1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
|
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.
import
intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
magicsys, condsyms, idents, lexer, options, parampatterns, strutils, trees,
nimfix.pretty
when not defined(noDocgen):
import docgen
type
TCandidateState* = enum
csEmpty, csMatch, csNoMatch
CandidateErrors* = seq[(PSym,int)]
TCandidate* = object
c*: PContext
exactMatches*: int # also misused to prefer iters over procs
genericMatches: int # also misused to prefer constraints
subtypeMatches: int
intConvMatches: int # conversions to int are not as expensive
convMatches: int
state*: TCandidateState
callee*: PType # may not be nil!
calleeSym*: PSym # may be nil
calleeScope*: int # scope depth:
# is this a top-level symbol or a nested proc?
call*: PNode # modified call
bindings*: TIdTable # maps types to types
magic*: TMagic # magic of operation
baseTypeMatch: bool # needed for conversions from T to openarray[T]
# for example
fauxMatch*: TTypeKind # the match was successful only due to the use
# of error or wildcard (unknown) types.
# this is used to prevent instantiations.
genericConverter*: bool # true if a generic converter needs to
# be instantiated
coerceDistincts*: bool # this is an explicit coercion that can strip away
# a distrinct type
typedescMatched*: bool
isNoCall*: bool # misused for generic type instantiations C[T]
mutabilityProblem*: uint8 # tyVar mismatch
inheritancePenalty: int # to prefer closest father object type
errors*: CandidateErrors # additional clarifications to be displayed to the
# user if overload resolution fails
TTypeRelation* = enum # order is important!
isNone, isConvertible,
isIntConv,
isSubtype,
isSubrange, # subrange of the wanted type; no type conversion
# but apart from that counts as ``isSubtype``
isBothMetaConvertible # generic proc parameter was matched against
# generic type, e.g., map(mySeq, x=>x+1),
# maybe recoverable by rerun if the parameter is
# the proc's return value
isInferred, # generic proc was matched against a concrete type
isInferredConvertible, # same as above, but requiring proc CC conversion
isGeneric,
isFromIntLit, # conversion *from* int literal; proven safe
isEqual
const
isNilConversion = isConvertible # maybe 'isIntConv' fits better?
proc markUsed*(info: TLineInfo, s: PSym)
template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone
proc initCandidateAux(ctx: PContext,
c: var TCandidate, callee: PType) {.inline.} =
c.c = ctx
c.exactMatches = 0
c.subtypeMatches = 0
c.convMatches = 0
c.intConvMatches = 0
c.genericMatches = 0
c.state = csEmpty
c.callee = callee
c.call = nil
c.baseTypeMatch = false
c.genericConverter = false
c.inheritancePenalty = 0
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) =
initCandidateAux(ctx, c, callee)
c.calleeSym = nil
initIdTable(c.bindings)
proc put(c: var TCandidate, key, val: PType) {.inline.} =
idTablePut(c.bindings, key, val.skipIntLit)
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym,
binding: PNode, calleeScope = -1) =
initCandidateAux(ctx, c, callee.typ)
c.calleeSym = callee
if callee.kind in skProcKinds and calleeScope == -1:
if callee.originatingModule == ctx.module:
c.calleeScope = 2
var owner = callee
while true:
owner = owner.skipGenericOwner
if owner.kind == skModule: break
inc c.calleeScope
else:
c.calleeScope = 1
else:
c.calleeScope = calleeScope
c.magic = c.calleeSym.magic
initIdTable(c.bindings)
c.errors = nil
if binding != nil and callee.kind in routineKinds:
var typeParams = callee.ast[genericParamsPos]
for i in 1..min(sonsLen(typeParams), sonsLen(binding)-1):
var formalTypeParam = typeParams.sons[i-1].typ
var bound = binding[i].typ
internalAssert bound != nil
if formalTypeParam.kind == tyTypeDesc:
if bound.kind != tyTypeDesc:
bound = makeTypeDesc(ctx, bound)
else:
bound = bound.skipTypes({tyTypeDesc})
put(c, formalTypeParam, bound)
proc newCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1): TCandidate =
initCandidate(ctx, result, callee, binding, calleeScope)
proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
initCandidate(ctx, result, callee)
proc copyCandidate(a: var TCandidate, b: TCandidate) =
a.c = b.c
a.exactMatches = b.exactMatches
a.subtypeMatches = b.subtypeMatches
a.convMatches = b.convMatches
a.intConvMatches = b.intConvMatches
a.genericMatches = b.genericMatches
a.state = b.state
a.callee = b.callee
a.calleeSym = b.calleeSym
a.call = copyTree(b.call)
a.baseTypeMatch = b.baseTypeMatch
copyIdTable(a.bindings, b.bindings)
proc sumGeneric(t: PType): int =
var t = t
var isvar = 1
while true:
case t.kind
of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyArrayConstr,
tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody:
t = t.lastSon
inc result
of tyVar:
t = t.sons[0]
inc result
inc isvar
of tyTypeDesc:
t = t.lastSon
if t.kind == tyEmpty: break
inc result
of tyGenericInvocation, tyTuple, tyProc:
result += ord(t.kind == tyGenericInvocation)
for i in 0 .. <t.len: result += t.sons[i].sumGeneric
break
of tyGenericParam, tyExpr, tyStatic, tyStmt: break
of tyBool, tyChar, tyEnum, tyObject, tyPointer,
tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64:
return isvar
else:
return 0
#var ggDebug: bool
proc complexDisambiguation(a, b: PType): int =
# 'a' matches better if *every* argument matches better or equal than 'b'.
var winner = 0
for i in 1 .. <min(a.len, b.len):
let x = a.sons[i].sumGeneric
let y = b.sons[i].sumGeneric
#if ggDebug:
# echo "came her ", typeToString(a.sons[i]), " ", typeToString(b.sons[i])
if x != y:
if winner == 0:
if x > y: winner = 1
else: winner = -1
elif x > y:
if winner != 1:
# contradiction
return 0
else:
if winner != -1:
return 0
result = winner
when false:
var x, y: int
for i in 1 .. <a.len: x += a.sons[i].sumGeneric
for i in 1 .. <b.len: y += b.sons[i].sumGeneric
result = x - y
proc cmpCandidates*(a, b: TCandidate): int =
result = a.exactMatches - b.exactMatches
if result != 0: return
result = a.genericMatches - b.genericMatches
if result != 0: return
result = a.subtypeMatches - b.subtypeMatches
if result != 0: return
result = a.intConvMatches - b.intConvMatches
if result != 0: return
result = a.convMatches - b.convMatches
if result != 0: return
# the other way round because of other semantics:
result = b.inheritancePenalty - a.inheritancePenalty
if result != 0: return
# prefer more specialized generic over more general generic:
result = complexDisambiguation(a.callee, b.callee)
# only as a last resort, consider scoping:
if result != 0: return
result = a.calleeScope - b.calleeScope
proc writeMatches*(c: TCandidate) =
writeLine(stdout, "exact matches: " & $c.exactMatches)
writeLine(stdout, "generic matches: " & $c.genericMatches)
writeLine(stdout, "subtype matches: " & $c.subtypeMatches)
writeLine(stdout, "intconv matches: " & $c.intConvMatches)
writeLine(stdout, "conv matches: " & $c.convMatches)
writeLine(stdout, "inheritance: " & $c.inheritancePenalty)
proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
if arg.kind in nkSymChoices:
result = typeToString(arg[0].typ, prefer)
for i in 1 .. <arg.len:
result.add(" | ")
result.add typeToString(arg[i].typ, prefer)
elif arg.typ == nil:
result = "void"
else:
result = arg.typ.typeToString(prefer)
proc describeArgs*(c: PContext, n: PNode, startIdx = 1;
prefer: TPreferedDesc = preferName): string =
result = ""
for i in countup(startIdx, n.len - 1):
var arg = n.sons[i]
if n.sons[i].kind == nkExprEqExpr:
add(result, renderTree(n.sons[i].sons[0]))
add(result, ": ")
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
# XXX we really need to 'tryExpr' here!
arg = c.semOperand(c, n.sons[i].sons[1])
n.sons[i].typ = arg.typ
n.sons[i].sons[1] = arg
else:
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
arg = c.semOperand(c, n.sons[i])
n.sons[i] = arg
if arg.typ != nil and arg.typ.kind == tyError: return
add(result, argTypeToString(arg, prefer))
if i != sonsLen(n) - 1: add(result, ", ")
proc typeRel*(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation
proc concreteType(c: TCandidate, t: PType): PType =
case t.kind
of tyArrayConstr:
# make it an array
result = newType(tyArray, t.owner)
addSonSkipIntLit(result, t.sons[0]) # XXX: t.owner is wrong for ID!
addSonSkipIntLit(result, t.sons[1]) # XXX: semantic checking for the type?
of tyNil:
result = nil # what should it be?
of tyTypeDesc:
if c.isNoCall: result = t
else: result = nil
of tySequence, tySet:
if t.sons[0].kind == tyEmpty: result = nil
else: result = t
of tyGenericParam, tyAnything:
result = t
while true:
result = PType(idTableGet(c.bindings, t))
if result == nil:
break # it's ok, no match
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if result.kind != tyGenericParam: break
of tyGenericInvocation:
internalError("cannot resolve type: " & typeToString(t))
result = t
else:
result = t # Note: empty is valid here
proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
let k = ab.kind
if k == f.kind: result = isSubrange
elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64,
tyUInt..tyUInt64} and
isIntLit(ab) and ab.n.intVal >= firstOrd(f) and
ab.n.intVal <= lastOrd(f):
# integer literal in the proper range; we want ``i16 + 4`` to stay an
# ``int16`` operation so we declare the ``4`` pseudo-equal to int16
result = isFromIntLit
elif f.kind == tyInt and k in {tyInt8..tyInt32}:
result = isIntConv
elif k >= min and k <= max:
result = isConvertible
elif a.kind == tyRange and a.sons[0].kind in {tyInt..tyInt64,
tyUInt8..tyUInt32} and
a.n[0].intVal >= firstOrd(f) and
a.n[1].intVal <= lastOrd(f):
result = isConvertible
else: result = isNone
#elif f.kind == tyInt and k in {tyInt..tyInt32}: result = isIntConv
#elif f.kind == tyUInt and k in {tyUInt..tyUInt32}: result = isIntConv
proc isConvertibleToRange(f, a: PType): bool =
# be less picky for tyRange, as that it is used for array indexing:
if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
result = true
elif f.kind in {tyFloat..tyFloat128} and
a.kind in {tyFloat..tyFloat128}:
result = true
proc handleFloatRange(f, a: PType): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
var k = ab.kind
if k == f.kind: result = isSubrange
elif isFloatLit(ab): result = isFromIntLit
elif isIntLit(ab): result = isConvertible
elif k >= tyFloat and k <= tyFloat128:
# conversion to "float32" is not as good:
if f.kind == tyFloat32: result = isConvertible
else: result = isIntConv
else: result = isNone
proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int =
var t = a
assert t.kind == tyObject
var depth = 0
var last = a
while t != nil and not sameObjectTypes(f, t):
assert t.kind == tyObject
t = t.sons[0]
if t == nil: break
last = t
t = skipTypes(t, skipPtrs)
inc depth
if t != nil:
if fGenericOrigin != nil and last.kind == tyGenericInst and
last.len-1 == fGenericOrigin.len:
for i in countup(1, sonsLen(fGenericOrigin) - 1):
let x = PType(idTableGet(c.bindings, fGenericOrigin.sons[i]))
if x == nil:
put(c, fGenericOrigin.sons[i], last.sons[i])
result = depth
else:
result = -1
type
SkippedPtr = enum skippedNone, skippedRef, skippedPtr
proc skipToObject(t: PType; skipped: var SkippedPtr): PType =
var r = t
# we're allowed to skip one level of ptr/ref:
var ptrs = 0
while r != nil:
case r.kind
of tyGenericInvocation:
r = r.sons[0]
of tyRef:
inc ptrs
skipped = skippedRef
r = r.lastSon
of tyPtr:
inc ptrs
skipped = skippedPtr
r = r.lastSon
of tyGenericBody, tyGenericInst:
r = r.lastSon
else:
break
if r.kind == tyObject and ptrs <= 1: result = r
proc isGenericSubtype(a, f: PType, d: var int): bool =
assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody}
var askip = skippedNone
var fskip = skippedNone
var t = a.skipToObject(askip)
let r = f.skipToObject(fskip)
if r == nil: return false
var depth = 0
# XXX sameObjectType can return false here. Need to investigate
# why that is but sameObjectType does way too much work here anyway.
while t != nil and r.sym != t.sym and askip == fskip:
t = t.sons[0]
if t != nil: t = t.skipToObject(askip)
else: break
inc depth
if t != nil and askip == fskip:
d = depth
result = true
proc minRel(a, b: TTypeRelation): TTypeRelation =
if a <= b: result = a
else: result = b
proc recordRel(c: var TCandidate, f, a: PType): TTypeRelation =
result = isNone
if sameType(f, a):
result = isEqual
elif sonsLen(a) == sonsLen(f):
result = isEqual
let firstField = if f.kind == tyTuple: 0
else: 1
for i in countup(firstField, sonsLen(f) - 1):
var m = typeRel(c, f.sons[i], a.sons[i])
if m < isSubtype: return isNone
result = minRel(result, m)
if f.n != nil and a.n != nil:
for i in countup(0, sonsLen(f.n) - 1):
# check field names:
if f.n.sons[i].kind != nkSym: internalError(f.n.info, "recordRel")
elif a.n.sons[i].kind != nkSym: internalError(a.n.info, "recordRel")
else:
var x = f.n.sons[i].sym
var y = a.n.sons[i].sym
if f.kind == tyObject and typeRel(c, x.typ, y.typ) < isSubtype:
return isNone
if x.name.id != y.name.id: return isNone
proc allowsNil(f: PType): TTypeRelation {.inline.} =
result = if tfNotNil notin f.flags: isSubtype else: isNone
proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
result = f.kind != a.kind and (f.kind == tyVar or a.kind == tyVar)
proc procParamTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
## For example we have:
## .. code-block:: nim
## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
## proc innerProc[Q,W](q: Q): W = ...
## And we want to match: myMap(@[1,2,3], innerProc)
## This proc (procParamTypeRel) will do the following steps in
## three different calls:
## - matches f=T to a=Q. Since f is metatype, we resolve it
## to int (which is already known at this point). So in this case
## Q=int mapping will be saved to c.bindings.
## - matches f=S to a=W. Both of these metatypes are unknown, so we
## return with isBothMetaConvertible to ask for rerun.
## - matches f=S to a=W. At this point the return type of innerProc
## is known (we get it from c.bindings). We can use that value
## to match with f, and save back to c.bindings.
var
f = f
a = a
if a.isMetaType:
let aResolved = PType(idTableGet(c.bindings, a))
if aResolved != nil:
a = aResolved
if a.isMetaType:
if f.isMetaType:
# We are matching a generic proc (as proc param)
# to another generic type appearing in the proc
# signature. There is a change that the target
# type is already fully-determined, so we are
# going to try resolve it
f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
if f == nil or f.isMetaType:
# no luck resolving the type, so the inference fails
return isBothMetaConvertible
# Note that this typeRel call will save a's resolved type into c.bindings
let reverseRel = typeRel(c, a, f)
if reverseRel >= isGeneric:
result = isInferred
#inc c.genericMatches
else:
# Note that this typeRel call will save f's resolved type into c.bindings
# if f is metatype.
result = typeRel(c, f, a)
if result <= isSubtype or inconsistentVarTypes(f, a):
result = isNone
#if result == isEqual:
# inc c.exactMatches
proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
case a.kind
of tyProc:
if sonsLen(f) != sonsLen(a): return
result = isEqual # start with maximum; also correct for no
# params at all
template checkParam(f, a) =
result = minRel(result, procParamTypeRel(c, f, a))
if result == isNone: return
# Note: We have to do unification for the parameters before the
# return type!
for i in 1 .. <f.sonsLen:
checkParam(f.sons[i], a.sons[i])
if f.sons[0] != nil:
if a.sons[0] != nil:
checkParam(f.sons[0], a.sons[0])
else:
return isNone
elif a.sons[0] != nil:
return isNone
if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
return isNone
elif tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and
optThreadAnalysis in gGlobalOptions:
# noSideEffect implies ``tfThread``!
return isNone
elif f.flags * {tfIterator} != a.flags * {tfIterator}:
return isNone
elif f.callConv != a.callConv:
# valid to pass a 'nimcall' thingie to 'closure':
if f.callConv == ccClosure and a.callConv == ccDefault:
result = if result == isInferred: isInferredConvertible
elif result == isBothMetaConvertible: isBothMetaConvertible
else: isConvertible
else:
return isNone
when useEffectSystem:
if not compatibleEffects(f, a): return isNone
of tyNil:
result = f.allowsNil
of tyIter:
if tfIterator in f.flags: result = typeRel(c, f.base, a.base)
else: discard
proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
let
a0 = firstOrd(a)
a1 = lastOrd(a)
f0 = firstOrd(f)
f1 = lastOrd(f)
if a0 == f0 and a1 == f1:
result = isEqual
elif a0 >= f0 and a1 <= f1:
result = isConvertible
elif a0 <= f1 and f0 <= a1:
# X..Y and C..D overlap iff (X <= D and C <= Y)
result = isConvertible
else:
result = isNone
proc matchUserTypeClass*(c: PContext, m: var TCandidate,
ff, a: PType): TTypeRelation =
var body = ff.skipTypes({tyUserTypeClassInst})
if c.inTypeClass > 4:
localError(body.n[3].info, $body.n[3] & " too nested for type matching")
return isNone
openScope(c)
inc c.inTypeClass
defer:
dec c.inTypeClass
closeScope(c)
if ff.kind == tyUserTypeClassInst:
for i in 1 .. <(ff.len - 1):
var
typeParamName = ff.base.sons[i-1].sym.name
typ = ff.sons[i]
param: PSym
template paramSym(kind): untyped =
newSym(kind, typeParamName, body.sym, body.sym.info)
case typ.kind
of tyStatic:
param = paramSym skConst
param.typ = typ.base
param.ast = typ.n
of tyUnknown:
param = paramSym skVar
param.typ = typ
else:
param = paramSym skType
param.typ = makeTypeDesc(c, typ)
addDecl(c, param)
#echo "A ", param.name.s, " ", typeToString(param.typ), " ", param.kind
for param in body.n[0]:
var
dummyName: PNode
dummyType: PType
if param.kind == nkVarTy:
dummyName = param[0]
dummyType = if a.kind != tyVar: makeVarType(c, a) else: a
else:
dummyName = param
dummyType = a
internalAssert dummyName.kind == nkIdent
var dummyParam = newSym(skVar, dummyName.ident, body.sym, body.sym.info)
dummyParam.typ = dummyType
addDecl(c, dummyParam)
#echo "B ", dummyName.ident.s, " ", typeToString(dummyType), " ", dummyparam.kind
var checkedBody = c.semTryExpr(c, body.n[3].copyTree)
if checkedBody == nil: return isNone
return isGeneric
proc shouldSkipDistinct(rules: PNode, callIdent: PIdent): bool =
if rules.kind == nkWith:
for r in rules:
if r.considerQuotedIdent == callIdent: return true
return false
else:
for r in rules:
if r.considerQuotedIdent == callIdent: return false
return true
proc maybeSkipDistinct(t: PType, callee: PSym): PType =
if t != nil and t.kind == tyDistinct and t.n != nil and
shouldSkipDistinct(t.n, callee.name):
result = t.base
else:
result = t
proc tryResolvingStaticExpr(c: var TCandidate, n: PNode): PNode =
# Consider this example:
# type Value[N: static[int]] = object
# proc foo[N](a: Value[N], r: range[0..(N-1)])
# Here, N-1 will be initially nkStaticExpr that can be evaluated only after
# N is bound to a concrete value during the matching of the first param.
# This proc is used to evaluate such static expressions.
let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil)
result = c.c.semExpr(c.c, instantiated)
template subtypeCheck() =
if result <= isSubrange and f.lastSon.skipTypes(abstractInst).kind in {tyRef, tyPtr, tyVar}:
result = isNone
proc typeRel(c: var TCandidate, f, aOrig: PType, doBind = true): TTypeRelation =
# typeRel can be used to establish various relationships between types:
#
# 1) When used with concrete types, it will check for type equivalence
# or a subtype relationship.
#
# 2) When used with a concrete type against a type class (such as generic
# signature of a proc), it will check whether the concrete type is a member
# of the designated type class.
#
# 3) When used with two type classes, it will check whether the types
# matching the first type class are a strict subset of the types matching
# the other. This allows us to compare the signatures of generic procs in
# order to give preferrence to the most specific one:
#
# seq[seq[any]] is a strict subset of seq[any] and hence more specific.
result = isNone
assert(f != nil)
if f.kind == tyExpr:
if aOrig != nil: put(c, f, aOrig)
return isGeneric
assert(aOrig != nil)
# var and static arguments match regular modifier-free types
let a = aOrig.skipTypes({tyStatic, tyVar}).maybeSkipDistinct(c.calleeSym)
# XXX: Theoretically, maybeSkipDistinct could be called before we even
# start the param matching process. This could be done in `prepareOperand`
# for example, but unfortunately `prepareOperand` is not called in certain
# situation when nkDotExpr are rotated to nkDotCalls
if a.kind == tyGenericInst and
skipTypes(f, {tyVar}).kind notin {
tyGenericBody, tyGenericInvocation,
tyGenericInst, tyGenericParam} + tyTypeClasses:
return typeRel(c, f, lastSon(a))
template bindingRet(res) =
if doBind:
let bound = aOrig.skipTypes({tyRange}).skipIntLit
put(c, f, bound)
return res
template considerPreviousT(body: untyped) =
var prev = PType(idTableGet(c.bindings, f))
if prev == nil: body
else: return typeRel(c, prev, a)
case a.kind
of tyOr:
# seq[int|string] vs seq[number]
# both int and string must match against number
# but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
result = isGeneric
for branch in a.sons:
let x = typeRel(c, f, branch, false)
if x == isNone: return isNone
if x < result: result = x
of tyAnd:
# seq[Sortable and Iterable] vs seq[Sortable]
# only one match is enough
for branch in a.sons:
let x = typeRel(c, f, branch, false)
if x != isNone:
return if x >= isGeneric: isGeneric else: x
result = isNone
of tyNot:
case f.kind
of tyNot:
# seq[!int] vs seq[!number]
# seq[float] matches the first, but not the second
# we must turn the problem around:
# is number a subset of int?
return typeRel(c, a.lastSon, f.lastSon)
else:
# negative type classes are essentially infinite,
# so only the `any` type class is their superset
return if f.kind == tyAnything: isGeneric
else: isNone
of tyAnything:
return if f.kind == tyAnything: isGeneric
else: isNone
of tyUserTypeClass, tyUserTypeClassInst:
# consider this: 'var g: Node' *within* a concept where 'Node'
# is a concept too (tgraph)
let x = typeRel(c, a, f, false)
if x >= isGeneric:
return isGeneric
else: discard
case f.kind
of tyEnum:
if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
of tyBool, tyChar:
if a.kind == f.kind: result = isEqual
elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
of tyRange:
if a.kind == f.kind:
if f.base.kind == tyNone: return isGeneric
result = typeRel(c, base(f), base(a))
# bugfix: accept integer conversions here
#if result < isGeneric: result = isNone
if result notin {isNone, isGeneric}:
# resolve any late-bound static expressions
# that may appear in the range:
for i in 0..1:
if f.n[i].kind == nkStaticExpr:
f.n.sons[i] = tryResolvingStaticExpr(c, f.n[i])
result = typeRangeRel(f, a)
else:
if skipTypes(f, {tyRange}).kind == a.kind:
result = isIntConv
elif isConvertibleToRange(skipTypes(f, {tyRange}), a):
result = isConvertible # a convertible to f
of tyInt: result = handleRange(f, a, tyInt8, tyInt32)
of tyInt8: result = handleRange(f, a, tyInt8, tyInt8)
of tyInt16: result = handleRange(f, a, tyInt8, tyInt16)
of tyInt32: result = handleRange(f, a, tyInt8, tyInt32)
of tyInt64: result = handleRange(f, a, tyInt, tyInt64)
of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32)
of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8)
of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16)
of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32)
of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64)
of tyFloat: result = handleFloatRange(f, a)
of tyFloat32: result = handleFloatRange(f, a)
of tyFloat64: result = handleFloatRange(f, a)
of tyFloat128: result = handleFloatRange(f, a)
of tyVar:
if aOrig.kind == tyVar: result = typeRel(c, f.base, aOrig.base)
else: result = typeRel(c, f.base, aOrig)
subtypeCheck()
of tyArray, tyArrayConstr:
# tyArrayConstr cannot happen really, but
# we wanna be safe here
case a.kind
of tyArray, tyArrayConstr:
var fRange = f.sons[0]
if fRange.kind == tyGenericParam:
var prev = PType(idTableGet(c.bindings, fRange))
if prev == nil:
put(c, fRange, a.sons[0])
fRange = a
else:
fRange = prev
result = typeRel(c, f.sons[1], a.sons[1])
if result < isGeneric: return isNone
if rangeHasStaticIf(fRange):
if tfUnresolved in fRange.flags:
# This is a range from an array instantiated with a generic
# static param. We must extract the static param here and bind
# it to the size of the currently supplied array.
var
rangeStaticT = fRange.getStaticTypeFromRange
replacementT = newTypeWithSons(c.c, tyStatic, @[tyInt.getSysType])
inputUpperBound = a.sons[0].n[1].intVal
# we must correct for the off-by-one discrepancy between
# ranges and static params:
replacementT.n = newIntNode(nkIntLit, inputUpperBound + 1)
put(c, rangeStaticT, replacementT)
return isGeneric
let len = tryResolvingStaticExpr(c, fRange.n[1])
if len.kind == nkIntLit and len.intVal+1 == lengthOrd(a):
return # if we get this far, the result is already good
else:
return isNone
elif lengthOrd(fRange) != lengthOrd(a):
result = isNone
else: discard
of tyOpenArray, tyVarargs:
# varargs[expr] is special too but handled earlier. So we only need to
# handle varargs[stmt] which is the same as varargs[typed]:
if f.kind == tyVarargs:
if tfOldSchoolExprStmt in f.sons[0].flags:
if f.sons[0].kind == tyExpr: return
elif f.sons[0].kind == tyStmt: return
case a.kind
of tyOpenArray, tyVarargs:
result = typeRel(c, base(f), base(a))
if result < isGeneric: result = isNone
of tyArray, tyArrayConstr:
if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
result = isSubtype
elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
result = isConvertible
of tySequence:
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
result = isConvertible
elif typeRel(c, base(f), a.sons[0]) >= isGeneric:
result = isConvertible
of tyString:
if f.kind == tyOpenArray:
if f.sons[0].kind == tyChar:
result = isConvertible
elif f.sons[0].kind == tyGenericParam and a.len > 0 and
typeRel(c, base(f), base(a)) >= isGeneric:
result = isConvertible
else: discard
of tySequence:
case a.kind
of tySequence:
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
result = isSubtype
else:
result = typeRel(c, f.sons[0], a.sons[0])
if result < isGeneric: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyNil: result = f.allowsNil
else: discard
of tyOrdinal:
if isOrdinalType(a):
var x = if a.kind == tyOrdinal: a.sons[0] else: a
if f.sons[0].kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f.sons[0], x)
if result < isGeneric: result = isNone
elif a.kind == tyGenericParam:
result = isGeneric
of tyForward: internalError("forward type in typeRel()")
of tyNil:
if a.kind == f.kind: result = isEqual
of tyTuple:
if a.kind == tyTuple: result = recordRel(c, f, a)
of tyObject:
if a.kind == tyObject:
if sameObjectTypes(f, a):
result = isEqual
# elif tfHasMeta in f.flags: result = recordRel(c, f, a)
else:
var depth = isObjectSubtype(c, a, f, nil)
if depth > 0:
inc(c.inheritancePenalty, depth)
result = isSubtype
of tyDistinct:
if a.kind == tyDistinct:
if sameDistinctTypes(f, a): result = isEqual
elif f.base.kind == tyAnything: result = isGeneric
elif c.coerceDistincts: result = typeRel(c, f.base, a)
elif a.kind == tyNil and f.base.kind in NilableTypes:
result = f.allowsNil
elif c.coerceDistincts: result = typeRel(c, f.base, a)
of tySet:
if a.kind == tySet:
if f.sons[0].kind != tyGenericParam and a.sons[0].kind == tyEmpty:
result = isSubtype
else:
result = typeRel(c, f.sons[0], a.sons[0])
if result <= isConvertible:
result = isNone # BUGFIX!
of tyPtr, tyRef:
if a.kind == f.kind:
# ptr[R, T] can be passed to ptr[T], but not the other way round:
if a.len < f.len: return isNone
for i in 0..f.len-2:
if typeRel(c, f.sons[i], a.sons[i]) == isNone: return isNone
result = typeRel(c, f.lastSon, a.lastSon)
subtypeCheck()
if result <= isConvertible: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
elif a.kind == tyNil: result = f.allowsNil
else: discard
of tyProc:
result = procTypeRel(c, f, a)
if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyPointer:
case a.kind
of tyPointer:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyProc:
if a.callConv != ccClosure: result = isConvertible
of tyPtr:
# 'pointer' is NOT compatible to regionized pointers
# so 'dealloc(regionPtr)' fails:
if a.len == 1: result = isConvertible
of tyCString: result = isConvertible
else: discard
of tyString:
case a.kind
of tyString:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
else: discard
of tyCString:
# conversion from string to cstring is automatic:
case a.kind
of tyCString:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyString: result = isConvertible
of tyPtr:
# ptr[Tag, char] is not convertible to 'cstring' for now:
if a.len == 1 and a.sons[0].kind == tyChar: result = isConvertible
of tyArray:
if (firstOrd(a.sons[0]) == 0) and
(skipTypes(a.sons[0], {tyRange}).kind in {tyInt..tyInt64}) and
(a.sons[1].kind == tyChar):
result = isConvertible
else: discard
of tyEmpty, tyVoid:
if a.kind == f.kind: result = isEqual
of tyGenericInst:
result = typeRel(c, lastSon(f), a)
of tyGenericBody:
considerPreviousT:
if a.kind == tyGenericInst and a.sons[0] == f:
bindingRet isGeneric
let ff = lastSon(f)
if ff != nil:
result = typeRel(c, ff, a)
of tyGenericInvocation:
var x = a.skipGenericAlias
var depth = 0
if x.kind == tyGenericInvocation or f.sons[0].kind != tyGenericBody:
#InternalError("typeRel: tyGenericInvocation -> tyGenericInvocation")
# simply no match for now:
discard
elif x.kind == tyGenericInst and
((f.sons[0] == x.sons[0]) or isGenericSubtype(x, f, depth)) and
(sonsLen(x) - 1 == sonsLen(f)):
for i in countup(1, sonsLen(f) - 1):
if x.sons[i].kind == tyGenericParam:
internalError("wrong instantiated type!")
elif typeRel(c, f.sons[i], x.sons[i]) <= isSubtype:
# Workaround for regression #4589
if f.sons[i].kind != tyTypeDesc: return
c.inheritancePenalty += depth
result = isGeneric
else:
let genericBody = f.sons[0]
var askip = skippedNone
var fskip = skippedNone
let aobj = x.skipToObject(askip)
let fobj = genericBody.lastSon.skipToObject(fskip)
if fobj != nil and aobj != nil and askip == fskip:
let depth = isObjectSubtype(c, aobj, fobj, f)
if depth >= 0:
c.inheritancePenalty += depth
return if depth == 0: isGeneric else: isSubtype
result = typeRel(c, genericBody, x)
if result != isNone:
# see tests/generics/tgeneric3.nim for an example that triggers this
# piece of code:
#
# proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
# proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
# Oldvalue: var D): ref TNode[T,D]
# var root = internalPut[int, int](nil, 312, 312, oldvalue)
# var it1 = internalFind(root, 312) # cannot instantiate: 'D'
#
# we steal the generic parameters from the tyGenericBody:
for i in countup(1, sonsLen(f) - 1):
let x = PType(idTableGet(c.bindings, genericBody.sons[i-1]))
if x == nil:
discard "maybe fine (for eg. a==tyNil)"
elif x.kind in {tyGenericInvocation, tyGenericParam}:
internalError("wrong instantiated type!")
else:
put(c, f.sons[i], x)
of tyAnd:
considerPreviousT:
result = isEqual
for branch in f.sons:
let x = typeRel(c, branch, aOrig)
if x < isSubtype: return isNone
# 'and' implies minimum matching result:
if x < result: result = x
if result > isGeneric: result = isGeneric
bindingRet result
of tyOr:
considerPreviousT:
result = isNone
for branch in f.sons:
let x = typeRel(c, branch, aOrig)
# 'or' implies maximum matching result:
if x > result: result = x
if result >= isSubtype:
if result > isGeneric: result = isGeneric
bindingRet result
else:
result = isNone
of tyNot:
considerPreviousT:
for branch in f.sons:
if typeRel(c, branch, aOrig) != isNone:
return isNone
bindingRet isGeneric
of tyAnything:
considerPreviousT:
var concrete = concreteType(c, a)
if concrete != nil and doBind:
put(c, f, concrete)
return isGeneric
of tyBuiltInTypeClass:
considerPreviousT:
let targetKind = f.sons[0].kind
if targetKind == a.skipTypes({tyRange, tyGenericInst, tyBuiltInTypeClass}).kind or
(targetKind in {tyProc, tyPointer} and a.kind == tyNil):
put(c, f, a)
return isGeneric
else:
return isNone
of tyUserTypeClass, tyUserTypeClassInst:
considerPreviousT:
result = matchUserTypeClass(c.c, c, f, aOrig)
if result == isGeneric:
put(c, f, a)
of tyCompositeTypeClass:
considerPreviousT:
let roota = a.skipGenericAlias
let rootf = f.lastSon.skipGenericAlias
if a.kind == tyGenericInst and roota.base == rootf.base:
for i in 1 .. rootf.sonsLen-2:
let ff = rootf.sons[i]
let aa = roota.sons[i]
result = typeRel(c, ff, aa)
if result == isNone: return
if ff.kind == tyRange and result != isEqual: return isNone
else:
result = typeRel(c, rootf.lastSon, a)
if result != isNone:
put(c, f, a)
result = isGeneric
of tyGenericParam:
var x = PType(idTableGet(c.bindings, f))
if x == nil:
if c.callee.kind == tyGenericBody and
f.kind == tyGenericParam and not c.typedescMatched:
# XXX: The fact that generic types currently use tyGenericParam for
# their parameters is really a misnomer. tyGenericParam means "match
# any value" and what we need is "match any type", which can be encoded
# by a tyTypeDesc params. Unfortunately, this requires more substantial
# changes in semtypinst and elsewhere.
if tfWildcard in a.flags:
result = isGeneric
elif a.kind == tyTypeDesc:
if f.sonsLen == 0:
result = isGeneric
else:
internalAssert a.sons != nil and a.sons.len > 0
c.typedescMatched = true
var aa = a
while aa.kind in {tyTypeDesc, tyGenericParam} and
aa.len > 0:
aa = lastSon(aa)
result = typeRel(c, f.base, aa)
if result > isGeneric: result = isGeneric
else:
result = isNone
else:
if f.sonsLen > 0 and f.sons[0].kind != tyNone:
result = typeRel(c, f.lastSon, a)
if doBind and result notin {isNone, isGeneric}:
let concrete = concreteType(c, a)
if concrete == nil: return isNone
put(c, f, concrete)
else:
result = isGeneric
if result == isGeneric:
var concrete = a
if tfWildcard in a.flags:
a.sym.kind = skType
a.flags.excl tfWildcard
else:
concrete = concreteType(c, a)
if concrete == nil:
return isNone
if doBind:
put(c, f, concrete)
elif result > isGeneric:
result = isGeneric
elif a.kind == tyEmpty:
result = isGeneric
elif x.kind == tyGenericParam:
result = isGeneric
else:
result = typeRel(c, x, a) # check if it fits
if result > isGeneric: result = isGeneric
of tyStatic:
let prev = PType(idTableGet(c.bindings, f))
if prev == nil:
if aOrig.kind == tyStatic:
result = typeRel(c, f.lastSon, a)
if result != isNone and f.n != nil:
if not exprStructuralEquivalent(f.n, aOrig.n):
result = isNone
if result != isNone: put(c, f, aOrig)
else:
result = isNone
elif prev.kind == tyStatic:
if aOrig.kind == tyStatic:
result = typeRel(c, prev.lastSon, a)
if result != isNone and prev.n != nil:
if not exprStructuralEquivalent(prev.n, aOrig.n):
result = isNone
else: result = isNone
else:
# XXX endless recursion?
#result = typeRel(c, prev, aOrig)
result = isNone
of tyTypeDesc:
var prev = PType(idTableGet(c.bindings, f))
if prev == nil:
# proc foo(T: typedesc, x: T)
# when `f` is an unresolved typedesc, `a` could be any
# type, so we should not perform this check earlier
if a.kind != tyTypeDesc: return isNone
if f.base.kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f.base, a.base)
if result != isNone:
put(c, f, a)
else:
if tfUnresolved in f.flags:
result = typeRel(c, prev.base, a)
elif a.kind == tyTypeDesc:
result = typeRel(c, prev.base, a.base)
else:
result = isNone
of tyIter:
if a.kind == tyIter or
(a.kind == tyProc and tfIterator in a.flags):
result = typeRel(c, f.base, a.base)
else:
result = isNone
of tyStmt:
if aOrig != nil and tfOldSchoolExprStmt notin f.flags:
put(c, f, aOrig)
result = isGeneric
of tyProxy:
result = isEqual
of tyFromExpr:
# fix the expression, so it contains the already instantiated types
if f.n == nil or f.n.kind == nkEmpty: return isGeneric
let reevaluated = tryResolvingStaticExpr(c, f.n)
case reevaluated.typ.kind
of tyTypeDesc:
result = typeRel(c, a, reevaluated.typ.base)
of tyStatic:
result = typeRel(c, a, reevaluated.typ.base)
if result != isNone and reevaluated.typ.n != nil:
if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
result = isNone
else:
localError(f.n.info, errTypeExpected)
result = isNone
of tyNone:
if a.kind == tyNone: result = isEqual
else:
internalError " unknown type kind " & $f.kind
proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
var m: TCandidate
initCandidate(c, m, f)
result = typeRel(m, f, a)
proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
f: PType): PType =
result = PType(idTableGet(m.bindings, f))
if result == nil:
result = generateTypeInstance(c, m.bindings, arg, f)
if result == nil:
internalError(arg.info, "getInstantiatedType")
result = errorType(c)
proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
c: PContext): PNode =
result = newNodeI(kind, arg.info)
if containsGenericType(f):
if not m.hasFauxMatch:
result.typ = getInstantiatedType(c, arg, m, f)
else:
result.typ = errorType(c)
else:
result.typ = f
if result.typ == nil: internalError(arg.info, "implicitConv")
addSon(result, ast.emptyNode)
addSon(result, arg)
proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
result = nil
for i in countup(0, len(c.converters) - 1):
var src = c.converters[i].typ.sons[1]
var dest = c.converters[i].typ.sons[0]
# for generic type converters we need to check 'src <- a' before
# 'f <- dest' in order to not break the unification:
# see tests/tgenericconverter:
let srca = typeRel(m, src, a)
if srca notin {isEqual, isGeneric}: continue
let destIsGeneric = containsGenericType(dest)
if destIsGeneric:
dest = generateTypeInstance(c, m.bindings, arg, dest)
let fdest = typeRel(m, f, dest)
if fdest in {isEqual, isGeneric}:
markUsed(arg.info, c.converters[i])
var s = newSymNode(c.converters[i])
s.typ = c.converters[i].typ
s.info = arg.info
result = newNodeIT(nkHiddenCallConv, arg.info, dest)
addSon(result, s)
addSon(result, copyTree(arg))
inc(m.convMatches)
m.genericConverter = srca == isGeneric or destIsGeneric
return result
proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
# arg.typ can be nil in 'suggest':
if isNil(arg.typ): return nil
# sem'checking for 'echo' needs to be re-entrant:
# XXX we will revisit this issue after 0.10.2 is released
if f == arg.typ and arg.kind == nkHiddenStdConv: return arg
var call = newNodeI(nkCall, arg.info)
call.add(f.n.copyTree)
call.add(arg.copyTree)
result = c.semExpr(c, call)
if result != nil:
if result.typ == nil: return nil
# resulting type must be consistent with the other arguments:
var r = typeRel(m, f.sons[0], result.typ)
if r < isGeneric: return nil
if result.kind == nkCall: result.kind = nkHiddenCallConv
inc(m.convMatches)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
case r
of isConvertible, isIntConv: inc(m.convMatches, convMatch)
of isSubtype, isSubrange: inc(m.subtypeMatches)
of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
of isFromIntLit: inc(m.intConvMatches, 256)
of isInferredConvertible:
inc(m.convMatches)
of isEqual: inc(m.exactMatches)
of isNone: discard
proc paramTypesMatchAux(m: var TCandidate, f, argType: PType,
argSemantized, argOrig: PNode): PNode =
var
fMaybeStatic = f.skipTypes({tyDistinct})
arg = argSemantized
argType = argType
c = m.c
if tfHasStatic in fMaybeStatic.flags:
# XXX: When implicit statics are the default
# this will be done earlier - we just have to
# make sure that static types enter here
# XXX: weaken tyGenericParam and call it tyGenericPlaceholder
# and finally start using tyTypedesc for generic types properly.
if argType.kind == tyGenericParam and tfWildcard in argType.flags:
argType.assignType(f)
# put(m.bindings, f, argType)
return argSemantized
if argType.kind == tyStatic:
if m.callee.kind == tyGenericBody and tfGenericTypeParam notin argType.flags:
result = newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
return
else:
var evaluated = c.semTryConstExpr(c, arg)
if evaluated != nil:
arg.typ = newTypeS(tyStatic, c)
arg.typ.sons = @[evaluated.typ]
arg.typ.n = evaluated
argType = arg.typ
var a = argType
var r = typeRel(m, f, a)
if r != isNone and m.calleeSym != nil and
m.calleeSym.kind in {skMacro, skTemplate}:
# XXX: duplicating this is ugly, but we cannot (!) move this
# directly into typeRel using return-like templates
incMatches(m, r)
if f.kind == tyStmt:
return arg
elif f.kind == tyTypeDesc:
return arg
elif f.kind == tyStatic:
return arg.typ.n
else:
return argSemantized # argOrig
# If r == isBothMetaConvertible then we rerun typeRel.
# bothMetaCounter is for safety to avoid any infinite loop,
# I don't have any example when it is needed.
# lastBindingsLenth is used to check whether m.bindings remains the same,
# because in that case there is no point in continuing.
var bothMetaCounter = 0
var lastBindingsLength = -1
while r == isBothMetaConvertible and
lastBindingsLength != m.bindings.counter and
bothMetaCounter < 100:
lastBindingsLength = m.bindings.counter
inc(bothMetaCounter)
if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
result = c.semInferredLambda(c, m.bindings, arg)
elif arg.kind != nkSym:
return nil
else:
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
result = newSymNode(inferred, arg.info)
inc(m.convMatches)
arg = result
r = typeRel(m, f, arg.typ)
case r
of isConvertible:
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isIntConv:
# I'm too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isSubtype:
inc(m.subtypeMatches)
if f.kind == tyTypeDesc:
result = arg
else:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isSubrange:
inc(m.subtypeMatches)
if f.kind == tyVar:
result = arg
else:
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isInferred, isInferredConvertible:
if arg.kind in {nkProcDef, nkIteratorDef} + nkLambdaKinds:
result = c.semInferredLambda(c, m.bindings, arg)
elif arg.kind != nkSym:
return nil
else:
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
result = newSymNode(inferred, arg.info)
if r == isInferredConvertible:
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, result, m, c)
else:
inc(m.genericMatches)
of isGeneric:
inc(m.genericMatches)
if arg.typ == nil:
result = arg
elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
elif arg.typ.isEmptyContainer:
result = arg.copyTree
result.typ = getInstantiatedType(c, arg, m, f)
else:
result = arg
of isBothMetaConvertible:
# This is the result for the 101th time.
result = nil
of isFromIntLit:
# too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isEqual:
inc(m.exactMatches)
result = arg
if skipTypes(f, abstractVar-{tyTypeDesc}).kind in {tyTuple}:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isNone:
# do not do this in ``typeRel`` as it then can't infer T in ``ref T``:
if a.kind in {tyProxy, tyUnknown}:
inc(m.genericMatches)
m.fauxMatch = a.kind
return arg
result = userConvMatch(c, m, f, a, arg)
# check for a base type match, which supports varargs[T] without []
# constructor in a call:
if result == nil and f.kind == tyVarargs:
if f.n != nil:
result = localConvMatch(c, m, f, a, arg)
else:
r = typeRel(m, base(f), a)
if r >= isGeneric:
inc(m.convMatches)
result = copyTree(arg)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
else:
result = userConvMatch(c, m, base(f), a, arg)
if result != nil: m.baseTypeMatch = true
proc paramTypesMatch*(m: var TCandidate, f, a: PType,
arg, argOrig: PNode): PNode =
if arg == nil or arg.kind notin nkSymChoices:
result = paramTypesMatchAux(m, f, a, arg, argOrig)
else:
# CAUTION: The order depends on the used hashing scheme. Thus it is
# incorrect to simply use the first fitting match. However, to implement
# this correctly is inefficient. We have to copy `m` here to be able to
# roll back the side effects of the unification algorithm.
let c = m.c
var x, y, z: TCandidate
initCandidate(c, x, m.callee)
initCandidate(c, y, m.callee)
initCandidate(c, z, m.callee)
x.calleeSym = m.calleeSym
y.calleeSym = m.calleeSym
z.calleeSym = m.calleeSym
var best = -1
for i in countup(0, sonsLen(arg) - 1):
if arg.sons[i].sym.kind in {skProc, skMethod, skConverter, skIterator}:
copyCandidate(z, m)
z.callee = arg.sons[i].typ
z.calleeSym = arg.sons[i].sym
#if arg.sons[i].sym.name.s == "cmp":
# ggDebug = true
# echo "CALLLEEEEEEEE A ", typeToString(z.callee)
# XXX this is still all wrong: (T, T) should be 2 generic matches
# and (int, int) 2 exact matches, etc. Essentially you cannot call
# typeRel here and expect things to work!
let r = typeRel(z, f, arg.sons[i].typ)
incMatches(z, r, 2)
#if arg.sons[i].sym.name.s == "cmp": # and arg.info.line == 606:
# echo "M ", r, " ", arg.info, " ", typeToString(arg.sons[i].sym.typ)
# writeMatches(z)
if r != isNone:
z.state = csMatch
case x.state
of csEmpty, csNoMatch:
x = z
best = i
of csMatch:
let cmp = cmpCandidates(x, z)
if cmp < 0:
best = i
x = z
elif cmp == 0:
y = z # z is as good as x
if x.state == csEmpty:
result = nil
elif y.state == csMatch and cmpCandidates(x, y) == 0:
if x.state != csMatch:
internalError(arg.info, "x.state is not csMatch")
# ambiguous: more than one symbol fits!
# See tsymchoice_for_expr as an example. 'f.kind == tyExpr' should match
# anyway:
if f.kind == tyExpr: result = arg
else: result = nil
else:
# only one valid interpretation found:
markUsed(arg.info, arg.sons[best].sym)
styleCheckUse(arg.info, arg.sons[best].sym)
result = paramTypesMatchAux(m, f, arg.sons[best].typ, arg.sons[best],
argOrig)
proc setSon(father: PNode, at: int, son: PNode) =
if sonsLen(father) <= at: setLen(father.sons, at + 1)
father.sons[at] = son
# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
if formal.kind == tyExpr and formal.len != 1:
# {tyTypeDesc, tyExpr, tyStmt, tyProxy}:
# a.typ == nil is valid
result = a
elif a.typ.isNil:
# XXX This is unsound! 'formal' can differ from overloaded routine to
# overloaded routine!
let flags = if formal.kind == tyIter: {efDetermineType, efWantIterator}
else: {efDetermineType, efAllowStmt}
#elif formal.kind == tyStmt: {efDetermineType, efWantStmt}
#else: {efDetermineType}
result = c.semOperand(c, a, flags)
else:
result = a
proc prepareOperand(c: PContext; a: PNode): PNode =
if a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
proc prepareNamedParam(a: PNode) =
if a.sons[0].kind != nkIdent:
var info = a.sons[0].info
a.sons[0] = newIdentNode(considerQuotedIdent(a.sons[0]), info)
proc arrayConstr(c: PContext, n: PNode): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, 0, n.info))
addSonSkipIntLit(result, skipTypes(n.typ, {tyGenericInst, tyVar, tyOrdinal}))
proc arrayConstr(c: PContext, info: TLineInfo): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, -1, info))
rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
proc incrIndexType(t: PType) =
assert t.kind == tyArray
inc t.sons[0].n.sons[1].intVal
template isVarargsUntyped(x): untyped =
x.kind == tyVarargs and x.sons[0].kind == tyExpr and
tfOldSchoolExprStmt notin x.sons[0].flags
proc matchesAux(c: PContext, n, nOrig: PNode,
m: var TCandidate, marker: var IntSet) =
template checkConstraint(n: untyped) {.dirty.} =
if not formal.constraint.isNil:
if matchNodeKinds(formal.constraint, n):
# better match over other routines with no such restriction:
inc(m.genericMatches, 100)
else:
m.state = csNoMatch
return
if formal.typ.kind == tyVar:
if not n.isLValue:
m.state = csNoMatch
m.mutabilityProblem = uint8(f-1)
return
var
# iterates over formal parameters
f = if m.callee.kind != tyGenericBody: 1
else: 0
# iterates over the actual given arguments
a = 1
m.state = csMatch # until proven otherwise
m.call = newNodeI(n.kind, n.info)
m.call.typ = base(m.callee) # may be nil
var formalLen = m.callee.n.len
addSon(m.call, copyTree(n.sons[0]))
var container: PNode = nil # constructed container
var formal: PSym = if formalLen > 1: m.callee.n.sons[1].sym else: nil
while a < n.len:
if a >= formalLen-1 and formal != nil and formal.typ.isVarargsUntyped:
incl(marker, formal.position)
if container.isNil:
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
addSon(container, n.sons[a])
elif n.sons[a].kind == nkExprEqExpr:
# named param
# check if m.callee has such a param:
prepareNamedParam(n.sons[a])
if n.sons[a].sons[0].kind != nkIdent:
localError(n.sons[a].info, errNamedParamHasToBeIdent)
m.state = csNoMatch
return
formal = getSymFromList(m.callee.n, n.sons[a].sons[0].ident, 1)
if formal == nil:
# no error message!
m.state = csNoMatch
return
if containsOrIncl(marker, formal.position):
# already in namedParams, so no match
# we used to produce 'errCannotBindXTwice' here but see
# bug #3836 of why that is not sound (other overload with
# different parameter names could match later on):
when false: localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
m.state = csNoMatch
return
m.baseTypeMatch = false
n.sons[a].sons[1] = prepareOperand(c, formal.typ, n.sons[a].sons[1])
n.sons[a].typ = n.sons[a].sons[1].typ
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a].sons[1], n.sons[a].sons[1])
if arg == nil:
m.state = csNoMatch
return
checkConstraint(n.sons[a].sons[1])
if m.baseTypeMatch:
#assert(container == nil)
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
addSon(container, arg)
setSon(m.call, formal.position + 1, container)
if f != formalLen - 1: container = nil
else:
setSon(m.call, formal.position + 1, arg)
inc f
else:
# unnamed param
if f >= formalLen:
# too many arguments?
if tfVarargs in m.callee.flags:
# is ok... but don't increment any counters...
# we have no formal here to snoop at:
n.sons[a] = prepareOperand(c, n.sons[a])
if skipTypes(n.sons[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
addSon(m.call, implicitConv(nkHiddenStdConv, getSysType(tyCString),
copyTree(n.sons[a]), m, c))
else:
addSon(m.call, copyTree(n.sons[a]))
elif formal != nil and formal.typ.kind == tyVarargs:
# beware of the side-effects in 'prepareOperand'! So only do it for
# varargs matching. See tests/metatype/tstatic_overloading.
m.baseTypeMatch = false
incl(marker, formal.position)
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a], nOrig.sons[a])
if arg != nil and m.baseTypeMatch and container != nil:
addSon(container, arg)
incrIndexType(container.typ)
checkConstraint(n.sons[a])
else:
m.state = csNoMatch
return
else:
m.state = csNoMatch
return
else:
if m.callee.n.sons[f].kind != nkSym:
internalError(n.sons[a].info, "matches")
return
formal = m.callee.n.sons[f].sym
if containsOrIncl(marker, formal.position) and container.isNil:
# already in namedParams: (see above remark)
when false: localError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
m.state = csNoMatch
return
if formal.typ.isVarargsUntyped:
if container.isNil:
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
addSon(container, n.sons[a])
else:
m.baseTypeMatch = false
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a], nOrig.sons[a])
if arg == nil:
m.state = csNoMatch
return
if m.baseTypeMatch:
#assert(container == nil)
if container.isNil:
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
else:
incrIndexType(container.typ)
addSon(container, arg)
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
#if f != formalLen - 1: container = nil
# pick the formal from the end, so that 'x, y, varargs, z' works:
f = max(f, formalLen - n.len + a + 1)
else:
setSon(m.call, formal.position + 1, arg)
inc(f)
container = nil
checkConstraint(n.sons[a])
inc(a)
proc semFinishOperands*(c: PContext, n: PNode) =
# this needs to be called to ensure that after overloading resolution every
# argument has been sem'checked:
for i in 1 .. <n.len:
n.sons[i] = prepareOperand(c, n.sons[i])
proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
# for 'suggest' support:
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
if m.magic in {mArrGet, mArrPut}:
m.state = csMatch
m.call = n
return
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
if m.state == csNoMatch: return
# check that every formal parameter got a value:
var f = 1
while f < sonsLen(m.callee.n):
var formal = m.callee.n.sons[f].sym
if not containsOrIncl(marker, formal.position):
if formal.ast == nil:
if formal.typ.kind == tyVarargs:
var container = newNodeIT(nkBracket, n.info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
else:
# no default value
m.state = csNoMatch
break
else:
# use default value:
var def = copyTree(formal.ast)
if def.kind == nkNilLit:
def = implicitConv(nkHiddenStdConv, formal.typ, def, m, c)
setSon(m.call, formal.position + 1, def)
inc(f)
proc argtypeMatches*(c: PContext, f, a: PType): bool =
var m: TCandidate
initCandidate(c, m, f)
let res = paramTypesMatch(m, f, a, ast.emptyNode, nil)
#instantiateGenericConverters(c, res, m)
# XXX this is used by patterns.nim too; I think it's better to not
# instantiate generic converters for that
result = res != nil
proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.procvar.} =
var m: TCandidate
initCandidate(c, m, dc.typ)
if col >= dc.typ.len:
localError(info, errGenerated, "cannot instantiate '" & dc.name.s & "'")
return nil
var f = dc.typ.sons[col]
if op == attachedDeepCopy:
if f.kind in {tyRef, tyPtr}: f = f.lastSon
else:
if f.kind == tyVar: f = f.lastSon
if typeRel(m, f, t) == isNone:
localError(info, errGenerated, "cannot instantiate '" & dc.name.s & "'")
else:
result = c.semGenerateInstance(c, dc, m.bindings, info)
assert sfFromGeneric in result.flags
include suggest
when not declared(tests):
template tests(s: untyped) = discard
tests:
var dummyOwner = newSym(skModule, getIdent("test_module"), nil, UnknownLineInfo())
proc `|` (t1, t2: PType): PType =
result = newType(tyOr, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `&` (t1, t2: PType): PType =
result = newType(tyAnd, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `!` (t: PType): PType =
result = newType(tyNot, dummyOwner)
result.rawAddSon(t)
proc seq(t: PType): PType =
result = newType(tySequence, dummyOwner)
result.rawAddSon(t)
proc array(x: int, t: PType): PType =
result = newType(tyArray, dummyOwner)
var n = newNodeI(nkRange, UnknownLineInfo())
addSon(n, newIntNode(nkIntLit, 0))
addSon(n, newIntNode(nkIntLit, x))
let range = newType(tyRange, dummyOwner)
result.rawAddSon(range)
result.rawAddSon(t)
suite "type classes":
let
int = newType(tyInt, dummyOwner)
float = newType(tyFloat, dummyOwner)
string = newType(tyString, dummyOwner)
ordinal = newType(tyOrdinal, dummyOwner)
any = newType(tyAnything, dummyOwner)
number = int | float
var TFoo = newType(tyObject, dummyOwner)
TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, UnknownLineInfo())
var T1 = newType(tyGenericParam, dummyOwner)
T1.sym = newSym(skType, getIdent"T1", dummyOwner, UnknownLineInfo())
T1.sym.position = 0
var T2 = newType(tyGenericParam, dummyOwner)
T2.sym = newSym(skType, getIdent"T2", dummyOwner, UnknownLineInfo())
T2.sym.position = 1
setup:
var c: TCandidate
initCandidate(nil, c, nil)
template yes(x, y) =
test astToStr(x) & " is " & astToStr(y):
check typeRel(c, y, x) == isGeneric
template no(x, y) =
test astToStr(x) & " is not " & astToStr(y):
check typeRel(c, y, x) == isNone
yes seq(any), array(10, int) | seq(any)
# Sure, seq[any] is directly included
yes seq(int), seq(any)
yes seq(int), seq(number)
# Sure, the int sequence is certainly
# part of the number sequences (and all sequences)
no seq(any), seq(float)
# Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
yes seq(int|string), seq(any)
# Sure
yes seq(int&string), seq(any)
# Again
yes seq(int&string), seq(int)
# A bit more complicated
# seq[int&string] is not a real type, but it's analogous to
# seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
no seq(int|string), seq(int|float)
# Nope, seq[string] is not included in not included in
# the seq[int|float] set
no seq(!(int|string)), seq(string)
# A sequence that is neither seq[int] or seq[string]
# is obviously not seq[string]
no seq(!int), seq(number)
# Now your head should start to hurt a bit
# A sequence that is not seq[int] is not necessarily a number sequence
# it could well be seq[string] for example
yes seq(!(int|string)), seq(!string)
# all sequnece types besides seq[int] and seq[string]
# are subset of all sequence types that are not seq[string]
no seq(!(int|string)), seq(!(string|TFoo))
# Nope, seq[TFoo] is included in the first set, but not in the second
no seq(!string), seq(!number)
# Nope, seq[int] in included in the first set, but not in the second
yes seq(!number), seq(any)
yes seq(!int), seq(any)
no seq(any), seq(!any)
no seq(!int), seq(!any)
yes int, ordinal
no string, ordinal
|