1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
|
#
#
# The Nimrod Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.
import
intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
magicsys, condsyms, idents, lexer, options, parampatterns, strutils
when not defined(noDocgen):
import docgen
type
TCandidateState* = enum
csEmpty, csMatch, csNoMatch
TCandidate* {.final.} = object
c*: PContext
exactMatches*: int # also misused to prefer iters over procs
genericMatches: int # also misused to prefer constraints
subtypeMatches: int
intConvMatches: int # conversions to int are not as expensive
convMatches: int
state*: TCandidateState
callee*: PType # may not be nil!
calleeSym*: PSym # may be nil
calleeScope: int # may be -1 for unknown scope
call*: PNode # modified call
bindings*: TIdTable # maps types to types
baseTypeMatch: bool # needed for conversions from T to openarray[T]
# for example
proxyMatch*: bool # to prevent instantiations
genericConverter*: bool # true if a generic converter needs to
# be instantiated
typedescMatched: bool
inheritancePenalty: int # to prefer closest father object type
errors*: seq[string] # additional clarifications to be displayed to the
# user if overload resolution fails
TTypeRelation* = enum # order is important!
isNone, isConvertible,
isIntConv,
isSubtype,
isSubrange, # subrange of the wanted type; no type conversion
# but apart from that counts as ``isSubtype``
isGeneric,
isFromIntLit, # conversion *from* int literal; proven safe
isEqual
const
isNilConversion = isConvertible # maybe 'isIntConv' fits better?
proc markUsed*(n: PNode, s: PSym)
proc initCandidateAux(ctx: PContext,
c: var TCandidate, callee: PType) {.inline.} =
c.c = ctx
c.exactMatches = 0
c.subtypeMatches = 0
c.convMatches = 0
c.intConvMatches = 0
c.genericMatches = 0
c.state = csEmpty
c.callee = callee
c.call = nil
c.baseTypeMatch = false
c.genericConverter = false
c.inheritancePenalty = 0
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) =
initCandidateAux(ctx, c, callee)
c.calleeSym = nil
initIdTable(c.bindings)
proc put(t: var TIdTable, key, val: PType) {.inline.} =
IdTablePut(t, key, val)
proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym,
binding: PNode, calleeScope = -1) =
initCandidateAux(ctx, c, callee.typ)
c.calleeSym = callee
c.calleeScope = calleeScope
initIdTable(c.bindings)
c.errors = nil
if binding != nil and callee.kind in RoutineKinds:
var typeParams = callee.ast[genericParamsPos]
for i in 1..min(sonsLen(typeParams), sonsLen(binding)-1):
var formalTypeParam = typeParams.sons[i-1].typ
var bound = binding[i].typ
if formalTypeParam.kind != tyTypeDesc:
bound = bound.skipTypes({tyTypeDesc})
put(c.bindings, formalTypeParam, bound)
proc newCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1): TCandidate =
initCandidate(ctx, result, callee, binding, calleeScope)
proc copyCandidate(a: var TCandidate, b: TCandidate) =
a.c = b.c
a.exactMatches = b.exactMatches
a.subtypeMatches = b.subtypeMatches
a.convMatches = b.convMatches
a.intConvMatches = b.intConvMatches
a.genericMatches = b.genericMatches
a.state = b.state
a.callee = b.callee
a.calleeSym = b.calleeSym
a.call = copyTree(b.call)
a.baseTypeMatch = b.baseTypeMatch
copyIdTable(a.bindings, b.bindings)
proc sumGeneric(t: PType): int =
var t = t
while true:
case t.kind
of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyArrayConstr,
tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody:
t = t.lastSon
inc result
of tyVar:
# but do not make 'var T' more specific than 'T'!
t = t.sons[0]
of tyGenericInvokation, tyTuple:
result = ord(t.kind == tyGenericInvokation)
for i in 0 .. <t.len: result += t.sons[i].sumGeneric
break
of tyGenericParam, tyExpr, tyStatic, tyStmt, tyTypeDesc, tyTypeClass: break
else: return 0
proc complexDisambiguation(a, b: PType): int =
var x, y: int
for i in 1 .. <a.len: x += a.sons[i].sumGeneric
for i in 1 .. <b.len: y += b.sons[i].sumGeneric
result = x - y
when false:
proc betterThan(a, b: PType): bool {.inline.} = a.sumGeneric > b.sumGeneric
if a.len > 1 and b.len > 1:
let aa = a.sons[1].sumGeneric
let bb = b.sons[1].sumGeneric
var a = a
var b = b
if aa < bb: swap(a, b)
# all must be better
for i in 2 .. <min(a.len, b.len):
if not a.sons[i].betterThan(b.sons[i]): return 0
# a must be longer or of the same length as b:
result = a.len - b.len
proc cmpCandidates*(a, b: TCandidate): int =
result = a.exactMatches - b.exactMatches
if result != 0: return
result = a.genericMatches - b.genericMatches
if result != 0: return
result = a.subtypeMatches - b.subtypeMatches
if result != 0: return
result = a.intConvMatches - b.intConvMatches
if result != 0: return
result = a.convMatches - b.convMatches
if result != 0: return
if (a.calleeScope != -1) and (b.calleeScope != -1):
result = a.calleeScope - b.calleeScope
if result != 0: return
# the other way round because of other semantics:
result = b.inheritancePenalty - a.inheritancePenalty
if result != 0: return
# prefer more specialized generic over more general generic:
result = complexDisambiguation(a.callee, b.callee)
proc writeMatches*(c: TCandidate) =
Writeln(stdout, "exact matches: " & $c.exactMatches)
Writeln(stdout, "subtype matches: " & $c.subtypeMatches)
Writeln(stdout, "conv matches: " & $c.convMatches)
Writeln(stdout, "intconv matches: " & $c.intConvMatches)
Writeln(stdout, "generic matches: " & $c.genericMatches)
proc argTypeToString(arg: PNode): string =
if arg.kind in nkSymChoices:
result = typeToString(arg[0].typ)
for i in 1 .. <arg.len:
result.add(" | ")
result.add typeToString(arg[i].typ)
else:
result = arg.typ.typeToString
proc describeArgs*(c: PContext, n: PNode, startIdx = 1): string =
result = ""
for i in countup(startIdx, n.len - 1):
var arg = n.sons[i]
if n.sons[i].kind == nkExprEqExpr:
add(result, renderTree(n.sons[i].sons[0]))
add(result, ": ")
if arg.typ.isNil:
arg = c.semOperand(c, n.sons[i].sons[1])
n.sons[i].typ = arg.typ
n.sons[i].sons[1] = arg
else:
if arg.typ.isNil:
arg = c.semOperand(c, n.sons[i])
n.sons[i] = arg
if arg.typ.kind == tyError: return
add(result, argTypeToString(arg))
if i != sonsLen(n) - 1: add(result, ", ")
proc typeRel*(c: var TCandidate, f, a: PType, doBind = true): TTypeRelation
proc concreteType(c: TCandidate, t: PType): PType =
case t.kind
of tyArrayConstr:
# make it an array
result = newType(tyArray, t.owner)
addSonSkipIntLit(result, t.sons[0]) # XXX: t.owner is wrong for ID!
addSonSkipIntLit(result, t.sons[1]) # XXX: semantic checking for the type?
of tyNil:
result = nil # what should it be?
of tyGenericParam, tyAnything:
result = t
while true:
result = PType(idTableGet(c.bindings, t))
if result == nil:
break # it's ok, no match
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if result.kind != tyGenericParam: break
of tyGenericInvokation:
InternalError("cannot resolve type: " & typeToString(t))
result = t
else:
result = t # Note: empty is valid here
proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
let k = ab.kind
if k == f.kind: result = isSubrange
elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64,
tyUInt..tyUInt64} and
isIntLit(ab) and ab.n.intVal >= firstOrd(f) and
ab.n.intVal <= lastOrd(f):
# integer literal in the proper range; we want ``i16 + 4`` to stay an
# ``int16`` operation so we declare the ``4`` pseudo-equal to int16
result = isFromIntLit
elif f.kind == tyInt and k in {tyInt8..tyInt32}:
result = isIntConv
elif k >= min and k <= max:
result = isConvertible
elif a.kind == tyRange and a.sons[0].kind in {tyInt..tyInt64,
tyUInt8..tyUInt32} and
a.n[0].intVal >= firstOrd(f) and
a.n[1].intVal <= lastOrd(f):
result = isConvertible
else: result = isNone
#elif f.kind == tyInt and k in {tyInt..tyInt32}: result = isIntConv
#elif f.kind == tyUInt and k in {tyUInt..tyUInt32}: result = isIntConv
proc isConvertibleToRange(f, a: PType): bool =
# be less picky for tyRange, as that it is used for array indexing:
if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
result = true
elif f.kind in {tyFloat..tyFloat128} and
a.kind in {tyFloat..tyFloat128}:
result = true
proc handleFloatRange(f, a: PType): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
var k = ab.kind
if k == f.kind: result = isSubrange
elif isFloatLit(ab): result = isFromIntLit
elif isIntLit(ab): result = isConvertible
elif k >= tyFloat and k <= tyFloat128:
# conversion to "float32" is not as good:
if f.kind == tyFloat32: result = isConvertible
else: result = isIntConv
else: result = isNone
proc isObjectSubtype(a, f: PType): int =
var t = a
assert t.kind == tyObject
var depth = 0
while t != nil and not sameObjectTypes(f, t):
assert t.kind == tyObject
t = t.sons[0]
if t == nil: break
t = skipTypes(t, {tyGenericInst})
inc depth
if t != nil:
result = depth
proc minRel(a, b: TTypeRelation): TTypeRelation =
if a <= b: result = a
else: result = b
proc tupleRel(c: var TCandidate, f, a: PType): TTypeRelation =
result = isNone
if sameType(f, a):
result = isEqual
elif sonsLen(a) == sonsLen(f):
result = isEqual
for i in countup(0, sonsLen(f) - 1):
var m = typeRel(c, f.sons[i], a.sons[i])
if m < isSubtype: return isNone
result = minRel(result, m)
if f.n != nil and a.n != nil:
for i in countup(0, sonsLen(f.n) - 1):
# check field names:
if f.n.sons[i].kind != nkSym: InternalError(f.n.info, "tupleRel")
elif a.n.sons[i].kind != nkSym: InternalError(a.n.info, "tupleRel")
else:
var x = f.n.sons[i].sym
var y = a.n.sons[i].sym
if x.name.id != y.name.id: return isNone
proc allowsNil(f: PType): TTypeRelation {.inline.} =
result = if tfNotNil notin f.flags: isSubtype else: isNone
proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
result = f.kind != a.kind and (f.kind == tyVar or a.kind == tyVar)
case a.kind
of tyProc:
if sonsLen(f) != sonsLen(a): return
# Note: We have to do unification for the parameters before the
# return type!
result = isEqual # start with maximum; also correct for no
# params at all
for i in countup(1, sonsLen(f)-1):
var m = typeRel(c, f.sons[i], a.sons[i])
if m <= isSubtype or inconsistentVarTypes(f.sons[i], a.sons[i]):
return isNone
else: result = minRel(m, result)
if f.sons[0] != nil:
if a.sons[0] != nil:
var m = typeRel(c, f.sons[0], a.sons[0])
# Subtype is sufficient for return types!
if m < isSubtype or inconsistentVarTypes(f.sons[0], a.sons[0]):
return isNone
elif m == isSubtype: result = isConvertible
else: result = minRel(m, result)
else:
return isNone
elif a.sons[0] != nil:
return isNone
if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
return isNone
elif tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {}:
# noSideEffect implies ``tfThread``! XXX really?
return isNone
elif f.flags * {tfIterator} != a.flags * {tfIterator}:
return isNone
elif f.callconv != a.callconv:
# valid to pass a 'nimcall' thingie to 'closure':
if f.callconv == ccClosure and a.callconv == ccDefault:
result = isConvertible
else:
return isNone
when useEffectSystem:
if not compatibleEffects(f, a): return isNone
of tyNil: result = f.allowsNil
else: nil
proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
let
a0 = firstOrd(a)
a1 = lastOrd(a)
f0 = firstOrd(f)
f1 = lastOrd(f)
if a0 == f0 and a1 == f1:
result = isEqual
elif a0 >= f0 and a1 <= f1:
result = isConvertible
elif a0 <= f1 and f0 <= a1:
# X..Y and C..D overlap iff (X <= D and C <= Y)
result = isConvertible
else:
result = isNone
proc typeRel(c: var TCandidate, f, a: PType, doBind = true): TTypeRelation =
# typeRel can be used to establish various relationships between types:
#
# 1) When used with concrete types, it will check for type equivalence
# or a subtype relationship.
#
# 2) When used with a concrete type against a type class (such as generic
# signature of a proc), it will check whether the concrete type is a member
# of the designated type class.
#
# 3) When used with two type classes, it will check whether the types
# matching the first type class are a strict subset of the types matching
# the other. This allows us to compare the signatures of generic procs in
# order to give preferrence to the most specific one:
#
# seq[seq[any]] is a strict subset of seq[any] and hence more specific.
result = isNone
assert(f != nil)
assert(a != nil)
if a.kind == tyGenericInst and
skipTypes(f, {tyVar}).kind notin {
tyGenericBody, tyGenericInvokation,
tyGenericParam, tyTypeClass}:
return typeRel(c, f, lastSon(a))
if a.kind == tyVar and f.kind != tyVar:
return typeRel(c, f, a.sons[0])
template bindingRet(res) =
when res == isGeneric: put(c.bindings, f, a)
return res
case a.kind
of tyOr:
# seq[int|string] vs seq[number]
# both int and string must match against number
for branch in a.sons:
if typeRel(c, f, branch, false) == isNone:
return isNone
return isGeneric
of tyAnd:
# seq[Sortable and Iterable] vs seq[Sortable]
# only one match is enough
for branch in a.sons:
if typeRel(c, f, branch, false) != isNone:
return isGeneric
return isNone
of tyNot:
case f.kind
of tyNot:
# seq[!int] vs seq[!number]
# seq[float] matches the first, but not the second
# we must turn the problem around:
# is number a subset of int?
return typeRel(c, a.lastSon, f.lastSon)
else:
# negative type classes are essentially infinite,
# so only the `any` type class is their superset
return if f.kind == tyAnything: isGeneric
else: isNone
of tyAnything:
return if f.kind == tyAnything: isGeneric
else: isNone
else: nil
case f.kind
of tyEnum:
if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
of tyBool, tyChar:
if a.kind == f.kind: result = isEqual
elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
of tyRange:
if a.kind == f.kind:
result = typeRel(c, base(f), base(a))
# bugfix: accept integer conversions here
#if result < isGeneric: result = isNone
if result notin {isNone, isGeneric}:
result = typeRangeRel(f, a)
elif skipTypes(f, {tyRange}).kind == a.kind:
result = isIntConv
elif isConvertibleToRange(skipTypes(f, {tyRange}), a):
result = isConvertible # a convertible to f
of tyInt: result = handleRange(f, a, tyInt8, tyInt32)
of tyInt8: result = handleRange(f, a, tyInt8, tyInt8)
of tyInt16: result = handleRange(f, a, tyInt8, tyInt16)
of tyInt32: result = handleRange(f, a, tyInt8, tyInt32)
of tyInt64: result = handleRange(f, a, tyInt, tyInt64)
of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32)
of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8)
of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16)
of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32)
of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64)
of tyFloat: result = handleFloatRange(f, a)
of tyFloat32: result = handleFloatRange(f, a)
of tyFloat64: result = handleFloatRange(f, a)
of tyFloat128: result = handleFloatRange(f, a)
of tyVar:
if a.kind == f.kind: result = typeRel(c, base(f), base(a))
else: result = typeRel(c, base(f), a)
of tyArray, tyArrayConstr:
# tyArrayConstr cannot happen really, but
# we wanna be safe here
case a.kind
of tyArray, tyArrayConstr:
var fRange = f.sons[0]
if fRange.kind == tyGenericParam:
var prev = PType(idTableGet(c.bindings, fRange))
if prev == nil:
put(c.bindings, fRange, a.sons[0])
fRange = a
else:
fRange = prev
result = typeRel(c, f.sons[1], a.sons[1])
if result < isGeneric: result = isNone
elif lengthOrd(fRange) != lengthOrd(a): result = isNone
else: nil
of tyOpenArray, tyVarargs:
case a.Kind
of tyOpenArray, tyVarargs:
result = typeRel(c, base(f), base(a))
if result < isGeneric: result = isNone
of tyArrayConstr:
if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
result = isSubtype # [] is allowed here
elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
result = isSubtype
of tyArray:
if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty):
result = isSubtype
elif typeRel(c, base(f), a.sons[1]) >= isGeneric:
result = isConvertible
of tySequence:
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
result = isConvertible
elif typeRel(c, base(f), a.sons[0]) >= isGeneric:
result = isConvertible
else: nil
of tySequence:
case a.Kind
of tySequence:
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
result = isSubtype
else:
result = typeRel(c, f.sons[0], a.sons[0])
if result < isGeneric: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyNil: result = f.allowsNil
else: nil
of tyOrdinal:
if isOrdinalType(a):
var x = if a.kind == tyOrdinal: a.sons[0] else: a
if f.sonsLen == 0:
result = isGeneric
else:
result = typeRel(c, f.sons[0], x)
if result < isGeneric: result = isNone
elif a.kind == tyGenericParam:
result = isGeneric
of tyForward: InternalError("forward type in typeRel()")
of tyNil:
if a.kind == f.kind: result = isEqual
of tyTuple:
if a.kind == tyTuple: result = tupleRel(c, f, a)
of tyObject:
if a.kind == tyObject:
if sameObjectTypes(f, a): result = isEqual
else:
var depth = isObjectSubtype(a, f)
if depth > 0:
inc(c.inheritancePenalty, depth)
result = isSubtype
of tyDistinct:
if (a.kind == tyDistinct) and sameDistinctTypes(f, a): result = isEqual
of tySet:
if a.kind == tySet:
if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty):
result = isSubtype
else:
result = typeRel(c, f.sons[0], a.sons[0])
if result <= isConvertible:
result = isNone # BUGFIX!
of tyPtr:
case a.kind
of tyPtr:
result = typeRel(c, base(f), base(a))
if result <= isConvertible: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyNil: result = f.allowsNil
else: nil
of tyRef:
case a.kind
of tyRef:
result = typeRel(c, base(f), base(a))
if result <= isConvertible: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyNil: result = f.allowsNil
else: nil
of tyProc:
result = procTypeRel(c, f, a)
if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyPointer:
case a.kind
of tyPointer:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyProc:
if a.callConv != ccClosure: result = isConvertible
of tyPtr, tyCString: result = isConvertible
else: nil
of tyString:
case a.kind
of tyString:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
else: nil
of tyCString:
# conversion from string to cstring is automatic:
case a.Kind
of tyCString:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyString: result = isConvertible
of tyPtr:
if a.sons[0].kind == tyChar: result = isConvertible
of tyArray:
if (firstOrd(a.sons[0]) == 0) and
(skipTypes(a.sons[0], {tyRange}).kind in {tyInt..tyInt64}) and
(a.sons[1].kind == tyChar):
result = isConvertible
else: nil
of tyEmpty:
if a.kind == tyEmpty: result = isEqual
of tyGenericInst:
result = typeRel(c, lastSon(f), a)
of tyGenericBody:
if a.kind == tyGenericInst and a.sons[0] == f:
return isGeneric
let ff = lastSon(f)
if ff != nil: result = typeRel(c, ff, a)
of tyGenericInvokation:
var x = a.skipGenericAlias
if x.kind == tyGenericInvokation or f.sons[0].kind != tyGenericBody:
#InternalError("typeRel: tyGenericInvokation -> tyGenericInvokation")
# simply no match for now:
nil
elif x.kind == tyGenericInst and
(f.sons[0] == x.sons[0]) and
(sonsLen(x) - 1 == sonsLen(f)):
for i in countup(1, sonsLen(f) - 1):
if x.sons[i].kind == tyGenericParam:
InternalError("wrong instantiated type!")
elif typeRel(c, f.sons[i], x.sons[i]) <= isSubtype: return
result = isGeneric
else:
result = typeRel(c, f.sons[0], x)
if result != isNone:
# we steal the generic parameters from the tyGenericBody:
for i in countup(1, sonsLen(f) - 1):
var x = PType(idTableGet(c.bindings, f.sons[0].sons[i - 1]))
if x == nil or x.kind in {tyGenericInvokation, tyGenericParam}:
InternalError("wrong instantiated type!")
put(c.bindings, f.sons[i], x)
of tyAnd:
for branch in f.sons:
if typeRel(c, branch, a) == isNone:
return isNone
bindingRet isGeneric
of tyOr:
for branch in f.sons:
if typeRel(c, branch, a) != isNone:
bindingRet isGeneric
return isNone
of tyNot:
for branch in f.sons:
if typeRel(c, branch, a) != isNone:
return isNone
bindingRet isGeneric
of tyAnything:
var prev = PType(idTableGet(c.bindings, f))
if prev == nil:
var concrete = concreteType(c, a)
if concrete != nil and doBind:
put(c.bindings, f, concrete)
return isGeneric
else:
return typeRel(c, prev, a)
of tyBuiltInTypeClass:
var prev = PType(idTableGet(c.bindings, f))
if prev == nil:
let targetKind = f.sons[0].kind
if targetKind == a.skipTypes({tyRange}).kind or
(targetKind in {tyProc, tyPointer} and a.kind == tyNil):
put(c.bindings, f, a)
return isGeneric
else:
return isNone
else:
result = typeRel(c, prev, a)
of tyCompositeTypeClass:
var prev = PType(idTableGet(c.bindings, f))
if prev == nil:
if typeRel(c, f.sons[1], a) != isNone:
put(c.bindings, f, a)
return isGeneric
else:
return isNone
else:
result = typeRel(c, prev, a)
of tyGenericParam, tyTypeClass:
var x = PType(idTableGet(c.bindings, f))
if x == nil:
if c.calleeSym != nil and c.calleeSym.kind == skType and
f.kind == tyGenericParam and not c.typedescMatched:
# XXX: The fact that generic types currently use tyGenericParam for
# their parameters is really a misnomer. tyGenericParam means "match
# any value" and what we need is "match any type", which can be encoded
# by a tyTypeDesc params. Unfortunately, this requires more substantial
# changes in semtypinst and elsewhere.
if a.kind == tyTypeDesc:
if f.sons == nil or f.sons.len == 0:
result = isGeneric
else:
InternalAssert a.sons != nil and a.sons.len > 0
c.typedescMatched = true
result = typeRel(c, f.sons[0], a.sons[0])
else:
result = isNone
else:
if f.sonsLen > 0:
result = typeRel(c, f.lastSon, a)
else:
result = isGeneric
if result == isGeneric:
var concrete = concreteType(c, a)
if concrete == nil:
result = isNone
else:
if doBind: put(c.bindings, f, concrete)
elif a.kind == tyEmpty:
result = isGeneric
elif x.kind == tyGenericParam:
result = isGeneric
else:
result = typeRel(c, x, a) # check if it fits
of tyStatic:
if a.kind == tyStatic:
result = typeRel(c, f.lastSon, a.lastSon)
if result != isNone: put(c.bindings, f, a)
else:
result = isNone
of tyTypeDesc:
var prev = PType(idTableGet(c.bindings, f))
if prev == nil:
if a.kind == tyTypeDesc:
if f.sonsLen == 0:
result = isGeneric
else:
result = typeRel(c, f, a.sons[0])
if result == isGeneric:
put(c.bindings, f, a)
else:
result = isNone
else:
InternalAssert prev.sonsLen == 1
let toMatch = if tfUnresolved in f.flags: a
else: a.sons[0]
result = typeRel(c, prev.sons[0], toMatch)
of tyExpr, tyStmt:
result = isGeneric
of tyProxy:
result = isEqual
else: internalError("typeRel: " & $f.kind)
proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
var m: TCandidate
InitCandidate(c, m, f)
result = typeRel(m, f, a)
proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
f: PType): PType =
result = PType(idTableGet(m.bindings, f))
if result == nil:
result = generateTypeInstance(c, m.bindings, arg, f)
if result == nil:
InternalError(arg.info, "getInstantiatedType")
result = errorType(c)
proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
c: PContext): PNode =
result = newNodeI(kind, arg.info)
if containsGenericType(f):
if not m.proxyMatch:
result.typ = getInstantiatedType(c, arg, m, f)
else:
result.typ = errorType(c)
else:
result.typ = f
if result.typ == nil: InternalError(arg.info, "implicitConv")
addSon(result, ast.emptyNode)
addSon(result, arg)
proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
result = nil
for i in countup(0, len(c.converters) - 1):
var src = c.converters[i].typ.sons[1]
var dest = c.converters[i].typ.sons[0]
# for generic type converters we need to check 'src <- a' before
# 'f <- dest' in order to not break the unification:
# see tests/tgenericconverter:
let srca = typeRel(m, src, a)
if srca notin {isEqual, isGeneric}: continue
let destIsGeneric = containsGenericType(dest)
if destIsGeneric:
dest = generateTypeInstance(c, m.bindings, arg, dest)
let fdest = typeRel(m, f, dest)
if fdest in {isEqual, isGeneric}:
markUsed(arg, c.converters[i])
var s = newSymNode(c.converters[i])
s.typ = c.converters[i].typ
s.info = arg.info
result = newNodeIT(nkHiddenCallConv, arg.info, dest)
addSon(result, s)
addSon(result, copyTree(arg))
inc(m.convMatches)
m.genericConverter = srca == isGeneric or destIsGeneric
return result
proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
# arg.typ can be nil in 'suggest':
if isNil(arg.typ): return nil
var call = newNodeI(nkCall, arg.info)
call.add(f.n.copyTree)
call.add(arg.copyTree)
result = c.semOverloadedCall(c, call, call, RoutineKinds)
if result != nil:
# resulting type must be consistent with the other arguments:
var r = typeRel(m, f.sons[0], result.typ)
if r < isGeneric: return nil
if result.kind == nkCall: result.kind = nkHiddenCallConv
inc(m.convMatches)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
proc matchUserTypeClass*(c: PContext, m: var TCandidate,
arg: PNode, f, a: PType): PNode =
if f.n == nil:
let r = typeRel(m, f, a)
return if r == isGeneric: arg else: nil
var prev = PType(idTableGet(m.bindings, f))
if prev != nil:
if sameType(prev, a): return arg
else: return nil
# pushInfoContext(arg.info)
openScope(c)
inc c.InTypeClass
finally:
dec c.InTypeClass
closeScope(c)
for param in f.n[0]:
var
dummyName: PNode
dummyType: PType
if param.kind == nkVarTy:
dummyName = param[0]
dummyType = makeVarType(c, a)
else:
dummyName = param
dummyType = a
InternalAssert dummyName.kind == nkIdent
var dummyParam = newSym(skType, dummyName.ident, f.sym, f.sym.info)
dummyParam.typ = dummyType
addDecl(c, dummyParam)
for stmt in f.n[3]:
var e = c.semTryExpr(c, copyTree(stmt), bufferErrors = false)
m.errors = bufferedMsgs
clearBufferedMsgs()
if e == nil: return nil
case e.kind
of nkReturnStmt: nil
of nkTypeSection: nil
of nkConstDef: nil
else: nil
result = arg
put(m.bindings, f, a)
proc ParamTypesMatchAux(m: var TCandidate, f, argType: PType,
argSemantized, argOrig: PNode): PNode =
var
fMaybeStatic = f.skipTypes({tyDistinct})
arg = argSemantized
c = m.c
argType = argType
if tfHasStatic in fMaybeStatic.flags:
# XXX: When implicit statics are the default
# this will be done earlier - we just have to
# make sure that static types enter here
var evaluated = c.semTryConstExpr(c, arg)
if evaluated != nil:
arg.typ = newTypeS(tyStatic, c)
arg.typ.sons = @[evaluated.typ]
arg.typ.n = evaluated
argType = arg.typ
var
r: TTypeRelation
a = if c.InTypeClass > 0: argType.skipTypes({tyTypeDesc})
else: argType
case fMaybeStatic.kind
of tyTypeClass, tyParametricTypeClass:
if fMaybeStatic.n != nil:
let match = matchUserTypeClass(c, m, arg, fMaybeStatic, a)
if match != nil:
r = isGeneric
arg = match
else:
r = isNone
else:
r = typeRel(m, f, a)
of tyExpr:
r = isGeneric
put(m.bindings, f, arg.typ)
else:
r = typeRel(m, f, a)
case r
of isConvertible:
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
of isIntConv:
# I'm too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches)
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
of isSubtype:
inc(m.subtypeMatches)
result = implicitConv(nkHiddenSubConv, f, copyTree(arg), m, c)
of isSubrange:
inc(m.subtypeMatches)
#result = copyTree(arg)
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
of isGeneric:
inc(m.genericMatches)
if m.calleeSym != nil and m.calleeSym.kind in {skMacro, skTemplate}:
if f.kind == tyStmt and argOrig.kind == nkDo:
result = argOrig[bodyPos]
elif f.kind == tyTypeDesc:
result = arg
elif f.kind == tyStatic:
result = arg.typ.n
else:
result = argOrig
else:
result = copyTree(arg)
result.typ = getInstantiatedType(c, arg, m, f)
# BUG: f may not be the right key!
if skipTypes(result.typ, abstractVar-{tyTypeDesc}).kind in {tyTuple}:
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
# BUGFIX: use ``result.typ`` and not `f` here
of isFromIntLit:
# too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
of isEqual:
inc(m.exactMatches)
result = copyTree(arg)
if skipTypes(f, abstractVar-{tyTypeDesc}).kind in {tyTuple}:
result = implicitConv(nkHiddenStdConv, f, copyTree(arg), m, c)
of isNone:
# do not do this in ``typeRel`` as it then can't infere T in ``ref T``:
if a.kind == tyProxy:
inc(m.genericMatches)
m.proxyMatch = true
return copyTree(arg)
result = userConvMatch(c, m, f, a, arg)
# check for a base type match, which supports varargs[T] without []
# constructor in a call:
if result == nil and f.kind == tyVarargs:
if f.n != nil:
result = localConvMatch(c, m, f, a, arg)
else:
r = typeRel(m, base(f), a)
if r >= isGeneric:
inc(m.convMatches)
result = copyTree(arg)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
else:
result = userConvMatch(c, m, base(f), a, arg)
proc ParamTypesMatch*(m: var TCandidate, f, a: PType,
arg, argOrig: PNode): PNode =
if arg == nil or arg.kind notin nkSymChoices:
result = ParamTypesMatchAux(m, f, a, arg, argOrig)
else:
# CAUTION: The order depends on the used hashing scheme. Thus it is
# incorrect to simply use the first fitting match. However, to implement
# this correctly is inefficient. We have to copy `m` here to be able to
# roll back the side effects of the unification algorithm.
let c = m.c
var x, y, z: TCandidate
initCandidate(c, x, m.callee)
initCandidate(c, y, m.callee)
initCandidate(c, z, m.callee)
x.calleeSym = m.calleeSym
y.calleeSym = m.calleeSym
z.calleeSym = m.calleeSym
var best = -1
for i in countup(0, sonsLen(arg) - 1):
if arg.sons[i].sym.kind in {skProc, skIterator, skMethod, skConverter}:
copyCandidate(z, m)
var r = typeRel(z, f, arg.sons[i].typ)
if r != isNone:
case x.state
of csEmpty, csNoMatch:
x = z
best = i
x.state = csMatch
of csMatch:
var cmp = cmpCandidates(x, z)
if cmp < 0:
best = i
x = z
elif cmp == 0:
y = z # z is as good as x
if x.state == csEmpty:
result = nil
elif (y.state == csMatch) and (cmpCandidates(x, y) == 0):
if x.state != csMatch:
InternalError(arg.info, "x.state is not csMatch")
# ambiguous: more than one symbol fits
result = nil
else:
# only one valid interpretation found:
markUsed(arg, arg.sons[best].sym)
result = ParamTypesMatchAux(m, f, arg.sons[best].typ, arg.sons[best],
argOrig)
proc setSon(father: PNode, at: int, son: PNode) =
if sonsLen(father) <= at: setlen(father.sons, at + 1)
father.sons[at] = son
# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
if formal.kind == tyExpr and formal.len != 1:
# {tyTypeDesc, tyExpr, tyStmt, tyProxy}:
# a.typ == nil is valid
result = a
elif a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
proc prepareOperand(c: PContext; a: PNode): PNode =
if a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
proc prepareNamedParam(a: PNode) =
if a.sons[0].kind != nkIdent:
var info = a.sons[0].info
a.sons[0] = newIdentNode(considerAcc(a.sons[0]), info)
proc arrayConstr(c: PContext, n: PNode): PType =
result = newTypeS(tyArrayConstr, c)
rawAddSon(result, makeRangeType(c, 0, 0, n.info))
addSonSkipIntLit(result, skipTypes(n.typ, {tyGenericInst, tyVar, tyOrdinal}))
proc arrayConstr(c: PContext, info: TLineInfo): PType =
result = newTypeS(tyArrayConstr, c)
rawAddSon(result, makeRangeType(c, 0, -1, info))
rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
proc incrIndexType(t: PType) =
assert t.kind == tyArrayConstr
inc t.sons[0].n.sons[1].intVal
proc matchesAux(c: PContext, n, nOrig: PNode,
m: var TCandidate, marker: var TIntSet) =
template checkConstraint(n: expr) {.immediate, dirty.} =
if not formal.constraint.isNil:
if matchNodeKinds(formal.constraint, n):
# better match over other routines with no such restriction:
inc(m.genericMatches, 100)
else:
m.state = csNoMatch
return
var
# iterates over formal parameters
f = if m.callee.kind != tyGenericBody: 1
else: 0
# iterates over the actual given arguments
a = 1
m.state = csMatch # until proven otherwise
m.call = newNodeI(n.kind, n.info)
m.call.typ = base(m.callee) # may be nil
var formalLen = m.callee.n.len
addSon(m.call, copyTree(n.sons[0]))
var container: PNode = nil # constructed container
var formal: PSym = nil
while a < n.len:
if n.sons[a].kind == nkExprEqExpr:
# named param
# check if m.callee has such a param:
prepareNamedParam(n.sons[a])
if n.sons[a].sons[0].kind != nkIdent:
LocalError(n.sons[a].info, errNamedParamHasToBeIdent)
m.state = csNoMatch
return
formal = getSymFromList(m.callee.n, n.sons[a].sons[0].ident, 1)
if formal == nil:
# no error message!
m.state = csNoMatch
return
if ContainsOrIncl(marker, formal.position):
# already in namedParams:
LocalError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
m.state = csNoMatch
return
m.baseTypeMatch = false
n.sons[a].sons[1] = prepareOperand(c, formal.typ, n.sons[a].sons[1])
n.sons[a].typ = n.sons[a].sons[1].typ
var arg = ParamTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a].sons[1], nOrig.sons[a].sons[1])
if arg == nil:
m.state = csNoMatch
return
checkConstraint(n.sons[a].sons[1])
if m.baseTypeMatch:
assert(container == nil)
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
addSon(container, arg)
setSon(m.call, formal.position + 1, container)
if f != formalLen - 1: container = nil
else:
setSon(m.call, formal.position + 1, arg)
else:
# unnamed param
if f >= formalLen:
# too many arguments?
if tfVarArgs in m.callee.flags:
# is ok... but don't increment any counters...
# we have no formal here to snoop at:
n.sons[a] = prepareOperand(c, n.sons[a])
if skipTypes(n.sons[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
addSon(m.call, implicitConv(nkHiddenStdConv, getSysType(tyCString),
copyTree(n.sons[a]), m, c))
else:
addSon(m.call, copyTree(n.sons[a]))
elif formal != nil:
m.baseTypeMatch = false
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
var arg = ParamTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a], nOrig.sons[a])
if (arg != nil) and m.baseTypeMatch and (container != nil):
addSon(container, arg)
incrIndexType(container.typ)
else:
m.state = csNoMatch
return
else:
m.state = csNoMatch
return
else:
if m.callee.n.sons[f].kind != nkSym:
InternalError(n.sons[a].info, "matches")
return
formal = m.callee.n.sons[f].sym
if ContainsOrIncl(marker, formal.position):
# already in namedParams:
LocalError(n.sons[a].info, errCannotBindXTwice, formal.name.s)
m.state = csNoMatch
return
m.baseTypeMatch = false
n.sons[a] = prepareOperand(c, formal.typ, n.sons[a])
var arg = ParamTypesMatch(m, formal.typ, n.sons[a].typ,
n.sons[a], nOrig.sons[a])
if arg == nil:
m.state = csNoMatch
return
if m.baseTypeMatch:
assert(container == nil)
container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg))
addSon(container, arg)
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
if f != formalLen - 1: container = nil
else:
setSon(m.call, formal.position + 1, arg)
checkConstraint(n.sons[a])
inc(a)
inc(f)
proc semFinishOperands*(c: PContext, n: PNode) =
# this needs to be called to ensure that after overloading resolution every
# argument has been sem'checked:
for i in 1 .. <n.len:
n.sons[i] = prepareOperand(c, n.sons[i])
proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
# for 'suggest' support:
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
if m.state == csNoMatch: return
# check that every formal parameter got a value:
var f = 1
while f < sonsLen(m.callee.n):
var formal = m.callee.n.sons[f].sym
if not ContainsOrIncl(marker, formal.position):
if formal.ast == nil:
if formal.typ.kind == tyVarargs:
var container = newNodeIT(nkBracket, n.info, arrayConstr(c, n.info))
addSon(m.call, implicitConv(nkHiddenStdConv, formal.typ,
container, m, c))
else:
# no default value
m.state = csNoMatch
break
else:
# use default value:
setSon(m.call, formal.position + 1, copyTree(formal.ast))
inc(f)
proc argtypeMatches*(c: PContext, f, a: PType): bool =
var m: TCandidate
initCandidate(c, m, f)
let res = paramTypesMatch(m, f, a, ast.emptyNode, nil)
#instantiateGenericConverters(c, res, m)
# XXX this is used by patterns.nim too; I think it's better to not
# instantiate generic converters for that
result = res != nil
include suggest
tests:
var dummyOwner = newSym(skModule, getIdent("test_module"), nil, UnknownLineInfo())
proc `|` (t1, t2: PType): PType =
result = newType(tyOr, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `&` (t1, t2: PType): PType =
result = newType(tyAnd, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `!` (t: PType): PType =
result = newType(tyNot, dummyOwner)
result.rawAddSon(t)
proc seq(t: PType): PType =
result = newType(tySequence, dummyOwner)
result.rawAddSon(t)
proc array(x: int, t: PType): PType =
result = newType(tyArray, dummyOwner)
var n = newNodeI(nkRange, UnknownLineInfo())
addSon(n, newIntNode(nkIntLit, 0))
addSon(n, newIntNode(nkIntLit, x))
let range = newType(tyRange, dummyOwner)
result.rawAddSon(range)
result.rawAddSon(t)
suite "type classes":
let
int = newType(tyInt, dummyOwner)
float = newType(tyFloat, dummyOwner)
string = newType(tyString, dummyOwner)
ordinal = newType(tyOrdinal, dummyOwner)
any = newType(tyAnything, dummyOwner)
number = int | float
var TFoo = newType(tyObject, dummyOwner)
TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, UnknownLineInfo())
var T1 = newType(tyGenericParam, dummyOwner)
T1.sym = newSym(skType, getIdent"T1", dummyOwner, UnknownLineInfo())
T1.sym.position = 0
var T2 = newType(tyGenericParam, dummyOwner)
T2.sym = newSym(skType, getIdent"T2", dummyOwner, UnknownLineInfo())
T2.sym.position = 1
setup:
var c: TCandidate
InitCandidate(nil, c, nil)
template yes(x, y) =
test astToStr(x) & " is " & astToStr(y):
check typeRel(c, y, x) == isGeneric
template no(x, y) =
test astToStr(x) & " is not " & astToStr(y):
check typeRel(c, y, x) == isNone
yes seq(any), array(10, int) | seq(any)
# Sure, seq[any] is directly included
yes seq(int), seq(any)
yes seq(int), seq(number)
# Sure, the int sequence is certainly
# part of the number sequences (and all sequences)
no seq(any), seq(float)
# Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
yes seq(int|string), seq(any)
# Sure
yes seq(int&string), seq(any)
# Again
yes seq(int&string), seq(int)
# A bit more complicated
# seq[int&string] is not a real type, but it's analogous to
# seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
no seq(int|string), seq(int|float)
# Nope, seq[string] is not included in not included in
# the seq[int|float] set
no seq(!(int|string)), seq(string)
# A sequence that is neither seq[int] or seq[string]
# is obviously not seq[string]
no seq(!int), seq(number)
# Now your head should start to hurt a bit
# A sequence that is not seq[int] is not necessarily a number sequence
# it could well be seq[string] for example
yes seq(!(int|string)), seq(!string)
# all sequnece types besides seq[int] and seq[string]
# are subset of all sequence types that are not seq[string]
no seq(!(int|string)), seq(!(string|TFoo))
# Nope, seq[TFoo] is included in the first set, but not in the second
no seq(!string), seq(!number)
# Nope, seq[int] in included in the first set, but not in the second
yes seq(!number), seq(any)
yes seq(!int), seq(any)
no seq(any), seq(!any)
no seq(!int), seq(!any)
yes int, ordinal
no string, ordinal
|