultSym = s

proc addResultNode(c: PContext, n: PNode) = 
  if c.p.resultSym != nil: addSon(n, newSymNode(c.p.resultSym))

proc copyExcept(n: PNode, i: int): PNode =
  result = copyNode(n)
  for j in 0.. <n.len:
    if j != i: result.add(n.sons[j])

proc lookupMacro(c: PContext, n: PNode): PSym =
  if n.kind == nkSym:
    result = n.sym
    if result.kind notin {skMacro, skTemplate}: result = nil
  else:
    result = SymtabGet(c.Tab, considerAcc(n), {skMacro, skTemplate})

proc semProcAnnotation(c: PContext, prc: PNode): PNode =
  var n = prc.sons[pragmasPos]
  if n == nil or n.kind == nkEmpty: return
  for i in countup(0, <n.len):
    var it = n.sons[i]
    var key = if it.kind == nkExprColonExpr: it.sons[0] else: it
    let m = lookupMacro(c, key)
    if m == nil: continue
    # we transform ``proc p {.m, rest.}`` into ``m(do: proc p {.rest.})`` and
    # let the semantic checker deal with it:
    var x = newNodeI(nkCall, n.info)
    x.add(newSymNode(m))
    prc.sons[pragmasPos] = copyExcept(n, i)
    if it.kind == nkExprColonExpr:
      # pass pragma argument to the macro too:
      x.add(it.sons[1])
    x.add(newProcNode(nkDo, prc.info, prc))
    # recursion assures that this works for multiple macro annotations too:
    return semStmt(c, x)

proc semLambda(c: PContext, n: PNode, flags: TExprFlags): PNode =
  result = semProcAnnotation(c, n)
  if result != nil: return result
  result = n
  checkSonsLen(n, bodyPos + 1)
  var s: PSym
  if n[namePos].kind != nkSym:
    s = newSym(skProc, idAnon, getCurrOwner(), n.info)
    s.ast = n
    n.sons[namePos] = newSymNode(s)
  else:
    s = n[namePos].sym
  pushOwner(s)
  openScope(c.tab)
  if n.sons[genericParamsPos].kind != nkEmpty:
    illFormedAst(n)           # process parameters:
  if n.sons[paramsPos].kind != nkEmpty: 
    semParamList(c, n.sons[ParamsPos], nil, s)
    ParamsTypeCheck(c, s.typ)
  else:
    s.typ = newTypeS(tyProc, c)
    rawAddSon(s.typ, nil)
  if n.sons[pragmasPos].kind != nkEmpty:
    pragma(c, s, n.sons[pragmasPos], lambdaPragmas)
  s.options = gOptions
  if n.sons[bodyPos].kind != nkEmpty: 
    if sfImportc in s.flags: 
      LocalError(n.sons[bodyPos].info, errImplOfXNotAllowed, s.name.s)
    if efDetermineType notin flags:
      pushProcCon(c, s)
      addResult(c, s.typ.sons[0], n.info, skProc)
      let semBody = hloBody(c, semProcBody(c, n.sons[bodyPos]))
      n.sons[bodyPos] = transformBody(c.module, semBody, s)
      addResultNode(c, n)
      popProcCon(c)
      sideEffectsCheck(c, s)
  else:
    LocalError(n.info, errImplOfXexpected, s.name.s)
  closeScope(c.tab)           # close scope for parameters
  popOwner()
  result.typ = s.typ

proc activate(c: PContext, n: PNode) =
  # XXX: This proc is part of my plan for getting rid of
  # forward declarations. stay tuned.
  case n.kind
  of nkLambdaKinds:
    discard semLambda(c, n, {})
  of nkCallKinds:
    for i in 1 .. <n.len: activate(c, n[i])
  else:
    nil

proc instantiateDestructor*(c: PContext, typ: PType): bool

proc doDestructorStuff(c: PContext, s: PSym, n: PNode) =
  let t = s.typ.sons[1].skipTypes({tyVar})
  t.destructor = s
  # automatically insert calls to base classes' destructors
  if n.sons[bodyPos].kind != nkEmpty:
    for i in countup(0, t.sonsLen - 1):
      # when inheriting directly from object
      # there will be a single nil son
      if t.sons[i] == nil: continue
      if instantiateDestructor(c, t.sons[i]):
        n.sons[bodyPos].addSon(newNode(nkCall, t.sym.info, @[
            useSym(t.sons[i].destructor),
            n.sons[paramsPos][1][0]]))

proc semProcAux(c: PContext, n: PNode, kind: TSymKind, 
                validPragmas: TSpecialWords): PNode = 
  result = semProcAnnotation(c, n)
  if result != nil: return result
  result = n
  checkSonsLen(n, bodyPos + 1)
  var s = semIdentDef(c, n.sons[0], kind)
  n.sons[namePos] = newSymNode(s)
  s.ast = n
  pushOwner(s)
  openScope(c.tab)
  var gp: PNode
  if n.sons[genericParamsPos].kind != nkEmpty: 
    n.sons[genericParamsPos] = semGenericParamList(c, n.sons[genericParamsPos])
    gp = n.sons[genericParamsPos]
  else: 
    gp = newNodeI(nkGenericParams, n.info)
  # process parameters:
  if n.sons[paramsPos].kind != nkEmpty:
    semParamList(c, n.sons[ParamsPos], gp, s)
    if sonsLen(gp) > 0: 
      if n.sons[genericParamsPos].kind == nkEmpty:
        # we have a list of implicit type parameters:
        n.sons[genericParamsPos] = gp
        # check for semantics again:
        # semParamList(c, n.sons[ParamsPos], nil, s)
  else:
    s.typ = newTypeS(tyProc, c)
    rawAddSon(s.typ, nil)
  if n.sons[patternPos].kind != nkEmpty:
    n.sons[patternPos] = semPattern(c, n.sons[patternPos])
  if s.kind == skIterator: s.typ.flags.incl(tfIterator)
  
  var proto = SearchForProc(c, s, c.tab.tos-2) # -2 because we have a scope
                                               # open for parameters
  if proto == nil: 
    s.typ.callConv = lastOptionEntry(c).defaultCC
    # add it here, so that recursive procs are possible:
    # -2 because we have a scope open for parameters
    if sfGenSym in s.flags: nil
    elif kind in OverloadableSyms: 
      addInterfaceOverloadableSymAt(c, s, c.tab.tos - 2)
    else: 
      addInterfaceDeclAt(c, s, c.tab.tos - 2)
    if n.sons[pragmasPos].kind != nkEmpty:
      pragma(c, s, n.sons[pragmasPos], validPragmas)
    else:
      implictPragmas(c, s, n, validPragmas)
  else: 
    if n.sons[pragmasPos].kind != nkEmpty: 
      LocalError(n.sons[pragmasPos].info, errPragmaOnlyInHeaderOfProc)
    if sfForward notin proto.flags: 
      WrongRedefinition(n.info, proto.name.s)
    excl(proto.flags, sfForward)
    closeScope(c.tab)         # close scope with wrong parameter symbols
    openScope(c.tab)          # open scope for old (correct) parameter symbols
    if proto.ast.sons[genericParamsPos].kind != nkEmpty: 
      addGenericParamListToScope(c, proto.ast.sons[genericParamsPos])
    addParams(c, proto.typ.n, proto.kind)
    proto.info = s.info       # more accurate line information
    s.typ = proto.typ
    s = proto
    n.sons[genericParamsPos] = proto.ast.sons[genericParamsPos]
    n.sons[paramsPos] = proto.ast.sons[paramsPos]
    n.sons[pragmasPos] = proto.ast.sons[pragmasPos]
    if n.sons[namePos].kind != nkSym: InternalError(n.info, "semProcAux")
    n.sons[namePos].sym = proto
    if gCmd == cmdDoc and not isNil(proto.ast.comment):
      n.comment = proto.ast.comment
    proto.ast = n             # needed for code generation
    popOwner()
    pushOwner(s)
  s.options = gOptions
  if sfDestructor in s.flags: doDestructorStuff(c, s, n)
  if n.sons[bodyPos].kind != nkEmpty: 
    # for DLL generation it is annoying to check for sfImportc!
    if sfBorrow in s.flags: 
      LocalError(n.sons[bodyPos].info, errImplOfXNotAllowed, s.name.s)
    if n.sons[genericParamsPos].kind == nkEmpty: 
      ParamsTypeCheck(c, s.typ)
      pushProcCon(c, s)
      if s.typ.sons[0] != nil and
          (kind != skIterator or s.typ.callConv == ccClosure):
        addResult(c, s.typ.sons[0], n.info, kind)
        addResultNode(c, n)
      if sfImportc notin s.flags:
        # no semantic checking for importc:
        let semBody = hloBody(c, semProcBody(c, n.sons[bodyPos]))
        # unfortunately we cannot skip this step when in 'system.compiles'
        # context as it may even be evaluated in 'system.compiles':
        n.sons[bodyPos] = transformBody(c.module, semBody, s)
      #if s.typ.sons[0] != nil and kind != skIterator: addResultNode(c, n)
      popProcCon(c)
    else: 
      if s.typ.sons[0] != nil and kind != skIterator:
        addDecl(c, newSym(skUnknown, getIdent"result", nil, n.info))
      var toBind = initIntSet()
      n.sons[bodyPos] = semGenericStmtScope(c, n.sons[bodyPos], {}, toBind)
      fixupInstantiatedSymbols(c, s)
    if sfImportc in s.flags: 
      # so we just ignore the body after semantic checking for importc:
      n.sons[bodyPos] = ast.emptyNode
  else:
    if proto != nil: LocalError(n.info, errImplOfXexpected, proto.name.s)
    if {sfImportc, sfBorrow} * s.flags == {} and s.magic == mNone: 
      incl(s.flags, sfForward)
    elif sfBorrow in s.flags: semBorrow(c, n, s)
  sideEffectsCheck(c, s)
  closeScope(c.tab)           # close scope for parameters
  popOwner()
  if n.sons[patternPos].kind != nkEmpty:
    c.patterns.add(s)
  
proc semIterator(c: PContext, n: PNode): PNode =
  result = semProcAux(c, n, skIterator, iteratorPragmas)
  var s = result.sons[namePos].sym
  var t = s.typ
  if t.sons[0] == nil and s.typ.callConv != ccClosure:
    LocalError(n.info, errXNeedsReturnType, "iterator")
  # iterators are either 'inline' or 'closure'; for backwards compatibility,
  # we require first class iterators to be marked with 'closure' explicitly
  # -- at least for 0.9.2.
  if s.typ.callConv == ccClosure:
    incl(s.typ.flags, tfCapturesEnv)
  when false:
    if s.typ.callConv != ccInline: 
      s.typ.callConv = ccClosure
      # and they always at least use the 'env' for the state field:
      incl(s.typ.flags, tfCapturesEnv)
  if n.sons[bodyPos].kind == nkEmpty and s.magic == mNone:
    LocalError(n.info, errImplOfXexpected, s.name.s)
  
proc semProc(c: PContext, n: PNode): PNode = 
  result = semProcAux(c, n, skProc, procPragmas)

proc semMethod(c: PContext, n: PNode): PNode = 
  if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "method")
  result = semProcAux(c, n, skMethod, methodPragmas)
  
  var s = result.sons[namePos].sym
  var t = s.typ
  var hasObjParam = false
  
  for col in countup(1, sonsLen(t)-1): 
    if skipTypes(t.sons[col], skipPtrs).kind == tyObject: 
      hasObjParam = true
      break
  
  # XXX this not really correct way to do it: Perhaps it should be done after
  # generic instantiation. Well it's good enough for now: 
  if hasObjParam:
    methodDef(s, false)
  else:
    LocalError(n.info, errXNeedsParamObjectType, "method")

proc semConverterDef(c: PContext, n: PNode): PNode = 
  if not isTopLevel(c): LocalError(n.info, errXOnlyAtModuleScope, "converter")
  checkSonsLen(n, bodyPos + 1)
  result = semProcAux(c, n, skConverter, converterPragmas)
  var s = result.sons[namePos].sym
  var t = s.typ
  if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "converter")
  if sonsLen(t) != 2: LocalError(n.info, errXRequiresOneArgument, "converter")
  addConverter(c, s)

proc semMacroDef(c: PContext, n: PNode): PNode = 
  checkSonsLen(n, bodyPos + 1)
  result = semProcAux(c, n, skMacro, macroPragmas)
  var s = result.sons[namePos].sym
  var t = s.typ
  if t.sons[0] == nil: LocalError(n.info, errXNeedsReturnType, "macro")
  if n.sons[bodyPos].kind == nkEmpty:
    LocalError(n.info, errImplOfXexpected, s.name.s)
  
proc evalInclude(c: PContext, n: PNode): PNode = 
  result = newNodeI(nkStmtList, n.info)
  addSon(result, n)
  for i in countup(0, sonsLen(n) - 1): 
    var f = checkModuleName(n.sons[i])
    if f.len > 0:
      var fileIndex = f.fileInfoIdx
      if ContainsOrIncl(c.includedFiles, fileIndex): 
        LocalError(n.info, errRecursiveDependencyX, f.extractFilename)
      else:
        addSon(result, semStmt(c, gIncludeFile(f)))
        Excl(c.includedFiles, fileIndex)
  
proc setLine(n: PNode, info: TLineInfo) =
  for i in 0 .. <safeLen(n): setLine(n.sons[i], info)
  n.info = info
  
proc semPragmaBlock(c: PContext, n: PNode): PNode =
  let pragmaList = n.sons[0]
  pragma(c, nil, pragmaList, exprPragmas)
  result = semStmt(c, n.sons[1])
  for i in 0 .. <pragmaList.len:
    if whichPragma(pragmaList.sons[i]) == wLine:
      setLine(result, pragmaList.sons[i].info)

proc semStaticStmt(c: PContext, n: PNode): PNode =
  let a = semStmt(c, n.sons[0])
  result = evalStaticExpr(c.module, a)
  if result.isNil:
    LocalError(n.info, errCannotInterpretNodeX, renderTree(n))
  elif result.kind == nkEmpty:
    result = newNodeI(nkDiscardStmt, n.info, 1)
    result.sons[0] = emptyNode

# special marker values that indicates that we are
# 1) AnalyzingDestructor: currently analyzing the type for destructor 
# generation (needed for recursive types)
# 2) DestructorIsTrivial: completed the analysis before and determined
# that the type has a trivial destructor
var AnalyzingDestructor, DestructorIsTrivial: PSym
new(AnalyzingDestructor)
new(DestructorIsTrivial)

var
  destructorName = getIdent"destroy_"
  destructorParam = getIdent"this_"
  destructorPragma = newIdentNode(getIdent"destructor", UnknownLineInfo())
  rangeDestructorProc: PSym

proc destroyField(c: PContext, field: PSym, holder: PNode): PNode =
  if instantiateDestructor(c, field.typ):
    result = newNode(nkCall, field.info, @[
      useSym(field.typ.destructor),
      newNode(nkDotExpr, field.info, @[holder, useSym(field)])])

proc destroyCase(c: PContext, n: PNode, holder: PNode): PNode =
  var nonTrivialFields = 0
  result = newNode(nkCaseStmt, n.info, @[])
  # case x.kind
  result.addSon(newNode(nkDotExpr, n.info, @[holder, n.sons[0]]))
  for i in countup(1, n.len - 1):
    # of A, B:
    var caseBranch = newNode(n[i].kind, n[i].info, n[i].sons[0 .. -2])
    let recList = n[i].lastSon
    var destroyRecList = newNode(nkStmtList, n[i].info, @[])
    template addField(f: expr): stmt =
      let stmt = destroyField(c, f, holder)
      if stmt != nil:
        destroyRecList.addSon(stmt)
        inc nonTrivialFields
        
    case recList.kind
    of nkSym:
      addField(recList.sym)
    of nkRecList:
      for j in countup(0, recList.len - 1):
        addField(recList[j].sym)
    else:
      internalAssert false
      
    caseBranch.addSon(destroyRecList)
    result.addSon(caseBranch)
  # maybe no fields were destroyed?
  if nonTrivialFields == 0:
    result = nil
 
proc generateDestructor(c: PContext, t: PType): PNode =
  ## generate a destructor for a user-defined object ot tuple type
  ## returns nil if the destructor turns out to be trivial
  
  template addLine(e: expr): stmt =
    if result == nil: result = newNode(nkStmtList)
    result.addSon(e)

  # XXX: This may be true for some C-imported types such as
  # Tposix_spawnattr
  if t.n == nil or t.n.sons == nil: return
  internalAssert t.n.kind == nkRecList
  let destructedObj = newIdentNode(destructorParam, UnknownLineInfo())
  # call the destructods of all fields
  for s in countup(0, t.n.sons.len - 1):
    case t.n.sons[s].kind
    of nkRecCase:
      let stmt = destroyCase(c, t.n.sons[s], destructedObj)
      if stmt != nil: addLine(stmt)
    of nkSym:
      let stmt = destroyField(c, t.n.sons[s].sym, destructedObj)
      if stmt != nil: addLine(stmt)
    else:
      internalAssert false

  # base classes' destructors will be automatically called by
  # semProcAux for both auto-generated and user-defined destructors

proc instantiateDestructor*(c: PContext, typ: PType): bool =
  # returns true if the type already had a user-defined
  # destructor or if the compiler generated a default
  # member-wise one
  var t = skipTypes(typ, {tyConst, tyMutable})
  
  if t.destructor != nil:
    # XXX: This is not entirely correct for recursive types, but we need
    # it temporarily to hide the "destroy is alrady defined" problem
    return t.destructor notin [AnalyzingDestructor, DestructorIsTrivial]
  
  case t.kind
  of tySequence, tyArray, tyArrayConstr, tyOpenArray, tyVarargs:
    if instantiateDestructor(c, t.sons[0]):
      if rangeDestructorProc == nil:
        rangeDestructorProc = SymtabGet(c.tab, getIdent"nimDestroyRange")
      t.destructor = rangeDestructorProc
      return true
    else:
      return false
  of tyTuple, tyObject:
    t.destructor = AnalyzingDestructor
    let generated = generateDestructor(c, t)
    if generated != nil:
      internalAssert t.sym != nil
      var i = t.sym.info
      let fullDef = newNode(nkProcDef, i, @[
        newIdentNode(destructorName, i),
        emptyNode,
        emptyNode,
        newNode(nkFormalParams, i, @[
          emptyNode,
          newNode(nkIdentDefs, i, @[
            newIdentNode(destructorParam, i),
            useSym(t.sym),
            emptyNode]),
          ]),
        newNode(nkPragma, i, @[destructorPragma]),
        emptyNode,
        generated
        ])
      discard semProc(c, fullDef)
      internalAssert t.destructor != nil
      return true
    else:
      t.destructor = DestructorIsTrivial
      return false
  else:
    return false

proc insertDestructors(c: PContext, varSection: PNode):
  tuple[outer: PNode, inner: PNode] =
  # Accepts a var or let section.
  #
  # When a var section has variables with destructors
  # the var section is split up and finally blocks are inserted
  # immediately after all "destructable" vars
  #
  # In case there were no destrucable variables, the proc returns
  # (nil, nil) and the enclosing stmt-list requires no modifications.
  #
  # Otherwise, after the try blocks are created, the rest of the enclosing
  # stmt-list should be inserted in the most `inner` such block (corresponding
  # to the last variable).
  #
  # `outer` is a statement list that should replace the original var section.
  # It will include the new truncated var section followed by the outermost
  # try block.
  let totalVars = varSection.sonsLen
  for j in countup(0, totalVars - 1):
    let
      varId = varSection[j][0]
      varTyp = varId.sym.typ
      info = varId.info

    if varTyp != nil and instantiateDestructor(c, varTyp):
      var tryStmt = newNodeI(nkTryStmt, info)

      if j < totalVars - 1:
        var remainingVars = newNodeI(varSection.kind, info)
        remainingVars.sons = varSection.sons[(j+1)..(-1)]
        let (outer, inner) = insertDestructors(c, remainingVars)
        if outer != nil:
          tryStmt.addSon(outer)
          result.inner = inner
        else:
          result.inner = newNodeI(nkStmtList, info)
          result.inner.addSon(remainingVars)
          tryStmt.addSon(result.inner)
      else:
        result.inner = newNodeI(nkStmtList, info)
        tryStmt.addSon(result.inner)

      tryStmt.addSon(
        newNode(nkFinally, info, @[
          semStmt(c, newNode(nkCall, info, @[
            useSym(varTyp.destructor),
            useSym(varId.sym)]))]))

      result.outer = newNodeI(nkStmtList, info)
      varSection.sons.setLen(j+1)
      result.outer.addSon(varSection)
      result.outer.addSon(tryStmt)

      return

proc ImplicitelyDiscardable(n: PNode): bool =
  result = isCallExpr(n) and n.sons[0].kind == nkSym and 
           sfDiscardable in n.sons[0].sym.flags

proc semStmtList(c: PContext, n: PNode): PNode =
  # these must be last statements in a block:
  const
    LastBlockStmts = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
  result = n
  var length = sonsLen(n)
  for i in countup(0, length - 1):
    case n.sons[i].kind
    of nkFinally, nkExceptBranch:
      # stand-alone finally and except blocks are
      # transformed into regular try blocks:
      #
      # var f = fopen("somefile") | var f = fopen("somefile")
      # finally: fclose(f)        | try:
      # ...                       |   ...
      #                           | finally:
      #                           |   fclose(f)
      var tryStmt = newNodeI(nkTryStmt, n.sons[i].info)
      var body = newNodeI(nkStmtList, n.sons[i].info)
      if i < n.sonsLen - 1:
        body.sons = n.sons[(i+1)..(-1)]
      tryStmt.addSon(body)
      tryStmt.addSon(n.sons[i])
      n.sons[i] = semTry(c, tryStmt)
      n.sons.setLen(i+1)
      return
    else:
      n.sons[i] = semStmt(c, n.sons[i])
      case n.sons[i].kind
      of nkVarSection, nkLetSection:
        let (outer, inner) = insertDestructors(c, n.sons[i])
        if outer != nil:
          n.sons[i] = outer
          for j in countup(i+1, length-1):
            inner.addSon(SemStmt(c, n.sons[j]))
          n.sons.setLen(i+1)
          return
      of LastBlockStmts: 
        for j in countup(i + 1, length - 1): 
          case n.sons[j].kind
          of nkPragma, nkCommentStmt, nkNilLit, nkEmpty: nil
          else: localError(n.sons[j].info, errStmtInvalidAfterReturn)
      else: nil
  
  # a statement list (s; e) has the type 'e':
  if result.kind == nkStmtList and result.len > 0:
    var lastStmt = lastSon(result)
    if lastStmt.kind != nkNilLit and not ImplicitelyDiscardable(lastStmt):
      result.typ = lastStmt.typ
      #localError(lastStmt.info, errGenerated,
      #  "Last expression must be explicitly returned if it " &
      #  "is discardable or discarded")

proc SemStmt(c: PContext, n: PNode): PNode = 
  # now: simply an alias:
  result = semExprNoType(c, n)

proc semStmtScope(c: PContext, n: PNode): PNode =
  openScope(c.tab)
  result = semStmt(c, n)
  closeScope(c.tab)