1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
|
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.
import
ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
magicsys, idents, lexer, options, parampatterns, trees,
linter, lineinfos, lowerings, modulegraphs, concepts
import std/[intsets, strutils, tables]
when defined(nimPreviewSlimSystem):
import std/assertions
type
MismatchKind* = enum
kUnknown, kAlreadyGiven, kUnknownNamedParam, kTypeMismatch, kVarNeeded,
kMissingParam, kExtraArg, kPositionalAlreadyGiven
MismatchInfo* = object
kind*: MismatchKind # reason for mismatch
arg*: int # position of provided arguments that mismatches
formal*: PSym # parameter that mismatches against provided argument
# its position can differ from `arg` because of varargs
TCandidateState* = enum
csEmpty, csMatch, csNoMatch
CandidateError* = object
sym*: PSym
firstMismatch*: MismatchInfo
diagnostics*: seq[string]
enabled*: bool
CandidateErrors* = seq[CandidateError]
TCandidate* = object
c*: PContext
exactMatches*: int # also misused to prefer iters over procs
genericMatches: int # also misused to prefer constraints
subtypeMatches: int
intConvMatches: int # conversions to int are not as expensive
convMatches: int
state*: TCandidateState
callee*: PType # may not be nil!
calleeSym*: PSym # may be nil
calleeScope*: int # scope depth:
# is this a top-level symbol or a nested proc?
call*: PNode # modified call
bindings*: TypeMapping # maps types to types
magic*: TMagic # magic of operation
baseTypeMatch: bool # needed for conversions from T to openarray[T]
# for example
fauxMatch*: TTypeKind # the match was successful only due to the use
# of error or wildcard (unknown) types.
# this is used to prevent instantiations.
genericConverter*: bool # true if a generic converter needs to
# be instantiated
coerceDistincts*: bool # this is an explicit coercion that can strip away
# a distrinct type
typedescMatched*: bool
isNoCall*: bool # misused for generic type instantiations C[T]
inferredTypes: seq[PType] # inferred types during the current signature
# matching. they will be reset if the matching
# is not successful. may replace the bindings
# table in the future.
diagnostics*: seq[string] # \
# when diagnosticsEnabled, the matching process
# will collect extra diagnostics that will be
# displayed to the user.
# triggered when overload resolution fails
# or when the explain pragma is used. may be
# triggered with an idetools command in the
# future.
inheritancePenalty: int # to prefer closest father object type
firstMismatch*: MismatchInfo # mismatch info for better error messages
diagnosticsEnabled*: bool
TTypeRelFlag* = enum
trDontBind
trNoCovariance
trBindGenericParam # bind tyGenericParam even with trDontBind
trIsOutParam
TTypeRelFlags* = set[TTypeRelFlag]
const
isNilConversion = isConvertible # maybe 'isIntConv' fits better?
proc markUsed*(c: PContext; info: TLineInfo, s: PSym; checkStyle = true)
proc markOwnerModuleAsUsed*(c: PContext; s: PSym)
template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone
proc initCandidateAux(ctx: PContext,
callee: PType): TCandidate {.inline.} =
result = TCandidate(c: ctx, exactMatches: 0, subtypeMatches: 0,
convMatches: 0, intConvMatches: 0, genericMatches: 0,
state: csEmpty, firstMismatch: MismatchInfo(),
callee: callee, call: nil, baseTypeMatch: false,
genericConverter: false, inheritancePenalty: 0
)
proc initCandidate*(ctx: PContext, callee: PType): TCandidate =
result = initCandidateAux(ctx, callee)
result.calleeSym = nil
result.bindings = initTypeMapping()
proc put(c: var TCandidate, key, val: PType) {.inline.} =
## Given: proc foo[T](x: T); foo(4)
## key: 'T'
## val: 'int' (typeof(4))
when false:
let old = idTableGet(c.bindings, key)
if old != nil:
echo "Putting ", typeToString(key), " ", typeToString(val), " and old is ", typeToString(old)
if typeToString(old) == "float32":
writeStackTrace()
if c.c.module.name.s == "temp3":
echo "binding ", key, " -> ", val
idTablePut(c.bindings, key, val.skipIntLit(c.c.idgen))
proc initCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1,
diagnosticsEnabled = false): TCandidate =
result = initCandidateAux(ctx, callee.typ)
result.calleeSym = callee
if callee.kind in skProcKinds and calleeScope == -1:
result.calleeScope = cmpScopes(ctx, callee)
else:
result.calleeScope = calleeScope
result.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil
result.diagnosticsEnabled = diagnosticsEnabled
result.magic = result.calleeSym.magic
result.bindings = initTypeMapping()
if binding != nil and callee.kind in routineKinds:
var typeParams = callee.ast[genericParamsPos]
for i in 1..min(typeParams.len, binding.len-1):
var formalTypeParam = typeParams[i-1].typ
var bound = binding[i].typ
if bound != nil:
if formalTypeParam.kind == tyTypeDesc:
if bound.kind != tyTypeDesc:
bound = makeTypeDesc(ctx, bound)
else:
bound = bound.skipTypes({tyTypeDesc})
put(result, formalTypeParam, bound)
proc newCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1): TCandidate =
result = initCandidate(ctx, callee, binding, calleeScope)
proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
result = initCandidate(ctx, callee)
proc copyCandidate(dest: var TCandidate, src: TCandidate) =
dest.c = src.c
dest.exactMatches = src.exactMatches
dest.subtypeMatches = src.subtypeMatches
dest.convMatches = src.convMatches
dest.intConvMatches = src.intConvMatches
dest.genericMatches = src.genericMatches
dest.state = src.state
dest.callee = src.callee
dest.calleeSym = src.calleeSym
dest.call = copyTree(src.call)
dest.baseTypeMatch = src.baseTypeMatch
dest.bindings = src.bindings
proc typeRel*(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation
proc checkGeneric(a, b: TCandidate): int =
let c = a.c
let aa = a.callee
let bb = b.callee
var winner = 0
for aai, bbi in underspecifiedPairs(aa, bb, 1):
var ma = newCandidate(c, bbi)
let tra = typeRel(ma, bbi, aai, {trDontBind})
var mb = newCandidate(c, aai)
let trb = typeRel(mb, aai, bbi, {trDontBind})
if tra == isGeneric and trb in {isNone, isInferred, isInferredConvertible}:
if winner == -1: return 0
winner = 1
if trb == isGeneric and tra in {isNone, isInferred, isInferredConvertible}:
if winner == 1: return 0
winner = -1
result = winner
proc sumGeneric(t: PType): int =
# count the "genericness" so that Foo[Foo[T]] has the value 3
# and Foo[T] has the value 2 so that we know Foo[Foo[T]] is more
# specific than Foo[T].
result = 0
var t = t
while true:
case t.kind
of tyAlias, tySink, tyNot: t = t.skipModifier
of tyArray, tyRef, tyPtr, tyDistinct, tyUncheckedArray,
tyOpenArray, tyVarargs, tySet, tyRange, tySequence,
tyLent, tyOwned, tyVar:
t = t.elementType
inc result
of tyBool, tyChar, tyEnum, tyObject, tyPointer, tyVoid,
tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64, tyCompositeTypeClass, tyBuiltInTypeClass:
inc result
break
of tyGenericBody:
t = t.typeBodyImpl
of tyGenericInst, tyStatic:
t = t.skipModifier
inc result
of tyOr:
var maxBranch = 0
for branch in t.kids:
let branchSum = sumGeneric(branch)
if branchSum > maxBranch: maxBranch = branchSum
inc result, maxBranch
break
of tyTypeDesc:
t = t.elementType
if t.kind == tyEmpty: break
inc result
of tyGenericParam:
if t.len > 0:
t = t.skipModifier
else:
inc result
break
of tyUntyped, tyTyped: break
of tyGenericInvocation, tyTuple, tyAnd:
result += ord(t.kind == tyAnd)
for a in t.kids:
if a != nil:
result += sumGeneric(a)
break
of tyProc:
if t.returnType != nil:
result += sumGeneric(t.returnType)
for _, a in t.paramTypes:
result += sumGeneric(a)
break
else:
break
proc complexDisambiguation(a, b: PType): int =
# 'a' matches better if *every* argument matches better or equal than 'b'.
var winner = 0
for ai, bi in underspecifiedPairs(a, b, 1):
let x = ai.sumGeneric
let y = bi.sumGeneric
if x != y:
if winner == 0:
if x > y: winner = 1
else: winner = -1
elif x > y:
if winner != 1:
# contradiction
return 0
else:
if winner != -1:
return 0
result = winner
when false:
var x, y: int
for i in 1..<a.len: x += ai.sumGeneric
for i in 1..<b.len: y += bi.sumGeneric
result = x - y
proc writeMatches*(c: TCandidate) =
echo "Candidate '", c.calleeSym.name.s, "' at ", c.c.config $ c.calleeSym.info
echo " exact matches: ", c.exactMatches
echo " generic matches: ", c.genericMatches
echo " subtype matches: ", c.subtypeMatches
echo " intconv matches: ", c.intConvMatches
echo " conv matches: ", c.convMatches
echo " inheritance: ", c.inheritancePenalty
proc cmpCandidates*(a, b: TCandidate, isFormal=true): int =
result = a.exactMatches - b.exactMatches
if result != 0: return
result = a.genericMatches - b.genericMatches
if result != 0: return
result = a.subtypeMatches - b.subtypeMatches
if result != 0: return
result = a.intConvMatches - b.intConvMatches
if result != 0: return
result = a.convMatches - b.convMatches
if result != 0: return
# the other way round because of other semantics:
result = b.inheritancePenalty - a.inheritancePenalty
if result != 0: return
if isFormal:
# check for generic subclass relation
result = checkGeneric(a, b)
if result != 0: return
# prefer more specialized generic over more general generic:
result = complexDisambiguation(a.callee, b.callee)
if result != 0: return
# only as a last resort, consider scoping:
result = a.calleeScope - b.calleeScope
proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
if arg.kind in nkSymChoices:
result = typeToString(arg[0].typ, prefer)
for i in 1..<arg.len:
result.add(" | ")
result.add typeToString(arg[i].typ, prefer)
elif arg.typ == nil:
result = "void"
else:
result = arg.typ.typeToString(prefer)
template describeArgImpl(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName) =
var arg = n[i]
if n[i].kind == nkExprEqExpr:
result.add renderTree(n[i][0])
result.add ": "
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
# XXX we really need to 'tryExpr' here!
arg = c.semOperand(c, n[i][1])
n[i].typ = arg.typ
n[i][1] = arg
else:
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo, nkElse,
nkOfBranch, nkElifBranch,
nkExceptBranch}:
arg = c.semOperand(c, n[i])
n[i] = arg
if arg.typ != nil and arg.typ.kind == tyError: return
result.add argTypeToString(arg, prefer)
proc describeArg*(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName): string =
result = ""
describeArgImpl(c, n, i, startIdx, prefer)
proc describeArgs*(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
result = ""
for i in startIdx..<n.len:
describeArgImpl(c, n, i, startIdx, prefer)
if i != n.len - 1: result.add ", "
proc concreteType(c: TCandidate, t: PType; f: PType = nil): PType =
case t.kind
of tyTypeDesc:
if c.isNoCall: result = t
else: result = nil
of tySequence, tySet:
if t.elementType.kind == tyEmpty: result = nil
else: result = t
of tyGenericParam, tyAnything, tyConcept:
result = t
while true:
result = idTableGet(c.bindings, t)
if result == nil:
break # it's ok, no match
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if result.kind != tyGenericParam: break
of tyGenericInvocation:
result = nil
of tyOwned:
# bug #11257: the comparison system.`==`[T: proc](x, y: T) works
# better without the 'owned' type:
if f != nil and f.hasElementType and f.elementType.skipTypes({tyBuiltInTypeClass, tyOr}).kind == tyProc:
result = t.skipModifier
else:
result = t
else:
result = t # Note: empty is valid here
proc handleRange(c: PContext, f, a: PType, min, max: TTypeKind): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
let k = ab.kind
let nf = c.config.normalizeKind(f.kind)
let na = c.config.normalizeKind(k)
if k == f.kind: result = isSubrange
elif k == tyInt and f.kind in {tyRange, tyInt..tyInt64,
tyUInt..tyUInt64} and
isIntLit(ab) and getInt(ab.n) >= firstOrd(nil, f) and
getInt(ab.n) <= lastOrd(nil, f):
# passing 'nil' to firstOrd/lastOrd here as type checking rules should
# not depend on the target integer size configurations!
# integer literal in the proper range; we want ``i16 + 4`` to stay an
# ``int16`` operation so we declare the ``4`` pseudo-equal to int16
result = isFromIntLit
elif a.kind == tyInt and nf == c.config.targetSizeSignedToKind:
result = isIntConv
elif a.kind == tyUInt and nf == c.config.targetSizeUnsignedToKind:
result = isIntConv
elif f.kind == tyInt and na in {tyInt8 .. pred(c.config.targetSizeSignedToKind)}:
result = isIntConv
elif f.kind == tyUInt and na in {tyUInt8 .. pred(c.config.targetSizeUnsignedToKind)}:
result = isIntConv
elif k >= min and k <= max:
result = isConvertible
elif a.kind == tyRange and
# Make sure the conversion happens between types w/ same signedness
(f.kind in {tyInt..tyInt64} and a[0].kind in {tyInt..tyInt64} or
f.kind in {tyUInt8..tyUInt32} and a[0].kind in {tyUInt8..tyUInt32}) and
a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f):
# passing 'nil' to firstOrd/lastOrd here as type checking rules should
# not depend on the target integer size configurations!
result = isConvertible
else: result = isNone
proc isConvertibleToRange(c: PContext, f, a: PType): bool =
if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
case f.kind
of tyInt8: result = isIntLit(a) or a.kind in {tyInt8}
of tyInt16: result = isIntLit(a) or a.kind in {tyInt8, tyInt16}
of tyInt32: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32}
# This is wrong, but seems like there's a lot of code that relies on it :(
of tyInt, tyUInt: result = true
# of tyInt: result = isIntLit(a) or a.kind in {tyInt8 .. c.config.targetSizeSignedToKind}
of tyInt64: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32, tyInt, tyInt64}
of tyUInt8: result = isIntLit(a) or a.kind in {tyUInt8}
of tyUInt16: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16}
of tyUInt32: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32}
# of tyUInt: result = isIntLit(a) or a.kind in {tyUInt8 .. c.config.targetSizeUnsignedToKind}
of tyUInt64: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt64}
else: result = false
elif f.kind in {tyFloat..tyFloat128}:
# `isIntLit` is correct and should be used above as well, see PR:
# https://github.com/nim-lang/Nim/pull/11197
result = isIntLit(a) or a.kind in {tyFloat..tyFloat128}
else:
result = false
proc handleFloatRange(f, a: PType): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
var k = ab.kind
if k == f.kind: result = isSubrange
elif isFloatLit(ab): result = isFromIntLit
elif isIntLit(ab): result = isConvertible
elif k >= tyFloat and k <= tyFloat128:
# conversion to "float32" is not as good:
if f.kind == tyFloat32: result = isConvertible
else: result = isIntConv
else: result = isNone
proc reduceToBase(f: PType): PType =
#[
Returns the lowest order (most general) type that that is compatible with the input.
E.g.
A[T] = ptr object ... A -> ptr object
A[N: static[int]] = array[N, int] ... A -> array
]#
case f.kind:
of tyGenericParam:
if f.len <= 0 or f.skipModifier == nil:
result = f
else:
result = reduceToBase(f.skipModifier)
of tyGenericInvocation:
result = reduceToBase(f.baseClass)
of tyCompositeTypeClass, tyAlias:
if not f.hasElementType or f.elementType == nil:
result = f
else:
result = reduceToBase(f.elementType)
of tyGenericInst:
result = reduceToBase(f.skipModifier)
of tyGenericBody:
result = reduceToBase(f.typeBodyImpl)
of tyUserTypeClass:
if f.isResolvedUserTypeClass:
result = f.base # ?? idk if this is right
else:
result = f.skipModifier
of tyStatic, tyOwned, tyVar, tyLent, tySink:
result = reduceToBase(f.base)
of tyInferred:
# This is not true "After a candidate type is selected"
result = reduceToBase(f.base)
of tyRange:
result = f.elementType
else:
result = f
proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) =
if fGenericOrigin != nil and last.kind == tyGenericInst and
last.kidsLen-1 == fGenericOrigin.kidsLen:
for i in FirstGenericParamAt..<fGenericOrigin.kidsLen:
let x = idTableGet(c.bindings, fGenericOrigin[i])
if x == nil:
put(c, fGenericOrigin[i], last[i])
proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int =
var t = a
assert t.kind == tyObject
var depth = 0
var last = a
while t != nil and not sameObjectTypes(f, t):
if t.kind != tyObject: # avoid entering generic params etc
return -1
t = t.baseClass
if t == nil: break
last = t
t = skipTypes(t, skipPtrs)
inc depth
if t != nil:
genericParamPut(c, last, fGenericOrigin)
result = depth
else:
result = -1
type
SkippedPtr = enum skippedNone, skippedRef, skippedPtr
proc skipToObject(t: PType; skipped: var SkippedPtr): PType =
var r = t
# we're allowed to skip one level of ptr/ref:
var ptrs = 0
while r != nil:
case r.kind
of tyGenericInvocation:
r = r.genericHead
of tyRef:
inc ptrs
skipped = skippedRef
r = r.elementType
of tyPtr:
inc ptrs
skipped = skippedPtr
r = r.elementType
of tyGenericInst, tyAlias, tySink, tyOwned:
r = r.elementType
of tyGenericBody:
r = r.typeBodyImpl
else:
break
if r.kind == tyObject and ptrs <= 1: result = r
else: result = nil
proc isGenericSubtype(c: var TCandidate; a, f: PType, d: var int, fGenericOrigin: PType): bool =
assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody}
var askip = skippedNone
var fskip = skippedNone
var t = a.skipToObject(askip)
let r = f.skipToObject(fskip)
if r == nil: return false
var depth = 0
var last = a
# XXX sameObjectType can return false here. Need to investigate
# why that is but sameObjectType does way too much work here anyway.
while t != nil and r.sym != t.sym and askip == fskip:
t = t.baseClass
if t == nil: break
last = t
t = t.skipToObject(askip)
inc depth
if t != nil and askip == fskip:
genericParamPut(c, last, fGenericOrigin)
d = depth
result = true
else:
result = false
proc minRel(a, b: TTypeRelation): TTypeRelation =
if a <= b: result = a
else: result = b
proc recordRel(c: var TCandidate, f, a: PType, flags: TTypeRelFlags): TTypeRelation =
result = isNone
if sameType(f, a):
result = isEqual
elif sameTupleLengths(a, f):
result = isEqual
let firstField = if f.kind == tyTuple: 0
else: 1
for _, ff, aa in tupleTypePairs(f, a):
let oldInheritancePenalty = c.inheritancePenalty
var m = typeRel(c, ff, aa, flags)
if m < isSubtype: return isNone
if m == isSubtype and c.inheritancePenalty > oldInheritancePenalty:
# we can't process individual element type conversions from a
# type conversion for the whole tuple
# subtype relations need type conversions when inheritance is used
return isNone
result = minRel(result, m)
if f.n != nil and a.n != nil:
for i in 0..<f.n.len:
# check field names:
if f.n[i].kind != nkSym: return isNone
elif a.n[i].kind != nkSym: return isNone
else:
var x = f.n[i].sym
var y = a.n[i].sym
if f.kind == tyObject and typeRel(c, x.typ, y.typ, flags) < isSubtype:
return isNone
if x.name.id != y.name.id: return isNone
proc allowsNil(f: PType): TTypeRelation {.inline.} =
result = if tfNotNil notin f.flags: isSubtype else: isNone
proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
result = (f.kind != a.kind and
(f.kind in {tyVar, tyLent, tySink} or a.kind in {tyVar, tyLent, tySink})) or
isOutParam(f) != isOutParam(a)
proc procParamTypeRel(c: var TCandidate; f, a: PType): TTypeRelation =
## For example we have:
## ```nim
## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
## proc innerProc[Q,W](q: Q): W = ...
## ```
## And we want to match: myMap(@[1,2,3], innerProc)
## This proc (procParamTypeRel) will do the following steps in
## three different calls:
## - matches f=T to a=Q. Since f is metatype, we resolve it
## to int (which is already known at this point). So in this case
## Q=int mapping will be saved to c.bindings.
## - matches f=S to a=W. Both of these metatypes are unknown, so we
## return with isBothMetaConvertible to ask for rerun.
## - matches f=S to a=W. At this point the return type of innerProc
## is known (we get it from c.bindings). We can use that value
## to match with f, and save back to c.bindings.
var
f = f
a = a
if a.isMetaType:
let aResolved = idTableGet(c.bindings, a)
if aResolved != nil:
a = aResolved
if a.isMetaType:
if f.isMetaType:
# We are matching a generic proc (as proc param)
# to another generic type appearing in the proc
# signature. There is a chance that the target
# type is already fully-determined, so we are
# going to try resolve it
if c.call != nil:
f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
else:
f = nil
if f == nil or f.isMetaType:
# no luck resolving the type, so the inference fails
return isBothMetaConvertible
# Note that this typeRel call will save a's resolved type into c.bindings
let reverseRel = typeRel(c, a, f)
if reverseRel >= isGeneric:
result = isInferred
#inc c.genericMatches
else:
result = isNone
else:
# Note that this typeRel call will save f's resolved type into c.bindings
# if f is metatype.
result = typeRel(c, f, a)
if result <= isSubrange or inconsistentVarTypes(f, a):
result = isNone
#if result == isEqual:
# inc c.exactMatches
proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
case a.kind
of tyProc:
if f.signatureLen != a.signatureLen: return
result = isEqual # start with maximum; also correct for no
# params at all
if f.flags * {tfIterator} != a.flags * {tfIterator}:
return isNone
template checkParam(f, a) =
result = minRel(result, procParamTypeRel(c, f, a))
if result == isNone: return
# Note: We have to do unification for the parameters before the
# return type!
for i in 1..<f.len:
checkParam(f[i], a[i])
if f[0] != nil:
if a[0] != nil:
checkParam(f[0], a[0])
else:
return isNone
elif a[0] != nil:
return isNone
result = getProcConvMismatch(c.c.config, f, a, result)[1]
when useEffectSystem:
if compatibleEffects(f, a) != efCompat: return isNone
when defined(drnim):
if not c.c.graph.compatibleProps(c.c.graph, f, a): return isNone
of tyNil:
result = f.allowsNil
else: result = isNone
proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
template checkRange[T](a0, a1, f0, f1: T): TTypeRelation =
if a0 == f0 and a1 == f1:
isEqual
elif a0 >= f0 and a1 <= f1:
isConvertible
elif a0 <= f1 and f0 <= a1:
# X..Y and C..D overlap iff (X <= D and C <= Y)
isConvertible
else:
isNone
if f.isOrdinalType:
checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f))
else:
checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f))
proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType =
var
c = m.c
typeClass = ff.skipTypes({tyUserTypeClassInst})
body = typeClass.n[3]
matchedConceptContext = TMatchedConcept()
prevMatchedConcept = c.matchedConcept
prevCandidateType = typeClass[0][0]
if prevMatchedConcept != nil:
matchedConceptContext.prev = prevMatchedConcept
matchedConceptContext.depth = prevMatchedConcept.depth + 1
if prevMatchedConcept.depth > 4:
localError(m.c.graph.config, body.info, $body & " too nested for type matching")
return nil
openScope(c)
matchedConceptContext.candidateType = a
typeClass[0][0] = a
c.matchedConcept = addr(matchedConceptContext)
defer:
c.matchedConcept = prevMatchedConcept
typeClass[0][0] = prevCandidateType
closeScope(c)
var typeParams: seq[(PSym, PType)] = @[]
if ff.kind == tyUserTypeClassInst:
for i in 1..<(ff.len - 1):
var
typeParamName = ff.base[i-1].sym.name
typ = ff[i]
param: PSym = nil
alreadyBound = idTableGet(m.bindings, typ)
if alreadyBound != nil: typ = alreadyBound
template paramSym(kind): untyped =
newSym(kind, typeParamName, c.idgen, typeClass.sym, typeClass.sym.info, {})
block addTypeParam:
for prev in typeParams:
if prev[1].id == typ.id:
param = paramSym prev[0].kind
param.typ = prev[0].typ
break addTypeParam
case typ.kind
of tyStatic:
param = paramSym skConst
param.typ = typ.exactReplica
#copyType(typ, c.idgen, typ.owner)
if typ.n == nil:
param.typ.flags.incl tfInferrableStatic
else:
param.ast = typ.n
of tyUnknown:
param = paramSym skVar
param.typ = typ.exactReplica
#copyType(typ, c.idgen, typ.owner)
else:
param = paramSym skType
param.typ = if typ.isMetaType:
newTypeS(tyInferred, c, typ)
else:
makeTypeDesc(c, typ)
typeParams.add((param, typ))
addDecl(c, param)
var
oldWriteHook = default typeof(m.c.config.writelnHook)
diagnostics: seq[string] = @[]
errorPrefix: string
flags: TExprFlags = {}
collectDiagnostics = m.diagnosticsEnabled or
sfExplain in typeClass.sym.flags
if collectDiagnostics:
oldWriteHook = m.c.config.writelnHook
# XXX: we can't write to m.diagnostics directly, because
# Nim doesn't support capturing var params in closures
diagnostics = @[]
flags = {efExplain}
m.c.config.writelnHook = proc (s: string) =
if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":"
let msg = s.replace("Error:", errorPrefix)
if oldWriteHook != nil: oldWriteHook msg
diagnostics.add msg
var checkedBody = c.semTryExpr(c, body.copyTree, flags)
if collectDiagnostics:
m.c.config.writelnHook = oldWriteHook
for msg in diagnostics:
m.diagnostics.add msg
m.diagnosticsEnabled = true
if checkedBody == nil: return nil
# The inferrable type params have been identified during the semTryExpr above.
# We need to put them in the current sigmatch's binding table in order for them
# to be resolvable while matching the rest of the parameters
for p in typeParams:
put(m, p[1], p[0].typ)
if ff.kind == tyUserTypeClassInst:
result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff)
else:
result = ff.exactReplica
#copyType(ff, c.idgen, ff.owner)
result.n = checkedBody
proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool =
# XXX This is bad as 'considerQuotedIdent' can produce an error!
if rules.kind == nkWith:
for r in rules:
if considerQuotedIdent(m.c, r) == callIdent: return true
return false
else:
for r in rules:
if considerQuotedIdent(m.c, r) == callIdent: return false
return true
proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType =
if t != nil and t.kind == tyDistinct and t.n != nil and
shouldSkipDistinct(m, t.n, callee.name):
result = t.base
else:
result = t
proc tryResolvingStaticExpr(c: var TCandidate, n: PNode,
allowUnresolved = false,
expectedType: PType = nil): PNode =
# Consider this example:
# type Value[N: static[int]] = object
# proc foo[N](a: Value[N], r: range[0..(N-1)])
# Here, N-1 will be initially nkStaticExpr that can be evaluated only after
# N is bound to a concrete value during the matching of the first param.
# This proc is used to evaluate such static expressions.
let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil,
allowMetaTypes = allowUnresolved)
if instantiated.kind in nkCallKinds:
return nil
result = c.c.semExpr(c.c, instantiated)
proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool =
# This is a simple integer arithimetic equation solver,
# capable of deriving the value of a static parameter in
# expressions such as (N + 5) / 2 = rhs
#
# Preconditions:
#
# * The input of this proc must be semantized
# - all templates should be expanded
# - aby constant folding possible should already be performed
#
# * There must be exactly one unresolved static parameter
#
# Result:
#
# The proc will return true if the static types was successfully
# inferred. The result will be bound to the original static type
# in the TCandidate.
#
if lhs.kind in nkCallKinds and lhs[0].kind == nkSym:
case lhs[0].sym.magic
of mAddI, mAddU, mInc, mSucc:
if lhs[1].kind == nkIntLit:
return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal)
of mDec, mSubI, mSubU, mPred:
if lhs[1].kind == nkIntLit:
return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal)
of mMulI, mMulU:
if lhs[1].kind == nkIntLit:
if rhs mod lhs[1].intVal == 0:
return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal)
elif lhs[2].kind == nkIntLit:
if rhs mod lhs[2].intVal == 0:
return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal)
of mDivI, mDivU:
if lhs[1].kind == nkIntLit:
if lhs[1].intVal mod rhs == 0:
return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs)
of mShlI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal)
of mShrI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal)
of mAshrI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal))
of mUnaryMinusI:
return inferStaticParam(c, lhs[1], -rhs)
of mUnaryPlusI:
return inferStaticParam(c, lhs[1], rhs)
else: discard
elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and lhs.typ.n == nil:
var inferred = newTypeS(tyStatic, c.c, lhs.typ.elementType)
inferred.n = newIntNode(nkIntLit, rhs)
put(c, lhs.typ, inferred)
if c.c.matchedConcept != nil:
# inside concepts, binding is currently done with
# direct mutation of the involved types:
lhs.typ.n = inferred.n
return true
return false
proc failureToInferStaticParam(conf: ConfigRef; n: PNode) =
let staticParam = n.findUnresolvedStatic
let name = if staticParam != nil: staticParam.sym.name.s
else: "unknown"
localError(conf, n.info, "cannot infer the value of the static param '" & name & "'")
proc inferStaticsInRange(c: var TCandidate,
inferred, concrete: PType): TTypeRelation =
let lowerBound = tryResolvingStaticExpr(c, inferred.n[0],
allowUnresolved = true)
let upperBound = tryResolvingStaticExpr(c, inferred.n[1],
allowUnresolved = true)
template doInferStatic(e: PNode, r: Int128) =
var exp = e
var rhs = r
if inferStaticParam(c, exp, toInt64(rhs)):
return isGeneric
else:
failureToInferStaticParam(c.c.config, exp)
result = isNone
if lowerBound.kind == nkIntLit:
if upperBound.kind == nkIntLit:
if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1:
return isGeneric
else:
return isNone
doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1)
elif upperBound.kind == nkIntLit:
doInferStatic(lowerBound, getInt(upperBound) + 1 - lengthOrd(c.c.config, concrete))
template subtypeCheck() =
if result <= isSubrange and f.last.skipTypes(abstractInst).kind in {
tyRef, tyPtr, tyVar, tyLent, tyOwned}:
result = isNone
proc isCovariantPtr(c: var TCandidate, f, a: PType): bool =
# this proc is always called for a pair of matching types
assert f.kind == a.kind
template baseTypesCheck(lhs, rhs: PType): bool =
lhs.kind notin {tyPtr, tyRef, tyVar, tyLent, tyOwned} and
typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype
case f.kind
of tyRef, tyPtr, tyOwned:
return baseTypesCheck(f.base, a.base)
of tyGenericInst:
let body = f.base
return body == a.base and
a.len == 3 and
tfWeakCovariant notin body[0].flags and
baseTypesCheck(f[1], a[1])
else:
return false
when false:
proc maxNumericType(prev, candidate: PType): PType =
let c = candidate.skipTypes({tyRange})
template greater(s) =
if c.kind in s: result = c
case prev.kind
of tyInt: greater({tyInt64})
of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64})
of tyInt16: greater({tyInt, tyInt32, tyInt64})
of tyInt32: greater({tyInt64})
of tyUInt: greater({tyUInt64})
of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64})
of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64})
of tyUInt32: greater({tyUInt64})
of tyFloat32: greater({tyFloat64, tyFloat128})
of tyFloat64: greater({tyFloat128})
else: discard
template skipOwned(a) =
if a.kind == tyOwned: a = a.skipTypes({tyOwned, tyGenericInst})
proc typeRel(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation =
# typeRel can be used to establish various relationships between types:
#
# 1) When used with concrete types, it will check for type equivalence
# or a subtype relationship.
#
# 2) When used with a concrete type against a type class (such as generic
# signature of a proc), it will check whether the concrete type is a member
# of the designated type class.
#
# 3) When used with two type classes, it will check whether the types
# matching the first type class (aOrig) are a strict subset of the types matching
# the other (f). This allows us to compare the signatures of generic procs in
# order to give preferrence to the most specific one:
#
# seq[seq[any]] is a strict subset of seq[any] and hence more specific.
result = isNone
assert(f != nil)
when declared(deallocatedRefId):
let corrupt = deallocatedRefId(cast[pointer](f))
if corrupt != 0:
c.c.config.quitOrRaise "it's corrupt " & $corrupt
if f.kind == tyUntyped:
if aOrig != nil: put(c, f, aOrig)
return isGeneric
assert(aOrig != nil)
var
useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and
not c.isNoCall and
f.kind != tyTypeDesc and
tfExplicit notin aOrig.flags and
tfConceptMatchedTypeSym notin aOrig.flags
aOrig = if useTypeLoweringRuleInTypeClass:
aOrig.skipTypes({tyTypeDesc})
else:
aOrig
if aOrig.kind == tyInferred:
let prev = aOrig.previouslyInferred
if prev != nil:
return typeRel(c, f, prev, flags)
else:
var candidate = f
case f.kind
of tyGenericParam:
var prev = idTableGet(c.bindings, f)
if prev != nil: candidate = prev
of tyFromExpr:
let computedType = tryResolvingStaticExpr(c, f.n).typ
case computedType.kind
of tyTypeDesc:
candidate = computedType.base
of tyStatic:
candidate = computedType
else:
# XXX What is this non-sense? Error reporting in signature matching?
discard "localError(f.n.info, errTypeExpected)"
else:
discard
result = typeRel(c, aOrig.base, candidate, flags)
if result != isNone:
c.inferredTypes.add aOrig
aOrig.add candidate
result = isEqual
return
template doBind: bool = trDontBind notin flags
# var, sink and static arguments match regular modifier-free types
var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent, tySink}), c.calleeSym)
# XXX: Theoretically, maybeSkipDistinct could be called before we even
# start the param matching process. This could be done in `prepareOperand`
# for example, but unfortunately `prepareOperand` is not called in certain
# situation when nkDotExpr are rotated to nkDotCalls
if aOrig.kind in {tyAlias, tySink}:
return typeRel(c, f, skipModifier(aOrig), flags)
if a.kind == tyGenericInst and
skipTypes(f, {tyStatic, tyVar, tyLent, tySink}).kind notin {
tyGenericBody, tyGenericInvocation,
tyGenericInst, tyGenericParam} + tyTypeClasses:
return typeRel(c, f, skipModifier(a), flags)
if a.isResolvedUserTypeClass:
return typeRel(c, f, a.skipModifier, flags)
template bindingRet(res) =
if doBind:
let bound = aOrig.skipTypes({tyRange}).skipIntLit(c.c.idgen)
put(c, f, bound)
return res
template considerPreviousT(body: untyped) =
var prev = idTableGet(c.bindings, f)
if prev == nil: body
else: return typeRel(c, prev, a, flags)
case a.kind
of tyOr:
# XXX: deal with the current dual meaning of tyGenericParam
c.typedescMatched = true
# seq[int|string] vs seq[number]
# both int and string must match against number
# but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
result = isGeneric
for branch in a.kids:
let x = typeRel(c, f, branch, flags + {trDontBind})
if x == isNone: return isNone
if x < result: result = x
return result
of tyAnd:
# XXX: deal with the current dual meaning of tyGenericParam
c.typedescMatched = true
# seq[Sortable and Iterable] vs seq[Sortable]
# only one match is enough
for branch in a.kids:
let x = typeRel(c, f, branch, flags + {trDontBind})
if x != isNone:
return if x >= isGeneric: isGeneric else: x
return isNone
of tyIterable:
if f.kind != tyIterable: return isNone
of tyNot:
case f.kind
of tyNot:
# seq[!int] vs seq[!number]
# seq[float] matches the first, but not the second
# we must turn the problem around:
# is number a subset of int?
return typeRel(c, a.elementType, f.elementType, flags)
else:
# negative type classes are essentially infinite,
# so only the `any` type class is their superset
return if f.kind == tyAnything: isGeneric
else: isNone
of tyAnything:
if f.kind == tyAnything: return isGeneric
else: return isNone
of tyUserTypeClass, tyUserTypeClassInst:
if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4:
# consider this: 'var g: Node' *within* a concept where 'Node'
# is a concept too (tgraph)
inc c.c.matchedConcept.depth
let x = typeRel(c, a, f, flags + {trDontBind})
if x >= isGeneric:
return isGeneric
of tyFromExpr:
if c.c.inGenericContext > 0:
if not c.isNoCall:
# generic type bodies can sometimes compile call expressions
# prevent expressions with unresolved types from
# being passed as parameters
return isNone
else:
# Foo[templateCall(T)] shouldn't fail early if Foo has a constraint
# and we can't evaluate `templateCall(T)` yet
return isGeneric
else: discard
case f.kind
of tyEnum:
if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
of tyBool, tyChar:
if a.kind == f.kind: result = isEqual
elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
of tyRange:
if a.kind == f.kind:
if f.base.kind == tyNone: return isGeneric
result = typeRel(c, base(f), base(a), flags)
# bugfix: accept integer conversions here
#if result < isGeneric: result = isNone
if result notin {isNone, isGeneric}:
# resolve any late-bound static expressions
# that may appear in the range:
let expectedType = base(f)
for i in 0..1:
if f.n[i].kind == nkStaticExpr:
let r = tryResolvingStaticExpr(c, f.n[i], expectedType = expectedType)
if r != nil:
f.n[i] = r
result = typeRangeRel(f, a)
else:
let f = skipTypes(f, {tyRange})
if f.kind == a.kind and (f.kind != tyEnum or sameEnumTypes(f, a)):
result = isIntConv
elif isConvertibleToRange(c.c, f, a):
result = isConvertible # a convertible to f
of tyInt: result = handleRange(c.c, f, a, tyInt8, c.c.config.targetSizeSignedToKind)
of tyInt8: result = handleRange(c.c, f, a, tyInt8, tyInt8)
of tyInt16: result = handleRange(c.c, f, a, tyInt8, tyInt16)
of tyInt32: result = handleRange(c.c, f, a, tyInt8, tyInt32)
of tyInt64: result = handleRange(c.c, f, a, tyInt, tyInt64)
of tyUInt: result = handleRange(c.c, f, a, tyUInt8, c.c.config.targetSizeUnsignedToKind)
of tyUInt8: result = handleRange(c.c, f, a, tyUInt8, tyUInt8)
of tyUInt16: result = handleRange(c.c, f, a, tyUInt8, tyUInt16)
of tyUInt32: result = handleRange(c.c, f, a, tyUInt8, tyUInt32)
of tyUInt64: result = handleRange(c.c, f, a, tyUInt, tyUInt64)
of tyFloat: result = handleFloatRange(f, a)
of tyFloat32: result = handleFloatRange(f, a)
of tyFloat64: result = handleFloatRange(f, a)
of tyFloat128: result = handleFloatRange(f, a)
of tyVar:
let flags = if isOutParam(f): flags + {trIsOutParam} else: flags
if aOrig.kind == f.kind and (isOutParam(aOrig) == isOutParam(f)):
result = typeRel(c, f.base, aOrig.base, flags)
else:
result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
subtypeCheck()
of tyLent:
if aOrig.kind == f.kind:
result = typeRel(c, f.base, aOrig.base, flags)
else:
result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
subtypeCheck()
of tyArray:
a = reduceToBase(a)
if a.kind == tyArray:
var fRange = f.indexType
var aRange = a.indexType
if fRange.kind in {tyGenericParam, tyAnything}:
var prev = idTableGet(c.bindings, fRange)
if prev == nil:
if typeRel(c, fRange, aRange) == isNone:
return isNone
put(c, fRange, a.indexType)
fRange = a
else:
fRange = prev
let ff = f[1].skipTypes({tyTypeDesc})
# This typeDesc rule is wrong, see bug #7331
let aa = a[1] #.skipTypes({tyTypeDesc})
if f.indexType.kind != tyGenericParam and aa.kind == tyEmpty:
result = isGeneric
else:
result = typeRel(c, ff, aa, flags)
if result < isGeneric:
if nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isSubtype
else:
return isNone
if fRange.rangeHasUnresolvedStatic:
if aRange.kind in {tyGenericParam} and aRange.reduceToBase() == aRange:
return
return inferStaticsInRange(c, fRange, a)
elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic:
return inferStaticsInRange(c, aRange, f)
elif result == isGeneric and concreteType(c, aa, ff) == nil:
return isNone
else:
if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange):
result = isNone
of tyUncheckedArray:
if a.kind == tyUncheckedArray:
result = typeRel(c, elementType(f), elementType(a), flags)
if result < isGeneric: result = isNone
else: discard
of tyOpenArray, tyVarargs:
# varargs[untyped] is special too but handled earlier. So we only need to
# handle varargs[typed]:
if f.kind == tyVarargs:
if tfVarargs in a.flags:
return typeRel(c, f.base, a.elementType, flags)
if f[0].kind == tyTyped: return
template matchArrayOrSeq(aBase: PType) =
let ff = f.base
let aa = aBase
let baseRel = typeRel(c, ff, aa, flags)
if baseRel >= isGeneric:
result = isConvertible
elif nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isConvertible
case a.kind
of tyOpenArray, tyVarargs:
result = typeRel(c, base(f), base(a), flags)
if result < isGeneric: result = isNone
of tyArray:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
return isSubtype
matchArrayOrSeq(a.elementType)
of tySequence:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
return isConvertible
matchArrayOrSeq(a.elementType)
of tyString:
if f.kind == tyOpenArray:
if f[0].kind == tyChar:
result = isConvertible
elif f[0].kind == tyGenericParam and a.len > 0 and
typeRel(c, base(f), base(a), flags) >= isGeneric:
result = isConvertible
else: discard
of tySequence:
case a.kind
of tySequence:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
result = isSubtype
else:
let ff = f[0]
let aa = a.elementType
result = typeRel(c, ff, aa, flags)
if result < isGeneric:
if nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isSubtype
else:
result = isNone
of tyNil: result = isNone
else: discard
of tyOrdinal:
if isOrdinalType(a):
var x = if a.kind == tyOrdinal: a.elementType else: a
if f[0].kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f[0], x, flags)
if result < isGeneric: result = isNone
elif a.kind == tyGenericParam:
result = isGeneric
of tyForward:
#internalError("forward type in typeRel()")
result = isNone
of tyNil:
skipOwned(a)
if a.kind == f.kind: result = isEqual
of tyTuple:
if a.kind == tyTuple: result = recordRel(c, f, a, flags)
of tyObject:
let effectiveArgType = if useTypeLoweringRuleInTypeClass:
a
else:
reduceToBase(a)
if effectiveArgType.kind == tyObject:
if sameObjectTypes(f, effectiveArgType):
result = isEqual
# elif tfHasMeta in f.flags: result = recordRel(c, f, a)
elif trIsOutParam notin flags:
var depth = isObjectSubtype(c, effectiveArgType, f, nil)
if depth > 0:
inc(c.inheritancePenalty, depth)
result = isSubtype
of tyDistinct:
a = a.skipTypes({tyOwned, tyGenericInst, tyRange})
if a.kind == tyDistinct:
if sameDistinctTypes(f, a): result = isEqual
#elif f.base.kind == tyAnything: result = isGeneric # issue 4435
elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
of tySet:
if a.kind == tySet:
if f[0].kind != tyGenericParam and a[0].kind == tyEmpty:
result = isSubtype
else:
result = typeRel(c, f[0], a[0], flags)
if result < isGeneric:
if result <= isConvertible:
result = isNone
elif tfIsConstructor notin a.flags:
# set constructors are a bit special...
result = isNone
of tyPtr, tyRef:
a = reduceToBase(a)
if a.kind == f.kind:
# ptr[R, T] can be passed to ptr[T], but not the other way round:
if a.len < f.len: return isNone
for i in 0..<f.len-1:
if typeRel(c, f[i], a[i], flags) == isNone: return isNone
result = typeRel(c, f.elementType, a.elementType, flags + {trNoCovariance})
subtypeCheck()
if result <= isIntConv: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
elif a.kind == tyNil: result = f.allowsNil
else: discard
of tyProc:
skipOwned(a)
result = procTypeRel(c, f, a)
if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyOwned:
case a.kind
of tyOwned:
result = typeRel(c, skipModifier(f), skipModifier(a), flags)
of tyNil: result = f.allowsNil
else: discard
of tyPointer:
skipOwned(a)
case a.kind
of tyPointer:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyProc:
if isDefined(c.c.config, "nimPreviewProcConversion"):
result = isNone
else:
if a.callConv != ccClosure: result = isConvertible
of tyPtr:
# 'pointer' is NOT compatible to regionized pointers
# so 'dealloc(regionPtr)' fails:
if a.len == 1: result = isConvertible
of tyCstring: result = isConvertible
else: discard
of tyString:
case a.kind
of tyString: result = isEqual
of tyNil: result = isNone
else: discard
of tyCstring:
# conversion from string to cstring is automatic:
case a.kind
of tyCstring:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyString: result = isConvertible
of tyPtr:
if isDefined(c.c.config, "nimPreviewCstringConversion"):
result = isNone
else:
if a.len == 1:
let pointsTo = a[0].skipTypes(abstractInst)
if pointsTo.kind == tyChar: result = isConvertible
elif pointsTo.kind == tyUncheckedArray and pointsTo[0].kind == tyChar:
result = isConvertible
elif pointsTo.kind == tyArray and firstOrd(nil, pointsTo[0]) == 0 and
skipTypes(pointsTo[0], {tyRange}).kind in {tyInt..tyInt64} and
pointsTo[1].kind == tyChar:
result = isConvertible
else: discard
of tyEmpty, tyVoid:
if a.kind == f.kind: result = isEqual
of tyAlias, tySink:
result = typeRel(c, skipModifier(f), a, flags)
of tyIterable:
if a.kind == tyIterable:
if f.len == 1:
result = typeRel(c, skipModifier(f), skipModifier(a), flags)
else:
# f.len = 3, for some reason
result = isGeneric
else:
result = isNone
of tyGenericInst:
var prev = idTableGet(c.bindings, f)
let origF = f
var f = if prev == nil: f else: prev
let deptha = a.genericAliasDepth()
let depthf = f.genericAliasDepth()
let skipBoth = deptha == depthf and (a.len > 0 and f.len > 0 and a.base != f.base)
let roota = if skipBoth or deptha > depthf: a.skipGenericAlias else: a
let rootf = if skipBoth or depthf > deptha: f.skipGenericAlias else: f
if a.kind == tyGenericInst:
if roota.base == rootf.base:
let nextFlags = flags + {trNoCovariance}
var hasCovariance = false
# YYYY
result = isEqual
for i in 1..<rootf.len-1:
let ff = rootf[i]
let aa = roota[i]
let res = typeRel(c, ff, aa, nextFlags)
if res != isNone and res != isEqual: result = isGeneric
if res notin {isEqual, isGeneric}:
if trNoCovariance notin flags and ff.kind == aa.kind:
let paramFlags = rootf.base[i-1].flags
hasCovariance =
if tfCovariant in paramFlags:
if tfWeakCovariant in paramFlags:
isCovariantPtr(c, ff, aa)
else:
ff.kind notin {tyRef, tyPtr} and res == isSubtype
else:
tfContravariant in paramFlags and
typeRel(c, aa, ff, flags) == isSubtype
if hasCovariance:
continue
return isNone
if prev == nil: put(c, f, a)
else:
let fKind = rootf.last.kind
if fKind in {tyAnd, tyOr}:
result = typeRel(c, last(f), a, flags)
if result != isNone: put(c, f, a)
return
var aAsObject = roota.last
if fKind in {tyRef, tyPtr}:
if aAsObject.kind == tyObject:
# bug #7600, tyObject cannot be passed
# as argument to tyRef/tyPtr
return isNone
elif aAsObject.kind == fKind:
aAsObject = aAsObject.base
if aAsObject.kind == tyObject and trIsOutParam notin flags:
let baseType = aAsObject.base
if baseType != nil:
c.inheritancePenalty += 1
let ret = typeRel(c, f, baseType, flags)
return if ret in {isEqual,isGeneric}: isSubtype else: ret
result = isNone
else:
assert last(origF) != nil
result = typeRel(c, last(origF), a, flags)
if result != isNone and a.kind != tyNil:
put(c, f, a)
of tyGenericBody:
considerPreviousT:
if a == f or a.kind == tyGenericInst and a.skipGenericAlias[0] == f:
bindingRet isGeneric
let ff = last(f)
if ff != nil:
result = typeRel(c, ff, a, flags)
of tyGenericInvocation:
var x = a.skipGenericAlias
if x.kind == tyGenericParam and x.len > 0:
x = x.last
let concpt = f[0].skipTypes({tyGenericBody})
var preventHack = concpt.kind == tyConcept
if x.kind == tyOwned and f[0].kind != tyOwned:
preventHack = true
x = x.last
# XXX: This is very hacky. It should be moved back into liftTypeParam
if x.kind in {tyGenericInst, tyArray} and
c.calleeSym != nil and
c.calleeSym.kind in {skProc, skFunc} and c.call != nil and not preventHack:
let inst = prepareMetatypeForSigmatch(c.c, c.bindings, c.call.info, f)
return typeRel(c, inst, a, flags)
if x.kind == tyGenericInvocation:
if f[0] == x[0]:
for i in 1..<f.len:
# Handle when checking against a generic that isn't fully instantiated
if i >= x.len: return
let tr = typeRel(c, f[i], x[i], flags)
if tr <= isSubtype: return
result = isGeneric
elif x.kind == tyGenericInst and f[0] == x[0] and
x.len - 1 == f.len:
for i in 1..<f.len:
if x[i].kind == tyGenericParam:
internalError(c.c.graph.config, "wrong instantiated type!")
elif typeRel(c, f[i], x[i], flags) <= isSubtype:
# Workaround for regression #4589
if f[i].kind != tyTypeDesc: return
result = isGeneric
elif x.kind == tyGenericInst and concpt.kind == tyConcept:
result = if concepts.conceptMatch(c.c, concpt, x, c.bindings, f): isGeneric
else: isNone
else:
let genericBody = f[0]
var askip = skippedNone
var fskip = skippedNone
let aobj = x.skipToObject(askip)
let fobj = genericBody.last.skipToObject(fskip)
result = typeRel(c, genericBody, x, flags)
if result != isNone:
# see tests/generics/tgeneric3.nim for an example that triggers this
# piece of code:
#
# proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
# proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
# Oldvalue: var D): ref TNode[T,D]
# var root = internalPut[int, int](nil, 312, 312, oldvalue)
# var it1 = internalFind(root, 312) # cannot instantiate: 'D'
#
# we steal the generic parameters from the tyGenericBody:
for i in 1..<f.len:
let x = idTableGet(c.bindings, genericBody[i-1])
if x == nil:
discard "maybe fine (for e.g. a==tyNil)"
elif x.kind in {tyGenericInvocation, tyGenericParam}:
internalError(c.c.graph.config, "wrong instantiated type!")
else:
let key = f[i]
let old = idTableGet(c.bindings, key)
if old == nil:
put(c, key, x)
elif typeRel(c, old, x, flags + {trDontBind}) == isNone:
return isNone
var depth = -1
if fobj != nil and aobj != nil and askip == fskip:
depth = isObjectSubtype(c, aobj, fobj, f)
if result == isNone:
# Here object inheriting from generic/specialized generic object
# crossing path with metatypes/aliases, so we need to separate them
# by checking sym.id
let genericSubtype = isGenericSubtype(c, x, f, depth, f)
if not (genericSubtype and aobj.sym.id != fobj.sym.id) and aOrig.kind != tyGenericBody:
depth = -1
if depth >= 0:
c.inheritancePenalty += depth
# bug #4863: We still need to bind generic alias crap, so
# we cannot return immediately:
result = if depth == 0: isGeneric else: isSubtype
of tyAnd:
considerPreviousT:
result = isEqual
for branch in f.kids:
let x = typeRel(c, branch, aOrig, flags)
if x < isSubtype: return isNone
# 'and' implies minimum matching result:
if x < result: result = x
if result > isGeneric: result = isGeneric
bindingRet result
of tyOr:
considerPreviousT:
result = isNone
let oldInheritancePenalty = c.inheritancePenalty
var maxInheritance = 0
for branch in f.kids:
c.inheritancePenalty = 0
let x = typeRel(c, branch, aOrig, flags)
maxInheritance = max(maxInheritance, c.inheritancePenalty)
# 'or' implies maximum matching result:
if x > result: result = x
if result >= isIntConv:
if result > isGeneric: result = isGeneric
bindingRet result
else:
result = isNone
c.inheritancePenalty = oldInheritancePenalty + maxInheritance
of tyNot:
considerPreviousT:
if typeRel(c, f.elementType, aOrig, flags) != isNone:
return isNone
bindingRet isGeneric
of tyAnything:
considerPreviousT:
var concrete = concreteType(c, a)
if concrete != nil and doBind:
put(c, f, concrete)
return isGeneric
of tyBuiltInTypeClass:
considerPreviousT:
let target = f.genericHead
let targetKind = target.kind
var effectiveArgType = reduceToBase(a)
effectiveArgType = effectiveArgType.skipTypes({tyBuiltInTypeClass})
if targetKind == effectiveArgType.kind:
if effectiveArgType.isEmptyContainer:
return isNone
if targetKind == tyProc:
if target.flags * {tfIterator} != effectiveArgType.flags * {tfIterator}:
return isNone
if tfExplicitCallConv in target.flags and
target.callConv != effectiveArgType.callConv:
return isNone
if doBind: put(c, f, a)
return isGeneric
else:
return isNone
of tyUserTypeClassInst, tyUserTypeClass:
if f.isResolvedUserTypeClass:
result = typeRel(c, f.last, a, flags)
else:
considerPreviousT:
if aOrig == f: return isEqual
var matched = matchUserTypeClass(c, f, aOrig)
if matched != nil:
bindConcreteTypeToUserTypeClass(matched, a)
if doBind: put(c, f, matched)
result = isGeneric
elif a.len > 0 and a.last == f:
# Needed for checking `Y` == `Addable` in the following
#[
type
Addable = concept a, type A
a + a is A
MyType[T: Addable; Y: static T] = object
]#
result = isGeneric
else:
result = isNone
of tyConcept:
result = if concepts.conceptMatch(c.c, f, a, c.bindings, nil): isGeneric
else: isNone
of tyCompositeTypeClass:
considerPreviousT:
let roota = a.skipGenericAlias
let rootf = f.last.skipGenericAlias
if a.kind == tyGenericInst and roota.base == rootf.base:
for i in 1..<rootf.len-1:
let ff = rootf[i]
let aa = roota[i]
result = typeRel(c, ff, aa, flags)
if result == isNone: return
if ff.kind == tyRange and result != isEqual: return isNone
else:
result = typeRel(c, rootf.last, a, flags)
if result != isNone:
put(c, f, a)
result = isGeneric
of tyGenericParam:
let doBindGP = doBind or trBindGenericParam in flags
var x = idTableGet(c.bindings, f)
if x == nil:
if c.callee.kind == tyGenericBody and not c.typedescMatched:
# XXX: The fact that generic types currently use tyGenericParam for
# their parameters is really a misnomer. tyGenericParam means "match
# any value" and what we need is "match any type", which can be encoded
# by a tyTypeDesc params. Unfortunately, this requires more substantial
# changes in semtypinst and elsewhere.
if tfWildcard in a.flags:
result = isGeneric
elif a.kind == tyTypeDesc:
if f.len == 0:
result = isGeneric
else:
internalAssert c.c.graph.config, a.len > 0
c.typedescMatched = true
var aa = a
while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0:
aa = last(aa)
if aa.kind in {tyGenericParam} + tyTypeClasses:
# If the constraint is a genericParam or typeClass this isGeneric
return isGeneric
result = typeRel(c, f.base, aa, flags)
if result > isGeneric: result = isGeneric
elif c.isNoCall:
if doBindGP:
let concrete = concreteType(c, a, f)
if concrete == nil: return isNone
put(c, f, concrete)
result = isGeneric
else:
result = isNone
else:
# check if 'T' has a constraint as in 'proc p[T: Constraint](x: T)'
if f.len > 0 and f[0].kind != tyNone:
let oldInheritancePenalty = c.inheritancePenalty
result = typeRel(c, f[0], a, flags + {trDontBind, trBindGenericParam})
if doBindGP and result notin {isNone, isGeneric}:
let concrete = concreteType(c, a, f)
if concrete == nil: return isNone
put(c, f, concrete)
# bug #6526
if result in {isEqual, isSubtype}:
# 'T: Class' is a *better* match than just 'T'
# but 'T: Subclass' is even better:
c.inheritancePenalty = oldInheritancePenalty - c.inheritancePenalty -
100 * ord(result == isEqual)
result = isGeneric
elif a.kind == tyTypeDesc:
# somewhat special typing rule, the following is illegal:
# proc p[T](x: T)
# p(int)
result = isNone
else:
result = isGeneric
if result == isGeneric:
var concrete = a
if tfWildcard in a.flags:
a.sym.transitionGenericParamToType()
a.flags.excl tfWildcard
elif doBind:
# careful: `trDontDont` (set by `checkGeneric`) is not always respected in this call graph.
# typRel having two different modes (binding and non-binding) can make things harder to
# reason about and maintain. Refactoring typeRel to not be responsible for setting, or
# at least validating, bindings can have multiple benefits. This is debatable. I'm not 100% sure.
# A design that allows a proper complexity analysis of types like `tyOr` would be ideal.
concrete = concreteType(c, a, f)
if concrete == nil:
return isNone
if doBindGP:
put(c, f, concrete)
elif result > isGeneric:
result = isGeneric
elif a.kind == tyEmpty:
result = isGeneric
elif x.kind == tyGenericParam:
result = isGeneric
else:
result = typeRel(c, x, a, flags) # check if it fits
if result > isGeneric: result = isGeneric
of tyStatic:
let prev = idTableGet(c.bindings, f)
if prev == nil:
if aOrig.kind == tyStatic:
if f.base.kind notin {tyNone, tyGenericParam}:
result = typeRel(c, f.base, a, flags)
if result != isNone and f.n != nil:
if not exprStructuralEquivalent(f.n, aOrig.n):
result = isNone
elif f.base.kind == tyGenericParam:
# Handling things like `type A[T; Y: static T] = object`
if f.base.len > 0: # There is a constraint, handle it
result = typeRel(c, f.base.last, a, flags)
else:
# No constraint
if tfGenericTypeParam in f.flags:
result = isGeneric
else:
# for things like `proc fun[T](a: static[T])`
result = typeRel(c, f.base, a, flags)
else:
result = isGeneric
if result != isNone: put(c, f, aOrig)
elif aOrig.n != nil and aOrig.n.typ != nil:
result = if f.base.kind != tyNone:
typeRel(c, f.last, aOrig.n.typ, flags)
else: isGeneric
if result != isNone:
var boundType = newTypeS(tyStatic, c.c, aOrig.n.typ)
boundType.n = aOrig.n
put(c, f, boundType)
else:
result = isNone
elif prev.kind == tyStatic:
if aOrig.kind == tyStatic:
result = typeRel(c, prev.last, a, flags)
if result != isNone and prev.n != nil:
if not exprStructuralEquivalent(prev.n, aOrig.n):
result = isNone
else: result = isNone
else:
# XXX endless recursion?
#result = typeRel(c, prev, aOrig, flags)
result = isNone
of tyInferred:
let prev = f.previouslyInferred
if prev != nil:
result = typeRel(c, prev, a, flags)
else:
result = typeRel(c, f.base, a, flags)
if result != isNone:
c.inferredTypes.add f
f.add a
of tyTypeDesc:
var prev = idTableGet(c.bindings, f)
if prev == nil:
# proc foo(T: typedesc, x: T)
# when `f` is an unresolved typedesc, `a` could be any
# type, so we should not perform this check earlier
if c.c.inGenericContext > 0 and
a.skipTypes({tyTypeDesc}).kind == tyGenericParam:
# generic type bodies can sometimes compile call expressions
# prevent unresolved generic parameters from being passed to procs as
# typedesc parameters
result = isNone
elif a.kind != tyTypeDesc:
if a.kind == tyGenericParam and tfWildcard in a.flags:
# TODO: prevent `a` from matching as a wildcard again
result = isGeneric
else:
result = isNone
elif f.base.kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f.base, a.base, flags)
if result != isNone:
put(c, f, a)
else:
if tfUnresolved in f.flags:
result = typeRel(c, prev.base, a, flags)
elif a.kind == tyTypeDesc:
result = typeRel(c, prev.base, a.base, flags)
else:
result = isNone
of tyTyped:
if aOrig != nil:
put(c, f, aOrig)
result = isGeneric
of tyProxy:
result = isEqual
of tyFromExpr:
# fix the expression, so it contains the already instantiated types
if f.n == nil or f.n.kind == nkEmpty: return isGeneric
let reevaluated = tryResolvingStaticExpr(c, f.n)
if reevaluated == nil:
result = isNone
return
case reevaluated.typ.kind
of tyTypeDesc:
result = typeRel(c, a, reevaluated.typ.base, flags)
of tyStatic:
result = typeRel(c, a, reevaluated.typ.base, flags)
if result != isNone and reevaluated.typ.n != nil:
if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
result = isNone
else:
# bug #14136: other types are just like 'tyStatic' here:
result = typeRel(c, a, reevaluated.typ, flags)
if result != isNone and reevaluated.typ.n != nil:
if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n):
result = isNone
of tyNone:
if a.kind == tyNone: result = isEqual
else:
internalError c.c.graph.config, " unknown type kind " & $f.kind
when false:
var nowDebug = false
var dbgCount = 0
proc typeRel(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation =
if nowDebug:
echo f, " <- ", aOrig
inc dbgCount
if dbgCount == 2:
writeStackTrace()
result = typeRelImpl(c, f, aOrig, flags)
if nowDebug:
echo f, " <- ", aOrig, " res ", result
proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
var m = newCandidate(c, f)
result = typeRel(m, f, a)
proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
f: PType): PType =
result = idTableGet(m.bindings, f)
if result == nil:
result = generateTypeInstance(c, m.bindings, arg, f)
if result == nil:
internalError(c.graph.config, arg.info, "getInstantiatedType")
result = errorType(c)
proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
c: PContext): PNode =
result = newNodeI(kind, arg.info)
if containsGenericType(f):
if not m.hasFauxMatch:
result.typ = getInstantiatedType(c, arg, m, f).skipTypes({tySink})
else:
result.typ = errorType(c)
else:
result.typ = f.skipTypes({tySink})
# keep varness
if arg.typ != nil and arg.typ.kind == tyVar:
result.typ = toVar(result.typ, tyVar, c.idgen)
else:
result.typ = result.typ.skipTypes({tyVar})
if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv")
result.add c.graph.emptyNode
if arg.typ != nil and arg.typ.kind == tyLent:
let a = newNodeIT(nkHiddenDeref, arg.info, arg.typ.elementType)
a.add arg
result.add a
else:
result.add arg
proc isLValue(c: PContext; n: PNode, isOutParam = false): bool {.inline.} =
let aa = isAssignable(nil, n)
case aa
of arLValue, arLocalLValue, arStrange:
result = true
of arDiscriminant:
result = c.inUncheckedAssignSection > 0
of arAddressableConst:
let sym = getRoot(n)
result = strictDefs in c.features and sym != nil and sym.kind == skLet and isOutParam
else:
result = false
proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
result = nil
for i in 0..<c.converters.len:
var src = c.converters[i].typ.firstParamType
var dest = c.converters[i].typ.returnType
# for generic type converters we need to check 'src <- a' before
# 'f <- dest' in order to not break the unification:
# see tests/tgenericconverter:
let srca = typeRel(m, src, a)
if srca notin {isEqual, isGeneric, isSubtype}: continue
# What's done below matches the logic in ``matchesAux``
let constraint = c.converters[i].typ.n[1].sym.constraint
if not constraint.isNil and not matchNodeKinds(constraint, arg):
continue
if src.kind in {tyVar, tyLent} and not isLValue(c, arg):
continue
let destIsGeneric = containsGenericType(dest)
if destIsGeneric:
dest = generateTypeInstance(c, m.bindings, arg, dest)
let fdest = typeRel(m, f, dest)
if fdest in {isEqual, isGeneric} and not (dest.kind == tyLent and f.kind in {tyVar}):
markUsed(c, arg.info, c.converters[i])
var s = newSymNode(c.converters[i])
s.typ = c.converters[i].typ
s.info = arg.info
result = newNodeIT(nkHiddenCallConv, arg.info, dest)
result.add s
# We build the call expression by ourselves in order to avoid passing this
# expression trough the semantic check phase once again so let's make sure
# it is correct
var param: PNode = nil
if srca == isSubtype:
param = implicitConv(nkHiddenSubConv, src, copyTree(arg), m, c)
elif src.kind in {tyVar}:
# Analyse the converter return type.
param = newNodeIT(nkHiddenAddr, arg.info, s.typ.firstParamType)
param.add copyTree(arg)
else:
param = copyTree(arg)
result.add param
if dest.kind in {tyVar, tyLent}:
dest.flags.incl tfVarIsPtr
result = newDeref(result)
inc(m.convMatches)
if not m.genericConverter:
m.genericConverter = srca == isGeneric or destIsGeneric
return result
proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
# arg.typ can be nil in 'suggest':
if isNil(arg.typ): return nil
# sem'checking for 'echo' needs to be re-entrant:
# XXX we will revisit this issue after 0.10.2 is released
if f == arg.typ and arg.kind == nkHiddenStdConv: return arg
var call = newNodeI(nkCall, arg.info)
call.add(f.n.copyTree)
call.add(arg.copyTree)
# XXX: This would be much nicer if we don't use `semTryExpr` and
# instead we directly search for overloads with `resolveOverloads`:
result = c.semTryExpr(c, call, {efNoSem2Check})
if result != nil:
if result.typ == nil: return nil
# bug #13378, ensure we produce a real generic instantiation:
result = c.semExpr(c, call, {efNoSem2Check})
# resulting type must be consistent with the other arguments:
var r = typeRel(m, f[0], result.typ)
if r < isGeneric: return nil
if result.kind == nkCall: result.transitionSonsKind(nkHiddenCallConv)
inc(m.convMatches)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
case r
of isConvertible, isIntConv: inc(m.convMatches, convMatch)
of isSubtype, isSubrange: inc(m.subtypeMatches)
of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
of isFromIntLit: inc(m.intConvMatches, 256)
of isInferredConvertible:
inc(m.convMatches)
of isEqual: inc(m.exactMatches)
of isNone: discard
template matchesVoidProc(t: PType): bool =
(t.kind == tyProc and t.len == 1 and t.returnType == nil) or
(t.kind == tyBuiltInTypeClass and t.elementType.kind == tyProc)
proc paramTypesMatchAux(m: var TCandidate, f, a: PType,
argSemantized, argOrig: PNode): PNode =
result = nil
var
fMaybeStatic = f.skipTypes({tyDistinct})
arg = argSemantized
a = a
c = m.c
if tfHasStatic in fMaybeStatic.flags:
# XXX: When implicit statics are the default
# this will be done earlier - we just have to
# make sure that static types enter here
# Zahary: weaken tyGenericParam and call it tyGenericPlaceholder
# and finally start using tyTypedesc for generic types properly.
# Araq: This would only shift the problems around, in 'proc p[T](x: T)'
# the T is NOT a typedesc.
if a.kind == tyGenericParam and tfWildcard in a.flags:
a.assignType(f)
# put(m.bindings, f, a)
return argSemantized
if a.kind == tyStatic:
if m.callee.kind == tyGenericBody and
a.n == nil and
tfGenericTypeParam notin a.flags:
return newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
elif arg.kind != nkEmpty:
var evaluated = c.semTryConstExpr(c, arg)
if evaluated != nil:
# Don't build the type in-place because `evaluated` and `arg` may point
# to the same object and we'd end up creating recursive types (#9255)
let typ = newTypeS(tyStatic, c, son = evaluated.typ)
typ.n = evaluated
arg = copyTree(arg) # fix #12864
arg.typ = typ
a = typ
else:
if m.callee.kind == tyGenericBody:
if f.kind == tyStatic and typeRel(m, f.base, a) != isNone:
result = makeStaticExpr(m.c, arg)
result.typ.flags.incl tfUnresolved
result.typ.n = arg
return
let oldInheritancePenalty = m.inheritancePenalty
var r = typeRel(m, f, a)
# This special typing rule for macros and templates is not documented
# anywhere and breaks symmetry. It's hard to get rid of though, my
# custom seqs example fails to compile without this:
if r != isNone and m.calleeSym != nil and
m.calleeSym.kind in {skMacro, skTemplate}:
# XXX: duplicating this is ugly, but we cannot (!) move this
# directly into typeRel using return-like templates
incMatches(m, r)
if f.kind == tyTyped:
return arg
elif f.kind == tyTypeDesc:
return arg
elif f.kind == tyStatic and arg.typ.n != nil:
return arg.typ.n
else:
return argSemantized # argOrig
block instantiateGenericRoutine:
# In the case where the matched value is a generic proc, we need to
# fully instantiate it and then rerun typeRel to make sure it matches.
# instantiationCounter is for safety to avoid any infinite loop,
# I don't have any example when it is needed.
# lastBindingCount is used to check whether m.bindings remains the same,
# because in that case there is no point in continuing.
var instantiationCounter = 0
var lastBindingCount = -1
while r in {isBothMetaConvertible, isInferred, isInferredConvertible} and
lastBindingCount != m.bindings.len and
instantiationCounter < 100:
lastBindingCount = m.bindings.len
inc(instantiationCounter)
if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds:
result = c.semInferredLambda(c, m.bindings, arg)
elif arg.kind != nkSym:
return nil
elif arg.sym.kind in {skMacro, skTemplate}:
return nil
else:
if arg.sym.ast == nil:
return nil
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
result = newSymNode(inferred, arg.info)
arg = result
r = typeRel(m, f, arg.typ)
case r
of isConvertible:
if f.skipTypes({tyRange}).kind in {tyInt, tyUInt}:
inc(m.convMatches)
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isIntConv:
# I'm too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
if f.skipTypes({tyRange}).kind notin {tyInt, tyUInt}:
inc(m.intConvMatches)
inc(m.intConvMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isSubtype:
inc(m.subtypeMatches)
if f.kind == tyTypeDesc:
result = arg
else:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isSubrange:
inc(m.subtypeMatches)
if f.kind in {tyVar}:
result = arg
else:
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isInferred:
# result should be set in above while loop:
assert result != nil
inc(m.genericMatches)
of isInferredConvertible:
# result should be set in above while loop:
assert result != nil
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, result, m, c)
of isGeneric:
inc(m.genericMatches)
if arg.typ == nil:
result = arg
elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple or
m.inheritancePenalty > oldInheritancePenalty:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
elif arg.typ.isEmptyContainer:
result = arg.copyTree
result.typ = getInstantiatedType(c, arg, m, f)
else:
result = arg
of isBothMetaConvertible:
# result should be set in above while loop:
assert result != nil
inc(m.convMatches)
result = arg
of isFromIntLit:
# too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isEqual:
inc(m.exactMatches)
result = arg
let ff = skipTypes(f, abstractVar-{tyTypeDesc})
if ff.kind == tyTuple or
(arg.typ != nil and skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple):
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isNone:
# do not do this in ``typeRel`` as it then can't infer T in ``ref T``:
if a.kind in {tyProxy, tyUnknown}:
if a.kind == tyUnknown and c.inGenericContext > 0:
# don't bother with fauxMatch mechanism in generic type,
# reject match, typechecking will be delayed to instantiation
return nil
inc(m.genericMatches)
m.fauxMatch = a.kind
return arg
elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList:
# lift do blocks without params to lambdas
# now deprecated
message(c.config, argOrig.info, warnStmtListLambda)
let p = c.graph
let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig,
params = nkFormalParams.newTree(p.emptyNode), name = p.emptyNode, pattern = p.emptyNode,
genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {})
if f.kind == tyBuiltInTypeClass:
inc m.genericMatches
put(m, f, lifted.typ)
inc m.convMatches
return implicitConv(nkHiddenStdConv, f, lifted, m, c)
result = userConvMatch(c, m, f, a, arg)
# check for a base type match, which supports varargs[T] without []
# constructor in a call:
if result == nil and f.kind == tyVarargs:
if f.n != nil:
# Forward to the varargs converter
result = localConvMatch(c, m, f, a, arg)
elif f[0].kind == tyTyped:
inc m.genericMatches
result = arg
else:
r = typeRel(m, base(f), a)
case r
of isGeneric:
inc(m.convMatches)
result = copyTree(arg)
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
of isFromIntLit:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f[0], arg, m, c)
m.baseTypeMatch = true
of isEqual:
inc(m.convMatches)
result = copyTree(arg)
m.baseTypeMatch = true
of isSubtype: # bug #4799, varargs accepting subtype relation object
inc(m.subtypeMatches)
if base(f).kind == tyTypeDesc:
result = arg
else:
result = implicitConv(nkHiddenSubConv, base(f), arg, m, c)
m.baseTypeMatch = true
else:
result = userConvMatch(c, m, base(f), a, arg)
if result != nil: m.baseTypeMatch = true
proc staticAwareTypeRel(m: var TCandidate, f: PType, arg: var PNode): TTypeRelation =
if f.kind == tyStatic and f.base.kind == tyProc:
# The ast of the type does not point to the symbol.
# Without this we will never resolve a `static proc` with overloads
let copiedNode = copyNode(arg)
copiedNode.typ = exactReplica(copiedNode.typ)
copiedNode.typ.n = arg
arg = copiedNode
typeRel(m, f, arg.typ)
proc paramTypesMatch*(m: var TCandidate, f, a: PType,
arg, argOrig: PNode): PNode =
if arg == nil or arg.kind notin nkSymChoices:
result = paramTypesMatchAux(m, f, a, arg, argOrig)
else:
# symbol kinds that don't participate in symchoice type disambiguation:
let matchSet = {low(TSymKind)..high(TSymKind)} - {skModule, skPackage, skType}
var best = -1
result = arg
var actingF = f
if f.kind == tyVarargs:
if m.calleeSym.kind in {skTemplate, skMacro}:
actingF = f[0]
if actingF.kind in {tyTyped, tyUntyped}:
var
bestScope = -1
counts = 0
for i in 0..<arg.len:
if arg[i].sym.kind in matchSet:
let thisScope = cmpScopes(m.c, arg[i].sym)
if thisScope > bestScope:
best = i
bestScope = thisScope
counts = 0
elif thisScope == bestScope:
inc counts
if best == -1:
result = nil
elif counts > 0:
m.genericMatches = 1
best = -1
else:
# CAUTION: The order depends on the used hashing scheme. Thus it is
# incorrect to simply use the first fitting match. However, to implement
# this correctly is inefficient. We have to copy `m` here to be able to
# roll back the side effects of the unification algorithm.
let c = m.c
var
x = newCandidate(c, m.callee) # potential "best"
y = newCandidate(c, m.callee) # potential competitor with x
z = newCandidate(c, m.callee) # buffer for copies of m
x.calleeSym = m.calleeSym
y.calleeSym = m.calleeSym
z.calleeSym = m.calleeSym
for i in 0..<arg.len:
if arg[i].sym.kind in matchSet:
copyCandidate(z, m)
z.callee = arg[i].typ
if tfUnresolved in z.callee.flags: continue
z.calleeSym = arg[i].sym
z.calleeScope = cmpScopes(m.c, arg[i].sym)
# XXX this is still all wrong: (T, T) should be 2 generic matches
# and (int, int) 2 exact matches, etc. Essentially you cannot call
# typeRel here and expect things to work!
let r = staticAwareTypeRel(z, f, arg[i])
incMatches(z, r, 2)
if r != isNone:
z.state = csMatch
case x.state
of csEmpty, csNoMatch:
x = z
best = i
of csMatch:
let cmp = cmpCandidates(x, z, isFormal=false)
if cmp < 0:
best = i
x = z
elif cmp == 0:
y = z # z is as good as x
if x.state == csEmpty:
result = nil
elif y.state == csMatch and cmpCandidates(x, y, isFormal=false) == 0:
if x.state != csMatch:
internalError(m.c.graph.config, arg.info, "x.state is not csMatch")
result = nil
if best > -1 and result != nil:
# only one valid interpretation found:
markUsed(m.c, arg.info, arg[best].sym)
onUse(arg.info, arg[best].sym)
result = paramTypesMatchAux(m, f, arg[best].typ, arg[best], argOrig)
when false:
if m.calleeSym != nil and m.calleeSym.name.s == "[]":
echo m.c.config $ arg.info, " for ", m.calleeSym.name.s, " ", m.c.config $ m.calleeSym.info
writeMatches(m)
proc setSon(father: PNode, at: int, son: PNode) =
let oldLen = father.len
if oldLen <= at:
setLen(father.sons, at + 1)
father[at] = son
# insert potential 'void' parameters:
#for i in oldLen..<at:
# father[i] = newNodeIT(nkEmpty, son.info, getSysType(tyVoid))
# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
if formal.kind == tyUntyped and formal.len != 1:
# {tyTypeDesc, tyUntyped, tyTyped, tyProxy}:
# a.typ == nil is valid
result = a
elif a.typ.isNil:
if formal.kind == tyIterable:
let flags = {efDetermineType, efAllowStmt, efWantIterator, efWantIterable}
result = c.semOperand(c, a, flags)
else:
# XXX This is unsound! 'formal' can differ from overloaded routine to
# overloaded routine!
let flags = {efDetermineType, efAllowStmt}
#if formal.kind == tyIterable: {efDetermineType, efWantIterator}
#else: {efDetermineType, efAllowStmt}
#elif formal.kind == tyTyped: {efDetermineType, efWantStmt}
#else: {efDetermineType}
result = c.semOperand(c, a, flags)
else:
result = a
considerGenSyms(c, result)
if result.kind != nkHiddenDeref and result.typ.kind in {tyVar, tyLent} and c.matchedConcept == nil:
result = newDeref(result)
proc prepareOperand(c: PContext; a: PNode): PNode =
if a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
considerGenSyms(c, result)
proc prepareNamedParam(a: PNode; c: PContext) =
if a[0].kind != nkIdent:
var info = a[0].info
a[0] = newIdentNode(considerQuotedIdent(c, a[0]), info)
proc arrayConstr(c: PContext, n: PNode): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, 0, n.info))
addSonSkipIntLit(result, skipTypes(n.typ,
{tyVar, tyLent, tyOrdinal}), c.idgen)
proc arrayConstr(c: PContext, info: TLineInfo): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, -1, info))
rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
proc incrIndexType(t: PType) =
assert t.kind == tyArray
inc t.indexType.n[1].intVal
template isVarargsUntyped(x): untyped =
x.kind == tyVarargs and x[0].kind == tyUntyped
template isVarargsTyped(x): untyped =
x.kind == tyVarargs and x[0].kind == tyTyped
proc findFirstArgBlock(m: var TCandidate, n: PNode): int =
# see https://github.com/nim-lang/RFCs/issues/405
result = int.high
for a2 in countdown(n.len-1, 0):
# checking `nfBlockArg in n[a2].flags` wouldn't work inside templates
if n[a2].kind != nkStmtList: break
let formalLast = m.callee.n[m.callee.n.len - (n.len - a2)]
# parameter has to occupy space (no default value, not void or varargs)
if formalLast.kind == nkSym and formalLast.sym.ast == nil and
formalLast.sym.typ.kind notin {tyVoid, tyVarargs}:
result = a2
else: break
proc matchesAux(c: PContext, n, nOrig: PNode, m: var TCandidate, marker: var IntSet) =
template noMatch() =
c.mergeShadowScope #merge so that we don't have to resem for later overloads
m.state = csNoMatch
m.firstMismatch.arg = a
m.firstMismatch.formal = formal
return
template checkConstraint(n: untyped) {.dirty.} =
if not formal.constraint.isNil and sfCodegenDecl notin formal.flags:
if matchNodeKinds(formal.constraint, n):
# better match over other routines with no such restriction:
inc(m.genericMatches, 100)
else:
noMatch()
if formal.typ.kind in {tyVar}:
let argConverter = if arg.kind == nkHiddenDeref: arg[0] else: arg
if argConverter.kind == nkHiddenCallConv:
if argConverter.typ.kind notin {tyVar}:
m.firstMismatch.kind = kVarNeeded
noMatch()
elif not (isLValue(c, n, isOutParam(formal.typ))):
m.firstMismatch.kind = kVarNeeded
noMatch()
m.state = csMatch # until proven otherwise
m.firstMismatch = MismatchInfo()
m.call = newNodeIT(n.kind, n.info, m.callee.base)
m.call.add n[0]
var
a = 1 # iterates over the actual given arguments
f = if m.callee.kind != tyGenericBody: 1
else: 0 # iterates over formal parameters
arg: PNode = nil # current prepared argument
formalLen = m.callee.n.len
formal = if formalLen > 1: m.callee.n[1].sym else: nil # current routine parameter
container: PNode = nil # constructed container
let firstArgBlock = findFirstArgBlock(m, n)
while a < n.len:
c.openShadowScope
if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped:
formal = m.callee.n[f].sym
incl(marker, formal.position)
if n[a].kind == nkHiddenStdConv:
doAssert n[a][0].kind == nkEmpty and
n[a][1].kind in {nkBracket, nkArgList}
# Steal the container and pass it along
setSon(m.call, formal.position + 1, n[a][1])
else:
if container.isNil:
container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
container.add n[a]
elif n[a].kind == nkExprEqExpr:
# named param
m.firstMismatch.kind = kUnknownNamedParam
# check if m.callee has such a param:
prepareNamedParam(n[a], c)
if n[a][0].kind != nkIdent:
localError(c.config, n[a].info, "named parameter has to be an identifier")
noMatch()
formal = getNamedParamFromList(m.callee.n, n[a][0].ident)
if formal == nil:
# no error message!
noMatch()
if containsOrIncl(marker, formal.position):
m.firstMismatch.kind = kAlreadyGiven
# already in namedParams, so no match
# we used to produce 'errCannotBindXTwice' here but see
# bug #3836 of why that is not sound (other overload with
# different parameter names could match later on):
when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
noMatch()
m.baseTypeMatch = false
m.typedescMatched = false
n[a][1] = prepareOperand(c, formal.typ, n[a][1])
n[a].typ = n[a][1].typ
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a][1], n[a][1])
m.firstMismatch.kind = kTypeMismatch
if arg == nil:
noMatch()
checkConstraint(n[a][1])
if m.baseTypeMatch:
#assert(container == nil)
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
container.add arg
setSon(m.call, formal.position + 1, container)
if f != formalLen - 1: container = nil
else:
setSon(m.call, formal.position + 1, arg)
inc f
else:
# unnamed param
if f >= formalLen:
# too many arguments?
if tfVarargs in m.callee.flags:
# is ok... but don't increment any counters...
# we have no formal here to snoop at:
n[a] = prepareOperand(c, n[a])
if skipTypes(n[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
m.call.add implicitConv(nkHiddenStdConv,
getSysType(c.graph, n[a].info, tyCstring),
copyTree(n[a]), m, c)
else:
m.call.add copyTree(n[a])
elif formal != nil and formal.typ.kind == tyVarargs:
m.firstMismatch.kind = kTypeMismatch
# beware of the side-effects in 'prepareOperand'! So only do it for
# varargs matching. See tests/metatype/tstatic_overloading.
m.baseTypeMatch = false
m.typedescMatched = false
incl(marker, formal.position)
n[a] = prepareOperand(c, formal.typ, n[a])
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a], nOrig[a])
if arg != nil and m.baseTypeMatch and container != nil:
container.add arg
incrIndexType(container.typ)
checkConstraint(n[a])
else:
noMatch()
else:
m.firstMismatch.kind = kExtraArg
noMatch()
else:
if m.callee.n[f].kind != nkSym:
internalError(c.config, n[a].info, "matches")
noMatch()
if flexibleOptionalParams in c.features and a >= firstArgBlock:
f = max(f, m.callee.n.len - (n.len - a))
formal = m.callee.n[f].sym
m.firstMismatch.kind = kTypeMismatch
if containsOrIncl(marker, formal.position) and container.isNil:
m.firstMismatch.kind = kPositionalAlreadyGiven
# positional param already in namedParams: (see above remark)
when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
noMatch()
if formal.typ.isVarargsUntyped:
if container.isNil:
container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
container.add n[a]
else:
m.baseTypeMatch = false
m.typedescMatched = false
n[a] = prepareOperand(c, formal.typ, n[a])
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a], nOrig[a])
if arg == nil:
noMatch()
if formal.typ.isVarargsTyped and m.calleeSym.kind in {skTemplate, skMacro}:
if container.isNil:
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
else:
incrIndexType(container.typ)
container.add n[a]
f = max(f, formalLen - n.len + a + 1)
elif m.baseTypeMatch:
assert formal.typ.kind == tyVarargs
#assert(container == nil)
if container.isNil:
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
container.typ.flags.incl tfVarargs
else:
incrIndexType(container.typ)
container.add arg
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
#if f != formalLen - 1: container = nil
# pick the formal from the end, so that 'x, y, varargs, z' works:
f = max(f, formalLen - n.len + a + 1)
elif formal.typ.kind != tyVarargs or container == nil:
setSon(m.call, formal.position + 1, arg)
inc f
container = nil
else:
# we end up here if the argument can be converted into the varargs
# formal (e.g. seq[T] -> varargs[T]) but we have already instantiated
# a container
#assert arg.kind == nkHiddenStdConv # for 'nim check'
# this assertion can be off
localError(c.config, n[a].info, "cannot convert $1 to $2" % [
typeToString(n[a].typ), typeToString(formal.typ) ])
noMatch()
checkConstraint(n[a])
if m.state == csMatch and not (m.calleeSym != nil and m.calleeSym.kind in {skTemplate, skMacro}):
c.mergeShadowScope
else:
c.closeShadowScope
inc a
# for some edge cases (see tdont_return_unowned_from_owned test case)
m.firstMismatch.arg = a
m.firstMismatch.formal = formal
proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
# for 'suggest' support:
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
if m.magic in {mArrGet, mArrPut}:
m.state = csMatch
m.call = n
# Note the following doesn't work as it would produce ambiguities.
# Instead we patch system.nim, see bug #8049.
when false:
inc m.genericMatches
inc m.exactMatches
return
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
if m.state == csNoMatch: return
# check that every formal parameter got a value:
for f in 1..<m.callee.n.len:
let formal = m.callee.n[f].sym
if not containsOrIncl(marker, formal.position):
if formal.ast == nil:
if formal.typ.kind == tyVarargs:
# For consistency with what happens in `matchesAux` select the
# container node kind accordingly
let cnKind = if formal.typ.isVarargsUntyped: nkArgList else: nkBracket
var container = newNodeIT(cnKind, n.info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
else:
# no default value
m.state = csNoMatch
m.firstMismatch.kind = kMissingParam
m.firstMismatch.formal = formal
break
else:
if formal.ast.kind == nkEmpty:
# The default param value is set to empty in `instantiateProcType`
# when the type of the default expression doesn't match the type
# of the instantiated proc param:
localError(c.config, m.call.info,
("The default parameter '$1' has incompatible type " &
"with the explicitly requested proc instantiation") %
formal.name.s)
if nfDefaultRefsParam in formal.ast.flags:
m.call.flags.incl nfDefaultRefsParam
var defaultValue = copyTree(formal.ast)
if defaultValue.kind == nkNilLit:
defaultValue = implicitConv(nkHiddenStdConv, formal.typ, defaultValue, m, c)
# proc foo(x: T = 0.0)
# foo()
if {tfImplicitTypeParam, tfGenericTypeParam} * formal.typ.flags != {}:
let existing = idTableGet(m.bindings, formal.typ)
if existing == nil or existing.kind == tyTypeDesc:
# see bug #11600:
put(m, formal.typ, defaultValue.typ)
defaultValue.flags.incl nfDefaultParam
setSon(m.call, formal.position + 1, defaultValue)
# forget all inferred types if the overload matching failed
if m.state == csNoMatch:
for t in m.inferredTypes:
if t.len > 1: t.newSons 1
proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool =
var m = newCandidate(c, f)
let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil)
#instantiateGenericConverters(c, res, m)
# XXX this is used by patterns.nim too; I think it's better to not
# instantiate generic converters for that
if not fromHlo:
res != nil
else:
# pattern templates do not allow for conversions except from int literal
res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256]
proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym =
var m = newCandidate(c, dc.typ)
if col >= dc.typ.len:
localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
return nil
var f = dc.typ[col]
if op == attachedDeepCopy:
if f.kind in {tyRef, tyPtr}: f = f.elementType
else:
if f.kind in {tyVar}: f = f.elementType
if typeRel(m, f, t) == isNone:
result = nil
localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
else:
result = c.semGenerateInstance(c, dc, m.bindings, info)
if op == attachedDeepCopy:
assert sfFromGeneric in result.flags
include suggest
when not declared(tests):
template tests(s: untyped) = discard
tests:
var dummyOwner = newSym(skModule, getIdent("test_module"), nil, unknownLineInfo)
proc `|` (t1, t2: PType): PType =
result = newType(tyOr, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `&` (t1, t2: PType): PType =
result = newType(tyAnd, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `!` (t: PType): PType =
result = newType(tyNot, dummyOwner)
result.rawAddSon(t)
proc seq(t: PType): PType =
result = newType(tySequence, dummyOwner)
result.rawAddSon(t)
proc array(x: int, t: PType): PType =
result = newType(tyArray, dummyOwner)
var n = newNodeI(nkRange, unknownLineInfo)
n.add newIntNode(nkIntLit, 0)
n.add newIntNode(nkIntLit, x)
let range = newType(tyRange, dummyOwner)
result.rawAddSon(range)
result.rawAddSon(t)
suite "type classes":
let
int = newType(tyInt, dummyOwner)
float = newType(tyFloat, dummyOwner)
string = newType(tyString, dummyOwner)
ordinal = newType(tyOrdinal, dummyOwner)
any = newType(tyAnything, dummyOwner)
number = int | float
var TFoo = newType(tyObject, dummyOwner)
TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, unknownLineInfo)
var T1 = newType(tyGenericParam, dummyOwner)
T1.sym = newSym(skType, getIdent"T1", dummyOwner, unknownLineInfo)
T1.sym.position = 0
var T2 = newType(tyGenericParam, dummyOwner)
T2.sym = newSym(skType, getIdent"T2", dummyOwner, unknownLineInfo)
T2.sym.position = 1
setup:
var c = newCandidate(nil, nil)
template yes(x, y) =
test astToStr(x) & " is " & astToStr(y):
check typeRel(c, y, x) == isGeneric
template no(x, y) =
test astToStr(x) & " is not " & astToStr(y):
check typeRel(c, y, x) == isNone
yes seq(any), array(10, int) | seq(any)
# Sure, seq[any] is directly included
yes seq(int), seq(any)
yes seq(int), seq(number)
# Sure, the int sequence is certainly
# part of the number sequences (and all sequences)
no seq(any), seq(float)
# Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
yes seq(int|string), seq(any)
# Sure
yes seq(int&string), seq(any)
# Again
yes seq(int&string), seq(int)
# A bit more complicated
# seq[int&string] is not a real type, but it's analogous to
# seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
no seq(int|string), seq(int|float)
# Nope, seq[string] is not included in not included in
# the seq[int|float] set
no seq(!(int|string)), seq(string)
# A sequence that is neither seq[int] or seq[string]
# is obviously not seq[string]
no seq(!int), seq(number)
# Now your head should start to hurt a bit
# A sequence that is not seq[int] is not necessarily a number sequence
# it could well be seq[string] for example
yes seq(!(int|string)), seq(!string)
# all sequnece types besides seq[int] and seq[string]
# are subset of all sequence types that are not seq[string]
no seq(!(int|string)), seq(!(string|TFoo))
# Nope, seq[TFoo] is included in the first set, but not in the second
no seq(!string), seq(!number)
# Nope, seq[int] in included in the first set, but not in the second
yes seq(!number), seq(any)
yes seq(!int), seq(any)
no seq(any), seq(!any)
no seq(!int), seq(!any)
yes int, ordinal
no string, ordinal
|