summary refs log tree commit diff stats
path: root/compiler/semtypinst.nim
blob: 759e8e6ab0720bc7bafa978c5637277e9bbc3a57 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# This module does the instantiation of generic types.

import std / tables

import ast, astalgo, msgs, types, magicsys, semdata, renderer, options,
  lineinfos, modulegraphs

when defined(nimPreviewSlimSystem):
  import std/assertions

const tfInstClearedFlags = {tfHasMeta, tfUnresolved}

proc checkPartialConstructedType(conf: ConfigRef; info: TLineInfo, t: PType) =
  if t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
    localError(conf, info, "type 'var var' is not allowed")

proc checkConstructedType*(conf: ConfigRef; info: TLineInfo, typ: PType) =
  var t = typ.skipTypes({tyDistinct})
  if t.kind in tyTypeClasses: discard
  elif t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
    localError(conf, info, "type 'var var' is not allowed")
  elif computeSize(conf, t) == szIllegalRecursion or isTupleRecursive(t):
    localError(conf, info, "illegal recursion in type '" & typeToString(t) & "'")

proc searchInstTypes*(g: ModuleGraph; key: PType): PType =
  result = nil
  let genericTyp = key[0]
  if not (genericTyp.kind == tyGenericBody and
      genericTyp.sym != nil): return

  for inst in typeInstCacheItems(g, genericTyp.sym):
    if inst.id == key.id: return inst
    if inst.kidsLen < key.kidsLen:
      # XXX: This happens for prematurely cached
      # types such as Channel[empty]. Why?
      # See the notes for PActor in handleGenericInvocation
      # if this is return the same type gets cached more than it needs to
      continue
    if not sameFlags(inst, key):
      continue

    block matchType:
      for j in FirstGenericParamAt..<key.kidsLen:
        # XXX sameType is not really correct for nested generics?
        if not compareTypes(inst[j], key[j],
                            flags = {ExactGenericParams, PickyCAliases}):
          break matchType

      return inst

proc cacheTypeInst(c: PContext; inst: PType) =
  let gt = inst[0]
  let t = if gt.kind == tyGenericBody: gt.typeBodyImpl else: gt
  if t.kind in {tyStatic, tyError, tyGenericParam} + tyTypeClasses:
    return
  addToGenericCache(c, gt.sym, inst)

type
  LayeredIdTable* {.acyclic.} = ref object
    topLayer*: TypeMapping
    nextLayer*: LayeredIdTable

  TReplTypeVars* = object
    c*: PContext
    typeMap*: LayeredIdTable  # map PType to PType
    symMap*: SymMapping         # map PSym to PSym
    localCache*: TypeMapping     # local cache for remembering already replaced
                              # types during instantiation of meta types
                              # (they are not stored in the global cache)
    info*: TLineInfo
    allowMetaTypes*: bool     # allow types such as seq[Number]
                              # i.e. the result contains unresolved generics
    skipTypedesc*: bool       # whether we should skip typeDescs
    isReturnType*: bool
    owner*: PSym              # where this instantiation comes from
    recursionLimit: int

proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym
proc replaceTypeVarsN*(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode

proc initLayeredTypeMap*(pt: sink TypeMapping): LayeredIdTable =
  result = LayeredIdTable()
  result.topLayer = pt

proc newTypeMapLayer*(cl: var TReplTypeVars): LayeredIdTable =
  result = LayeredIdTable(nextLayer: cl.typeMap, topLayer: initTable[ItemId, PType]())

proc lookup(typeMap: LayeredIdTable, key: PType): PType =
  result = nil
  var tm = typeMap
  while tm != nil:
    result = getOrDefault(tm.topLayer, key.itemId)
    if result != nil: return
    tm = tm.nextLayer

template put(typeMap: LayeredIdTable, key, value: PType) =
  typeMap.topLayer[key.itemId] = value

template checkMetaInvariants(cl: TReplTypeVars, t: PType) = # noop code
  when false:
    if t != nil and tfHasMeta in t.flags and
       cl.allowMetaTypes == false:
      echo "UNEXPECTED META ", t.id, " ", instantiationInfo(-1)
      debug t
      writeStackTrace()

proc replaceTypeVarsT*(cl: var TReplTypeVars, t: PType): PType =
  result = replaceTypeVarsTAux(cl, t)
  checkMetaInvariants(cl, result)

proc prepareNode*(cl: var TReplTypeVars, n: PNode): PNode =
  ## instantiates a given generic expression, not a type node
  if n.kind == nkSym and n.sym.kind == skType and
      n.sym.typ != nil and n.sym.typ.kind == tyGenericBody:
    # generic body types are allowed as user expressions, see #24090
    return n
  let t = replaceTypeVarsT(cl, n.typ)
  if t != nil and t.kind == tyStatic and t.n != nil:
    return if tfUnresolved in t.flags: prepareNode(cl, t.n)
           else: t.n
  result = copyNode(n)
  result.typ = t
  if result.kind == nkSym:
    result.sym =
      if n.typ != nil and n.typ == n.sym.typ:
        replaceTypeVarsS(cl, n.sym, result.typ)
      else:
        replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
  # we need to avoid trying to instantiate nodes that can have uninstantiated
  # types, like generic proc symbols or raw generic type symbols
  case n.kind
  of nkSymChoices:
    # don't try to instantiate symchoice symbols, they can be
    # generic procs which the compiler will think are uninstantiated
    # because their type will contain uninstantiated params
    for i in 0..<n.len:
      result.add(n[i])
  of nkCallKinds:
    # don't try to instantiate call names since they may be generic proc syms
    # also bracket expressions can turn into calls with symchoice [] and
    # we need to not instantiate the Generic in Generic[int]
    # exception exists for the call name being a dot expression since
    # dot expressions need their LHS instantiated
    assert n.len != 0
    # avoid instantiating generic proc symbols, refine condition if needed:
    let ignoreFirst = n[0].kind notin {nkDotExpr, nkBracketExpr} + nkCallKinds
    let name = n[0].getPIdent
    let ignoreSecond = name != nil and name.s == "[]" and n.len > 1 and
      # generic type instantiation:
      ((n[1].typ != nil and n[1].typ.kind == tyTypeDesc) or
        # generic proc instantiation:
        (n[1].kind == nkSym and n[1].sym.isGenericRoutineStrict))
    if ignoreFirst:
      result.add(n[0])
    else:
      result.add(prepareNode(cl, n[0]))
    if n.len > 1:
      if ignoreSecond:
        result.add(n[1])
      else:
        result.add(prepareNode(cl, n[1]))
    for i in 2..<n.len:
      result.add(prepareNode(cl, n[i]))
  of nkBracketExpr:
    # don't instantiate Generic body type in expression like Generic[T]
    # exception exists for the call name being a dot expression since
    # dot expressions need their LHS instantiated
    assert n.len != 0
    let ignoreFirst = n[0].kind != nkDotExpr and
      # generic type instantiation:
      ((n[0].typ != nil and n[0].typ.kind == tyTypeDesc) or
        # generic proc instantiation:
        (n[0].kind == nkSym and n[0].sym.isGenericRoutineStrict))
    if ignoreFirst:
      result.add(n[0])
    else:
      result.add(prepareNode(cl, n[0]))
    for i in 1..<n.len:
      result.add(prepareNode(cl, n[i]))
  of nkDotExpr:
    # don't try to instantiate RHS of dot expression, it can outright be
    # undeclared, but definitely instantiate LHS
    assert n.len >= 2
    result.add(prepareNode(cl, n[0]))
    result.add(n[1])
    for i in 2..<n.len:
      result.add(prepareNode(cl, n[i]))
  else:
    for i in 0..<n.safeLen:
      result.add(prepareNode(cl, n[i]))

proc isTypeParam(n: PNode): bool =
  # XXX: generic params should use skGenericParam instead of skType
  return n.kind == nkSym and
         (n.sym.kind == skGenericParam or
           (n.sym.kind == skType and sfFromGeneric in n.sym.flags))

when false: # old workaround
  proc reResolveCallsWithTypedescParams(cl: var TReplTypeVars, n: PNode): PNode =
    # This is needed for tuninstantiatedgenericcalls
    # It's possible that a generic param will be used in a proc call to a
    # typedesc accepting proc. After generic param substitution, such procs
    # should be optionally instantiated with the correct type. In order to
    # perform this instantiation, we need to re-run the generateInstance path
    # in the compiler, but it's quite complicated to do so at the moment so we
    # resort to a mild hack; the head symbol of the call is temporary reset and
    # overload resolution is executed again (which may trigger generateInstance).
    if n.kind in nkCallKinds and sfFromGeneric in n[0].sym.flags:
      var needsFixing = false
      for i in 1..<n.safeLen:
        if isTypeParam(n[i]): needsFixing = true
      if needsFixing:
        n[0] = newSymNode(n[0].sym.owner)
        return cl.c.semOverloadedCall(cl.c, n, n, {skProc, skFunc}, {})

    for i in 0..<n.safeLen:
      n[i] = reResolveCallsWithTypedescParams(cl, n[i])

    return n

proc replaceObjBranches(cl: TReplTypeVars, n: PNode): PNode =
  result = n
  case n.kind
  of nkNone..nkNilLit:
    discard
  of nkRecWhen:
    var branch: PNode = nil              # the branch to take
    for i in 0..<n.len:
      var it = n[i]
      if it == nil: illFormedAst(n, cl.c.config)
      case it.kind
      of nkElifBranch:
        checkSonsLen(it, 2, cl.c.config)
        var cond = it[0]
        var e = cl.c.semConstExpr(cl.c, cond)
        if e.kind != nkIntLit:
          internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
        if e.intVal != 0 and branch == nil: branch = it[1]
      of nkElse:
        checkSonsLen(it, 1, cl.c.config)
        if branch == nil: branch = it[0]
      else: illFormedAst(n, cl.c.config)
    if branch != nil:
      result = replaceObjBranches(cl, branch)
    else:
      result = newNodeI(nkRecList, n.info)
  else:
    for i in 0..<n.len:
      n[i] = replaceObjBranches(cl, n[i])

proc hasValuelessStatics(n: PNode): bool =
  # We should only attempt to call an expression that has no tyStatics
  # As those are unresolved generic parameters, which means in the following
  # The compiler attempts to do `T == 300` which errors since the typeclass `MyThing` lacks a parameter
  #[
    type MyThing[T: static int] = object
      when T == 300:
        a
    proc doThing(_: MyThing)
  ]#
  if n.safeLen == 0 and n.kind != nkEmpty: # Some empty nodes can get in here
    n.typ == nil or n.typ.kind == tyStatic
  else:
    for x in n:
      if hasValuelessStatics(x):
        return true
    false

proc replaceTypeVarsN(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode =
  if n == nil: return
  result = copyNode(n)
  if n.typ != nil:
    if n.typ.kind == tyFromExpr:
      # type of node should not be evaluated as a static value
      n.typ.flags.incl tfNonConstExpr
    result.typ = replaceTypeVarsT(cl, n.typ)
    checkMetaInvariants(cl, result.typ)
  case n.kind
  of nkNone..pred(nkSym), succ(nkSym)..nkNilLit:
    discard
  of nkOpenSymChoice, nkClosedSymChoice: result = n
  of nkSym:
    result.sym =
      if n.typ != nil and n.typ == n.sym.typ:
        replaceTypeVarsS(cl, n.sym, result.typ)
      else:
        replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
    # sym type can be nil if was gensym created by macro, see #24048
    if result.sym.typ != nil and result.sym.typ.kind == tyVoid:
      # don't add the 'void' field
      result = newNodeI(nkRecList, n.info)
  of nkRecWhen:
    var branch: PNode = nil              # the branch to take
    for i in 0..<n.len:
      var it = n[i]
      if it == nil: illFormedAst(n, cl.c.config)
      case it.kind
      of nkElifBranch:
        checkSonsLen(it, 2, cl.c.config)
        var cond = prepareNode(cl, it[0])
        if not cond.hasValuelessStatics:
          var e = cl.c.semConstExpr(cl.c, cond)
          if e.kind != nkIntLit:
            internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
          if e.intVal != 0 and branch == nil: branch = it[1]
      of nkElse:
        checkSonsLen(it, 1, cl.c.config)
        if branch == nil: branch = it[0]
      else: illFormedAst(n, cl.c.config)
    if branch != nil:
      result = replaceTypeVarsN(cl, branch)
    else:
      result = newNodeI(nkRecList, n.info)
  of nkStaticExpr:
    var n = prepareNode(cl, n)
    when false:
      n = reResolveCallsWithTypedescParams(cl, n)
    result = if cl.allowMetaTypes: n
             else: cl.c.semExpr(cl.c, n, {}, expectedType)
    if not cl.allowMetaTypes and expectedType != nil:
      assert result.kind notin nkCallKinds
  else:
    if n.len > 0:
      newSons(result, n.len)
      if start > 0:
        result[0] = n[0]
      for i in start..<n.len:
        result[i] = replaceTypeVarsN(cl, n[i])

proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym =
  if s == nil: return nil
  # symbol is not our business:
  if cl.owner != nil and s.owner != cl.owner:
    return s

  # XXX: Bound symbols in default parameter expressions may reach here.
  # We cannot process them, because `sym.n` may point to a proc body with
  # cyclic references that will lead to an infinite recursion.
  # Perhaps we should not use a black-list here, but a whitelist instead
  # (e.g. skGenericParam and skType).
  # Note: `s.magic` may be `mType` in an example such as:
  # proc foo[T](a: T, b = myDefault(type(a)))
  if s.kind in routineKinds+{skLet, skConst, skVar} or s.magic != mNone:
    return s

  #result = PSym(idTableGet(cl.symMap, s))
  #if result == nil:
  #[

  We cannot naively check for symbol recursions, because otherwise
  object types A, B whould share their fields!

      import tables

      type
        Table[S, T] = object
          x: S
          y: T

        G[T] = object
          inodes: Table[int, T] # A
          rnodes: Table[T, int] # B

      var g: G[string]

  ]#
  result = copySym(s, cl.c.idgen)
  incl(result.flags, sfFromGeneric)
  #idTablePut(cl.symMap, s, result)
  result.owner = s.owner
  result.typ = t
  if result.kind != skType:
    result.ast = replaceTypeVarsN(cl, s.ast)

proc lookupTypeVar(cl: var TReplTypeVars, t: PType): PType =
  if tfRetType in t.flags and t.kind == tyAnything:
    # don't bind `auto` return type to a previous binding of `auto`
    return nil
  result = cl.typeMap.lookup(t)
  if result == nil:
    if cl.allowMetaTypes or tfRetType in t.flags: return
    localError(cl.c.config, t.sym.info, "cannot instantiate: '" & typeToString(t) & "'")
    result = errorType(cl.c)
    # In order to prevent endless recursions, we must remember
    # this bad lookup and replace it with errorType everywhere.
    # These code paths are only active in "nim check"
    cl.typeMap.put(t, result)
  elif result.kind == tyGenericParam and not cl.allowMetaTypes:
    internalError(cl.c.config, cl.info, "substitution with generic parameter")

proc instCopyType*(cl: var TReplTypeVars, t: PType): PType =
  # XXX: relying on allowMetaTypes is a kludge
  if cl.allowMetaTypes:
    result = t.exactReplica
  else:
    result = copyType(t, cl.c.idgen, t.owner)
    copyTypeProps(cl.c.graph, cl.c.idgen.module, result, t)
    #cl.typeMap.topLayer.idTablePut(result, t)

  if cl.allowMetaTypes: return
  result.flags.incl tfFromGeneric
  if not (t.kind in tyMetaTypes or
         (t.kind == tyStatic and t.n == nil)):
    result.flags.excl tfInstClearedFlags
  else:
    result.flags.excl tfHasAsgn
  when false:
    if newDestructors:
      result.assignment = nil
      result.destructor = nil
      result.sink = nil

proc handleGenericInvocation(cl: var TReplTypeVars, t: PType): PType =
  # tyGenericInvocation[A, tyGenericInvocation[A, B]]
  # is difficult to handle:
  var body = t.genericHead
  if body.kind != tyGenericBody:
    internalError(cl.c.config, cl.info, "no generic body")
  var header = t
  # search for some instantiation here:
  if cl.allowMetaTypes:
    result = getOrDefault(cl.localCache, t.itemId)
  else:
    result = searchInstTypes(cl.c.graph, t)

  if result != nil and sameFlags(result, t):
    when defined(reportCacheHits):
      echo "Generic instantiation cached ", typeToString(result), " for ", typeToString(t)
    return
  for i in FirstGenericParamAt..<t.kidsLen:
    var x = t[i]
    if x.kind in {tyGenericParam}:
      x = lookupTypeVar(cl, x)
      if x != nil:
        if header == t: header = instCopyType(cl, t)
        header[i] = x
        propagateToOwner(header, x)
    else:
      propagateToOwner(header, x)

  if header != t:
    # search again after first pass:
    result = searchInstTypes(cl.c.graph, header)
    if result != nil and sameFlags(result, t):
      when defined(reportCacheHits):
        echo "Generic instantiation cached ", typeToString(result), " for ",
          typeToString(t), " header ", typeToString(header)
      return
  else:
    header = instCopyType(cl, t)

  result = newType(tyGenericInst, cl.c.idgen, t.genericHead.owner, son = header.genericHead)
  result.flags = header.flags
  # be careful not to propagate unnecessary flags here (don't use rawAddSon)
  # ugh need another pass for deeply recursive generic types (e.g. PActor)
  # we need to add the candidate here, before it's fully instantiated for
  # recursive instantions:
  if not cl.allowMetaTypes:
    cacheTypeInst(cl.c, result)
  else:
    cl.localCache[t.itemId] = result

  let oldSkipTypedesc = cl.skipTypedesc
  cl.skipTypedesc = true

  cl.typeMap = newTypeMapLayer(cl)

  for i in FirstGenericParamAt..<t.kidsLen:
    var x = replaceTypeVarsT(cl):
      if header[i].kind == tyGenericInst:
        t[i]
      else:
        header[i]
    assert x.kind != tyGenericInvocation
    header[i] = x
    propagateToOwner(header, x)
    cl.typeMap.put(body[i-1], x)

  for i in FirstGenericParamAt..<t.kidsLen:
    # if one of the params is not concrete, we cannot do anything
    # but we already raised an error!
    rawAddSon(result, header[i], propagateHasAsgn = false)

  if body.kind == tyError:
    return

  let bbody = last body
  var newbody = replaceTypeVarsT(cl, bbody)
  cl.skipTypedesc = oldSkipTypedesc
  newbody.flags = newbody.flags + (t.flags + body.flags - tfInstClearedFlags)
  result.flags = result.flags + newbody.flags - tfInstClearedFlags

  cl.typeMap = cl.typeMap.nextLayer

  # This is actually wrong: tgeneric_closure fails with this line:
  #newbody.callConv = body.callConv
  # This type may be a generic alias and we want to resolve it here.
  # One step is enough, because the recursive nature of
  # handleGenericInvocation will handle the alias-to-alias-to-alias case
  if newbody.isGenericAlias: newbody = newbody.skipGenericAlias

  rawAddSon(result, newbody)
  checkPartialConstructedType(cl.c.config, cl.info, newbody)
  if not cl.allowMetaTypes:
    let dc = cl.c.graph.getAttachedOp(newbody, attachedDeepCopy)
    if dc != nil and sfFromGeneric notin dc.flags:
      # 'deepCopy' needs to be instantiated for
      # generics *when the type is constructed*:
      cl.c.graph.setAttachedOp(cl.c.module.position, newbody, attachedDeepCopy,
          cl.c.instTypeBoundOp(cl.c, dc, result, cl.info, attachedDeepCopy, 1))
    if newbody.typeInst == nil:
      # doAssert newbody.typeInst == nil
      newbody.typeInst = result
      if tfRefsAnonObj in newbody.flags and newbody.kind != tyGenericInst:
        # can come here for tyGenericInst too, see tests/metatype/ttypeor.nim
        # need to look into this issue later
        assert newbody.kind in {tyRef, tyPtr}
        if newbody.last.typeInst != nil:
          #internalError(cl.c.config, cl.info, "ref already has a 'typeInst' field")
          discard
        else:
          newbody.last.typeInst = result
    # DESTROY: adding object|opt for opt[topttree.Tree]
    # sigmatch: Formal opt[=destroy.T] real opt[topttree.Tree]
    # adding myseq for myseq[system.int]
    # sigmatch: Formal myseq[=destroy.T] real myseq[system.int]
    #echo "DESTROY: adding ", typeToString(newbody), " for ", typeToString(result, preferDesc)
    let mm = skipTypes(bbody, abstractPtrs)
    if tfFromGeneric notin mm.flags:
      # bug #5479, prevent endless recursions here:
      incl mm.flags, tfFromGeneric
      for col, meth in methodsForGeneric(cl.c.graph, mm):
        # we instantiate the known methods belonging to that type, this causes
        # them to be registered and that's enough, so we 'discard' the result.
        discard cl.c.instTypeBoundOp(cl.c, meth, result, cl.info,
          attachedAsgn, col)
      excl mm.flags, tfFromGeneric

proc eraseVoidParams*(t: PType) =
  # transform '(): void' into '()' because old parts of the compiler really
  # don't deal with '(): void':
  if t.returnType != nil and t.returnType.kind == tyVoid:
    t.setReturnType nil

  for i in FirstParamAt..<t.signatureLen:
    # don't touch any memory unless necessary
    if t[i].kind == tyVoid:
      var pos = i
      for j in i+1..<t.signatureLen:
        if t[j].kind != tyVoid:
          t[pos] = t[j]
          t.n[pos] = t.n[j]
          inc pos
      newSons t, pos
      setLen t.n.sons, pos
      break

proc skipIntLiteralParams*(t: PType; idgen: IdGenerator) =
  for i, p in t.ikids:
    if p == nil: continue
    let skipped = p.skipIntLit(idgen)
    if skipped != p:
      t[i] = skipped
      if i > 0: t.n[i].sym.typ = skipped

  # when the typeof operator is used on a static input
  # param, the results gets infected with static as well:
  if t.returnType != nil and t.returnType.kind == tyStatic:
    t.setReturnType t.returnType.skipModifier

proc propagateFieldFlags(t: PType, n: PNode) =
  # This is meant for objects and tuples
  # The type must be fully instantiated!
  if n.isNil:
    return
  #internalAssert n.kind != nkRecWhen
  case n.kind
  of nkSym:
    propagateToOwner(t, n.sym.typ)
  of nkRecList, nkRecCase, nkOfBranch, nkElse:
    for son in n:
      propagateFieldFlags(t, son)
  else: discard

proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType =
  template bailout =
    if (t.sym == nil) or (t.sym != nil and sfGeneratedType in t.sym.flags):
      # In the first case 't.sym' can be 'nil' if the type is a ref/ptr, see
      # issue https://github.com/nim-lang/Nim/issues/20416 for more details.
      # Fortunately for us this works for now because partial ref/ptr types are
      # not allowed in object construction, eg.
      #   type
      #     Container[T] = ...
      #     O = object
      #      val: ref Container
      #
      # In the second case only consider the recursion limit if the symbol is a
      # type with generic parameters that have not been explicitly supplied,
      # typechecking should terminate when generic parameters are explicitly
      # supplied.
      if cl.recursionLimit > 100:
        # bail out, see bug #2509. But note this caching is in general wrong,
        # look at this example where TwoVectors should not share the generic
        # instantiations (bug #3112):
        # type
        #   Vector[N: static[int]] = array[N, float64]
        #   TwoVectors[Na, Nb: static[int]] = (Vector[Na], Vector[Nb])
        result = getOrDefault(cl.localCache, t.itemId)
        if result != nil: return result
      inc cl.recursionLimit

  result = t
  if t == nil: return

  const lookupMetas = {tyStatic, tyGenericParam, tyConcept} + tyTypeClasses - {tyAnything}
  if t.kind in lookupMetas or
      (t.kind == tyAnything and tfRetType notin t.flags):
    let lookup = cl.typeMap.lookup(t)
    if lookup != nil: return lookup

  case t.kind
  of tyGenericInvocation:
    result = handleGenericInvocation(cl, t)
    if result.last.kind == tyUserTypeClass:
      result.kind = tyUserTypeClassInst

  of tyGenericBody:
    if cl.allowMetaTypes: return
    localError(
      cl.c.config,
      cl.info,
      "cannot instantiate: '" &
      typeToString(t, preferDesc) &
      "'; Maybe generic arguments are missing?")
    result = errorType(cl.c)
    #result = replaceTypeVarsT(cl, lastSon(t))

  of tyFromExpr:
    if cl.allowMetaTypes: return
    # This assert is triggered when a tyFromExpr was created in a cyclic
    # way. You should break the cycle at the point of creation by introducing
    # a call such as: `n.typ = makeTypeFromExpr(c, n.copyTree)`
    # Otherwise, the cycle will be fatal for the prepareNode call below
    assert t.n.typ != t
    var n = prepareNode(cl, t.n)
    if n.kind != nkEmpty:
      if tfNonConstExpr in t.flags:
        n = cl.c.semExprWithType(cl.c, n, flags = {efInTypeof})
      else:
        n = cl.c.semConstExpr(cl.c, n)
    if n.typ.kind == tyTypeDesc:
      # XXX: sometimes, chained typedescs enter here.
      # It may be worth investigating why this is happening,
      # because it may cause other bugs elsewhere.
      result = n.typ.skipTypes({tyTypeDesc})
      # result = n.typ.base
    elif tfNonConstExpr in t.flags:
      result = n.typ
    else:
      if n.typ.kind != tyStatic and n.kind != nkType:
        # XXX: In the future, semConstExpr should
        # return tyStatic values to let anyone make
        # use of this knowledge. The patching here
        # won't be necessary then.
        result = newTypeS(tyStatic, cl.c, son = n.typ)
        result.n = n
      else:
        result = n.typ

  of tyInt, tyFloat:
    result = skipIntLit(t, cl.c.idgen)

  of tyTypeDesc:
    let lookup = cl.typeMap.lookup(t)
    if lookup != nil:
      result = lookup
      if result.kind != tyTypeDesc:
        result = makeTypeDesc(cl.c, result)
      elif tfUnresolved in t.flags or cl.skipTypedesc:
        result = result.base
    elif t.elementType.kind != tyNone:
      result = makeTypeDesc(cl.c, replaceTypeVarsT(cl, t.elementType))

  of tyUserTypeClass:
    result = t
  
  of tyStatic:
    if cl.c.matchedConcept != nil:
      # allow concepts to not instantiate statics for now
      # they can't always infer them
      return
    if not containsGenericType(t) and (t.n == nil or t.n.kind in nkLiterals):
      # no need to instantiate
      return
    bailout()
    result = instCopyType(cl, t)
    cl.localCache[t.itemId] = result
    for i in FirstGenericParamAt..<result.kidsLen:
      var r = result[i]
      if r != nil:
        r = replaceTypeVarsT(cl, r)
        result[i] = r
        propagateToOwner(result, r)
    result.n = replaceTypeVarsN(cl, result.n)
    if not cl.allowMetaTypes and result.n != nil and
        result.base.kind != tyNone:
      result.n = cl.c.semConstExpr(cl.c, result.n)
      result.n.typ = result.base

  of tyGenericInst, tyUserTypeClassInst:
    bailout()
    result = instCopyType(cl, t)
    cl.localCache[t.itemId] = result
    for i in FirstGenericParamAt..<result.kidsLen:
      result[i] = replaceTypeVarsT(cl, result[i])
    propagateToOwner(result, result.last)

  else:
    if containsGenericType(t):
      #if not cl.allowMetaTypes:
      bailout()
      result = instCopyType(cl, t)
      result.size = -1 # needs to be recomputed
      #if not cl.allowMetaTypes:
      cl.localCache[t.itemId] = result

      for i, resulti in result.ikids:
        if resulti != nil:
          if resulti.kind == tyGenericBody and not cl.allowMetaTypes:
            localError(cl.c.config, if t.sym != nil: t.sym.info else: cl.info,
              "cannot instantiate '" &
              typeToString(result[i], preferDesc) &
              "' inside of type definition: '" &
              t.owner.name.s & "'; Maybe generic arguments are missing?")
          var r = replaceTypeVarsT(cl, resulti)
          if result.kind == tyObject:
            # carefully coded to not skip the precious tyGenericInst:
            let r2 = r.skipTypes({tyAlias, tySink, tyOwned})
            if r2.kind in {tyPtr, tyRef}:
              r = skipTypes(r2, {tyPtr, tyRef})
          result[i] = r
          if result.kind != tyArray or i != 0:
            propagateToOwner(result, r)
      # bug #4677: Do not instantiate effect lists
      result.n = replaceTypeVarsN(cl, result.n, ord(result.kind==tyProc))
      case result.kind
      of tyArray:
        let idx = result.indexType
        internalAssert cl.c.config, idx.kind != tyStatic

      of tyObject, tyTuple:
        propagateFieldFlags(result, result.n)
        if result.kind == tyObject and cl.c.computeRequiresInit(cl.c, result):
          result.flags.incl tfRequiresInit

      of tyProc:
        eraseVoidParams(result)
        skipIntLiteralParams(result, cl.c.idgen)

      of tyRange:
        result.setIndexType result.indexType.skipTypes({tyStatic, tyDistinct})

      else: discard
    else:
      # If this type doesn't refer to a generic type we may still want to run it
      # trough replaceObjBranches in order to resolve any pending nkRecWhen nodes
      result = t

      # Slow path, we have some work to do
      if t.kind == tyRef and t.hasElementType and t.elementType.kind == tyObject and t.elementType.n != nil:
        discard replaceObjBranches(cl, t.elementType.n)

      elif result.n != nil and t.kind == tyObject:
        # Invalidate the type size as we may alter its structure
        result.size = -1
        result.n = replaceObjBranches(cl, result.n)

proc initTypeVars*(p: PContext, typeMap: LayeredIdTable, info: TLineInfo;
                   owner: PSym): TReplTypeVars =
  result = TReplTypeVars(symMap: initSymMapping(),
            localCache: initTypeMapping(), typeMap: typeMap,
            info: info, c: p, owner: owner)

proc replaceTypesInBody*(p: PContext, pt: TypeMapping, n: PNode;
                         owner: PSym, allowMetaTypes = false,
                         fromStaticExpr = false, expectedType: PType = nil): PNode =
  var typeMap = initLayeredTypeMap(pt)
  var cl = initTypeVars(p, typeMap, n.info, owner)
  cl.allowMetaTypes = allowMetaTypes
  pushInfoContext(p.config, n.info)
  result = replaceTypeVarsN(cl, n, expectedType = expectedType)
  popInfoContext(p.config)

proc prepareTypesInBody*(p: PContext, pt: TypeMapping, n: PNode;
                         owner: PSym = nil): PNode =
  var typeMap = initLayeredTypeMap(pt)
  var cl = initTypeVars(p, typeMap, n.info, owner)
  pushInfoContext(p.config, n.info)
  result = prepareNode(cl, n)
  popInfoContext(p.config)

when false:
  # deadcode
  proc replaceTypesForLambda*(p: PContext, pt: TIdTable, n: PNode;
                              original, new: PSym): PNode =
    var typeMap = initLayeredTypeMap(pt)
    var cl = initTypeVars(p, typeMap, n.info, original)
    idTablePut(cl.symMap, original, new)
    pushInfoContext(p.config, n.info)
    result = replaceTypeVarsN(cl, n)
    popInfoContext(p.config)

proc recomputeFieldPositions*(t: PType; obj: PNode; currPosition: var int) =
  if t != nil and t.baseClass != nil:
    let b = skipTypes(t.baseClass, skipPtrs)
    recomputeFieldPositions(b, b.n, currPosition)
  case obj.kind
  of nkRecList:
    for i in 0..<obj.len: recomputeFieldPositions(nil, obj[i], currPosition)
  of nkRecCase:
    recomputeFieldPositions(nil, obj[0], currPosition)
    for i in 1..<obj.len:
      recomputeFieldPositions(nil, lastSon(obj[i]), currPosition)
  of nkSym:
    obj.sym.position = currPosition
    inc currPosition
  else: discard "cannot happen"

proc generateTypeInstance*(p: PContext, pt: TypeMapping, info: TLineInfo,
                           t: PType): PType =
  # Given `t` like Foo[T]
  # pt: Table with type mappings: T -> int
  # Desired result: Foo[int]
  # proc (x: T = 0); T -> int ---->  proc (x: int = 0)
  var typeMap = initLayeredTypeMap(pt)
  var cl = initTypeVars(p, typeMap, info, nil)
  pushInfoContext(p.config, info)
  result = replaceTypeVarsT(cl, t)
  popInfoContext(p.config)
  let objType = result.skipTypes(abstractInst)
  if objType.kind == tyObject:
    var position = 0
    recomputeFieldPositions(objType, objType.n, position)

proc prepareMetatypeForSigmatch*(p: PContext, pt: TypeMapping, info: TLineInfo,
                                 t: PType): PType =
  var typeMap = initLayeredTypeMap(pt)
  var cl = initTypeVars(p, typeMap, info, nil)
  cl.allowMetaTypes = true
  pushInfoContext(p.config, info)
  result = replaceTypeVarsT(cl, t)
  popInfoContext(p.config)

template generateTypeInstance*(p: PContext, pt: TypeMapping, arg: PNode,
                               t: PType): untyped =
  generateTypeInstance(p, pt, arg.info, t)