summary refs log tree commit diff stats
path: root/compiler/transf.nim
blob: 7ab4ccae234c9826033d9957b51b97c434c265fe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# This module implements the transformator. It transforms the syntax tree
# to ease the work of the code generators. Does some transformations:
#
# * inlines iterators
# * inlines constants
# * performs constant folding
# * converts "continue" to "break"; disambiguates "break"
# * introduces method dispatchers
# * performs lambda lifting for closure support
# * transforms 'defer' into a 'try finally' statement

import std / tables

import
  options, ast, astalgo, trees, msgs,
  idents, renderer, types, semfold, magicsys, cgmeth,
  lowerings, liftlocals,
  modulegraphs, lineinfos

when defined(nimPreviewSlimSystem):
  import std/assertions

type
  TransformFlag* = enum
    useCache, keepOpenArrayConversions, force
  TransformFlags* = set[TransformFlag]

proc transformBody*(g: ModuleGraph; idgen: IdGenerator; prc: PSym; flags: TransformFlags): PNode

import closureiters, lambdalifting

type
  PTransCon = ref object # part of TContext; stackable
    mapping: Table[ItemId, PNode]     # mapping from symbols to nodes
    owner: PSym               # current owner
    forStmt: PNode            # current for stmt
    forLoopBody: PNode   # transformed for loop body
    yieldStmts: int           # we count the number of yield statements,
                              # because we need to introduce new variables
                              # if we encounter the 2nd yield statement
    next: PTransCon           # for stacking

  PTransf = ref object
    module: PSym
    transCon: PTransCon      # top of a TransCon stack
    inlining: int            # > 0 if we are in inlining context (copy vars)
    contSyms, breakSyms: seq[PSym]  # to transform 'continue' and 'break'
    deferDetected, tooEarly: bool
    isIntroducingNewLocalVars: bool  # true if we are in `introducingNewLocalVars` (don't transform yields)
    inAddr: bool
    flags: TransformFlags
    graph: ModuleGraph
    idgen: IdGenerator

proc newTransNode(a: PNode): PNode {.inline.} =
  result = shallowCopy(a)

proc newTransNode(kind: TNodeKind, info: TLineInfo,
                  sons: int): PNode {.inline.} =
  var x = newNodeI(kind, info)
  newSeq(x.sons, sons)
  result = x

proc newTransNode(kind: TNodeKind, n: PNode,
                  sons: int): PNode {.inline.} =
  var x = newNodeIT(kind, n.info, n.typ)
  newSeq(x.sons, sons)
#  x.flags = n.flags
  result = x

proc newTransCon(owner: PSym): PTransCon =
  assert owner != nil
  result = PTransCon(mapping: initTable[ItemId, PNode](), owner: owner)

proc pushTransCon(c: PTransf, t: PTransCon) =
  t.next = c.transCon
  c.transCon = t

proc popTransCon(c: PTransf) =
  if (c.transCon == nil): internalError(c.graph.config, "popTransCon")
  c.transCon = c.transCon.next

proc getCurrOwner(c: PTransf): PSym =
  if c.transCon != nil: result = c.transCon.owner
  else: result = c.module

proc newTemp(c: PTransf, typ: PType, info: TLineInfo): PNode =
  let r = newSym(skTemp, getIdent(c.graph.cache, genPrefix), c.idgen, getCurrOwner(c), info)
  r.typ = typ #skipTypes(typ, {tyGenericInst, tyAlias, tySink})
  incl(r.flags, sfFromGeneric)
  let owner = getCurrOwner(c)
  result = newSymNode(r)

proc transform(c: PTransf, n: PNode): PNode

proc transformSons(c: PTransf, n: PNode): PNode =
  result = newTransNode(n)
  for i in 0..<n.len:
    result[i] = transform(c, n[i])

proc newAsgnStmt(c: PTransf, kind: TNodeKind, le: PNode, ri: PNode; isFirstWrite: bool): PNode =
  result = newTransNode(kind, ri.info, 2)
  result[0] = le
  if isFirstWrite:
    le.flags.incl nfFirstWrite
  result[1] = ri

proc transformSymAux(c: PTransf, n: PNode): PNode =
  let s = n.sym
  if s.typ != nil and s.typ.callConv == ccClosure:
    if s.kind in routineKinds:
      discard transformBody(c.graph, c.idgen, s, {useCache}+c.flags)
    if s.kind == skIterator:
      if c.tooEarly: return n
      else: return liftIterSym(c.graph, n, c.idgen, getCurrOwner(c))
    elif s.kind in {skProc, skFunc, skConverter, skMethod} and not c.tooEarly:
      # top level .closure procs are still somewhat supported for 'Nake':
      return makeClosure(c.graph, c.idgen, s, nil, n.info)
  #elif n.sym.kind in {skVar, skLet} and n.sym.typ.callConv == ccClosure:
  #  echo n.info, " come heer for ", c.tooEarly
  #  if not c.tooEarly:
  var b: PNode
  var tc = c.transCon
  if sfBorrow in s.flags and s.kind in routineKinds:
    # simply exchange the symbol:
    var s = s
    while true:
      # Skips over all borrowed procs getting the last proc symbol without an implementation
      let body = getBody(c.graph, s)
      if body.kind == nkSym and sfBorrow in body.sym.flags and getBody(c.graph, body.sym).kind == nkSym:
        s = body.sym
      else:
        break
    b = getBody(c.graph, s)
    if b.kind != nkSym: internalError(c.graph.config, n.info, "wrong AST for borrowed symbol")
    b = newSymNode(b.sym, n.info)
  elif c.inlining > 0:
    # see bug #13596: we use ref-based equality in the DFA for destruction
    # injections so we need to ensure unique nodes after iterator inlining
    # which can lead to duplicated for loop bodies! Consider:
    #[
      while remaining > 0:
        if ending == nil:
          yield ms
          break
        ...
        yield ms
    ]#
    b = newSymNode(n.sym, n.info)
  else:
    b = n
  while tc != nil:
    result = getOrDefault(tc.mapping, b.sym.itemId)
    if result != nil:
      # this slightly convoluted way ensures the line info stays correct:
      if result.kind == nkSym:
        result = copyNode(result)
        result.info = n.info
      return
    tc = tc.next
  result = b

proc transformSym(c: PTransf, n: PNode): PNode =
  result = transformSymAux(c, n)

proc freshVar(c: PTransf; v: PSym): PNode =
  let owner = getCurrOwner(c)
  var newVar = copySym(v, c.idgen)
  incl(newVar.flags, sfFromGeneric)
  newVar.owner = owner
  result = newSymNode(newVar)

proc transformVarSection(c: PTransf, v: PNode): PNode =
  result = newTransNode(v)
  for i in 0..<v.len:
    var it = v[i]
    if it.kind == nkCommentStmt:
      result[i] = it
    elif it.kind == nkIdentDefs:
      var vn = it[0]
      if vn.kind == nkPragmaExpr: vn = vn[0]
      if vn.kind == nkSym:
        internalAssert(c.graph.config, it.len == 3)
        let x = freshVar(c, vn.sym)
        c.transCon.mapping[vn.sym.itemId] = x
        var defs = newTransNode(nkIdentDefs, it.info, 3)
        if importantComments(c.graph.config):
          # keep documentation information:
          defs.comment = it.comment
        defs[0] = x
        defs[1] = it[1]
        defs[2] = transform(c, it[2])
        if x.kind == nkSym: x.sym.ast = defs[2]
        result[i] = defs
      else:
        # has been transformed into 'param.x' for closure iterators, so just
        # transform it:
        result[i] = transform(c, it)
    else:
      if it.kind != nkVarTuple:
        internalError(c.graph.config, it.info, "transformVarSection: not nkVarTuple")
      var defs = newTransNode(it.kind, it.info, it.len)
      for j in 0..<it.len-2:
        if it[j].kind == nkSym:
          let x = freshVar(c, it[j].sym)
          c.transCon.mapping[it[j].sym.itemId] = x
          defs[j] = x
        else:
          defs[j] = transform(c, it[j])
      assert(it[^2].kind == nkEmpty)
      defs[^2] = newNodeI(nkEmpty, it.info)
      defs[^1] = transform(c, it[^1])
      result[i] = defs

proc transformConstSection(c: PTransf, v: PNode): PNode =
  result = v
  when false:
    result = newTransNode(v)
    for i in 0..<v.len:
      var it = v[i]
      if it.kind == nkCommentStmt:
        result[i] = it
      else:
        if it.kind != nkConstDef: internalError(c.graph.config, it.info, "transformConstSection")
        if it[0].kind != nkSym:
          debug it[0]
          internalError(c.graph.config, it.info, "transformConstSection")

        result[i] = it

proc hasContinue(n: PNode): bool =
  case n.kind
  of nkEmpty..nkNilLit, nkForStmt, nkParForStmt, nkWhileStmt: result = false
  of nkContinueStmt: result = true
  else:
    result = false
    for i in 0..<n.len:
      if hasContinue(n[i]): return true

proc newLabel(c: PTransf, n: PNode): PSym =
  result = newSym(skLabel, getIdent(c.graph.cache, genPrefix), c.idgen, getCurrOwner(c), n.info)

proc transformBlock(c: PTransf, n: PNode): PNode =
  var labl: PSym
  if c.inlining > 0:
    labl = newLabel(c, n[0])
    c.transCon.mapping[n[0].sym.itemId] = newSymNode(labl)
  else:
    labl =
      if n[0].kind != nkEmpty:
        n[0].sym  # already named block? -> Push symbol on the stack
      else:
        newLabel(c, n)
  c.breakSyms.add(labl)
  result = transformSons(c, n)
  discard c.breakSyms.pop
  result[0] = newSymNode(labl)

proc transformLoopBody(c: PTransf, n: PNode): PNode =
  # What if it contains "continue" and "break"? "break" needs
  # an explicit label too, but not the same!

  # We fix this here by making every 'break' belong to its enclosing loop
  # and changing all breaks that belong to a 'block' by annotating it with
  # a label (if it hasn't one already).
  if hasContinue(n):
    let labl = newLabel(c, n)
    c.contSyms.add(labl)

    result = newTransNode(nkBlockStmt, n.info, 2)
    result[0] = newSymNode(labl)
    result[1] = transform(c, n)
    discard c.contSyms.pop()
  else:
    result = transform(c, n)

proc transformWhile(c: PTransf; n: PNode): PNode =
  if c.inlining > 0:
    result = transformSons(c, n)
  else:
    let labl = newLabel(c, n)
    c.breakSyms.add(labl)
    result = newTransNode(nkBlockStmt, n.info, 2)
    result[0] = newSymNode(labl)

    var body = newTransNode(n)
    for i in 0..<n.len-1:
      body[i] = transform(c, n[i])
    body[^1] = transformLoopBody(c, n[^1])
    result[1] = body
    discard c.breakSyms.pop

proc transformBreak(c: PTransf, n: PNode): PNode =
  result = transformSons(c, n)
  if n[0].kind == nkEmpty and c.breakSyms.len > 0:
    let labl = c.breakSyms[c.breakSyms.high]
    result[0] = newSymNode(labl)

proc introduceNewLocalVars(c: PTransf, n: PNode): PNode =
  case n.kind
  of nkSym:
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
    # nothing to be done for leaves:
    result = n
  of nkVarSection, nkLetSection:
    result = transformVarSection(c, n)
  of nkClosure:
    # it can happen that for-loop-inlining produced a fresh
    # set of variables, including some computed environment
    # (bug #2604). We need to patch this environment here too:
    let a = n[1]
    if a.kind == nkSym:
      n[1] = transformSymAux(c, a)
    return n
  of nkProcDef: # todo optimize nosideeffects?
    result = newTransNode(n)
    let x = newSymNode(copySym(n[namePos].sym, c.idgen))
    c.transCon.mapping[n[namePos].sym.itemId] = x
    result[namePos] = x # we have to copy proc definitions for iters
    for i in 1..<n.len:
      result[i] = introduceNewLocalVars(c, n[i])
    result[namePos].sym.ast = result
  else:
    result = newTransNode(n)
    for i in 0..<n.len:
      result[i] = introduceNewLocalVars(c, n[i])

proc transformAsgn(c: PTransf, n: PNode): PNode =
  let rhs = n[1]

  if rhs.kind != nkTupleConstr:
    return transformSons(c, n)

  # Unpack the tuple assignment into N temporary variables and then pack them
  # into a tuple: this allows us to get the correct results even when the rhs
  # depends on the value of the lhs
  let letSection = newTransNode(nkLetSection, n.info, rhs.len)
  let newTupleConstr = newTransNode(nkTupleConstr, n.info, rhs.len)
  for i, field in rhs:
    let val = if field.kind == nkExprColonExpr: field[1] else: field
    let def = newTransNode(nkIdentDefs, field.info, 3)
    def[0] = newTemp(c, val.typ, field.info)
    def[1] = newNodeI(nkEmpty, field.info)
    def[2] = transform(c, val)
    letSection[i] = def
    # NOTE: We assume the constructor fields are in the correct order for the
    # given tuple type
    newTupleConstr[i] = def[0]

  newTupleConstr.typ = rhs.typ

  let asgnNode = newTransNode(nkAsgn, n.info, 2)
  asgnNode[0] = transform(c, n[0])
  asgnNode[1] = newTupleConstr

  result = newTransNode(nkStmtList, n.info, 2)
  result[0] = letSection
  result[1] = asgnNode

proc transformYield(c: PTransf, n: PNode): PNode =
  proc asgnTo(lhs: PNode, rhs: PNode): PNode =
    # Choose the right assignment instruction according to the given ``lhs``
    # node since it may not be a nkSym (a stack-allocated skForVar) but a
    # nkDotExpr (a heap-allocated slot into the envP block)
    case lhs.kind
    of nkSym:
      internalAssert c.graph.config, lhs.sym.kind == skForVar
      result = newAsgnStmt(c, nkFastAsgn, lhs, rhs, false)
    of nkDotExpr:
      result = newAsgnStmt(c, nkAsgn, lhs, rhs, false)
    else:
      result = nil
      internalAssert c.graph.config, false
  result = newTransNode(nkStmtList, n.info, 0)
  var e = n[0]
  # c.transCon.forStmt.len == 3 means that there is one for loop variable
  # and thus no tuple unpacking:
  if e.typ.isNil: return result # can happen in nimsuggest for unknown reasons
  if c.transCon.forStmt.len != 3:
    e = skipConv(e)
    if e.kind == nkTupleConstr:
      for i in 0..<e.len:
        var v = e[i]
        if v.kind == nkExprColonExpr: v = v[1]
        if c.transCon.forStmt[i].kind == nkVarTuple:
          for j in 0..<c.transCon.forStmt[i].len-1:
            let lhs = c.transCon.forStmt[i][j]
            let rhs = transform(c, newTupleAccess(c.graph, v, j))
            result.add(asgnTo(lhs, rhs))
        else:
          let lhs = c.transCon.forStmt[i]
          let rhs = transform(c, v)
          result.add(asgnTo(lhs, rhs))
    elif e.kind notin {nkAddr, nkHiddenAddr}: # no need to generate temp for address operation
      # TODO do not use temp for nodes which cannot have side-effects
      var tmp = newTemp(c, e.typ, e.info)
      let v = newNodeI(nkVarSection, e.info)
      v.addVar(tmp, e)

      result.add transform(c, v)

      for i in 0..<c.transCon.forStmt.len - 2:
        let lhs = c.transCon.forStmt[i]
        let rhs = transform(c, newTupleAccess(c.graph, tmp, i))
        result.add(asgnTo(lhs, rhs))
    else:
      for i in 0..<c.transCon.forStmt.len - 2:
        let lhs = c.transCon.forStmt[i]
        let rhs = transform(c, newTupleAccess(c.graph, e, i))
        result.add(asgnTo(lhs, rhs))
  else:
    if c.transCon.forStmt[0].kind == nkVarTuple:
      var notLiteralTuple = false # we don't generate temp for tuples with const value: (1, 2, 3)
      let ev = e.skipConv
      if ev.kind == nkTupleConstr:
        for i in ev:
          if not isConstExpr(i):
            notLiteralTuple = true
            break
      else:
        notLiteralTuple = true

      if e.kind notin {nkAddr, nkHiddenAddr} and notLiteralTuple:
        # TODO do not use temp for nodes which cannot have side-effects
        var tmp = newTemp(c, e.typ, e.info)
        let v = newNodeI(nkVarSection, e.info)
        v.addVar(tmp, e)

        result.add transform(c, v)
        for i in 0..<c.transCon.forStmt[0].len-1:
          let lhs = c.transCon.forStmt[0][i]
          let rhs = transform(c, newTupleAccess(c.graph, tmp, i))
          result.add(asgnTo(lhs, rhs))
      else:
        for i in 0..<c.transCon.forStmt[0].len-1:
          let lhs = c.transCon.forStmt[0][i]
          let rhs = transform(c, newTupleAccess(c.graph, e, i))
          result.add(asgnTo(lhs, rhs))
    else:
      let lhs = c.transCon.forStmt[0]
      let rhs = transform(c, e)
      result.add(asgnTo(lhs, rhs))


  # bug #23536; note that the info of forLoopBody should't change
  for idx in 0 ..< result.len:
    var changeNode = result[idx]
    changeNode.info = c.transCon.forStmt.info
    for i, child in changeNode:
      child.info = changeNode.info

  inc(c.transCon.yieldStmts)
  if c.transCon.yieldStmts <= 1:
    # common case
    result.add(c.transCon.forLoopBody)
  else:
    # we need to introduce new local variables:
    c.isIntroducingNewLocalVars = true # don't transform yields when introducing new local vars
    result.add(introduceNewLocalVars(c, c.transCon.forLoopBody))
    c.isIntroducingNewLocalVars = false

proc transformAddrDeref(c: PTransf, n: PNode, kinds: TNodeKinds): PNode =
  result = transformSons(c, n)
  # inlining of 'var openarray' iterators; bug #19977
  if n.typ.kind != tyOpenArray and (c.graph.config.backend == backendCpp or sfCompileToCpp in c.module.flags): return
  var n = result
  case n[0].kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    var m = n[0][0]
    if m.kind in kinds:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n[0][0] = m[0]
      result = n[0]
      if n.typ.skipTypes(abstractVar).kind != tyOpenArray:
        result.typ = n.typ
      elif n.typ.skipTypes(abstractInst).kind in {tyVar}:
        result.typ = toVar(result.typ, n.typ.skipTypes(abstractInst).kind, c.idgen)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var m = n[0][1]
    if m.kind in kinds:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n[0][1] = m[0]
      result = n[0]
      if n.typ.skipTypes(abstractVar).kind != tyOpenArray:
        result.typ = n.typ
      elif n.typ.skipTypes(abstractInst).kind in {tyVar}:
        result.typ = toVar(result.typ, n.typ.skipTypes(abstractInst).kind, c.idgen)
  else:
    if n[0].kind in kinds:
      # addr ( deref ( x )) --> x
      result = n[0][0]
      if n.typ.skipTypes(abstractVar).kind != tyOpenArray:
        result.typ = n.typ

proc generateThunk(c: PTransf; prc: PNode, dest: PType): PNode =
  ## Converts 'prc' into '(thunk, nil)' so that it's compatible with
  ## a closure.

  # we cannot generate a proper thunk here for GC-safety reasons
  # (see internal documentation):
  if jsNoLambdaLifting in c.graph.config.legacyFeatures and c.graph.config.backend == backendJs: return prc
  result = newNodeIT(nkClosure, prc.info, dest)
  var conv = newNodeIT(nkHiddenSubConv, prc.info, dest)
  conv.add(newNodeI(nkEmpty, prc.info))
  conv.add(prc)
  if prc.kind == nkClosure:
    internalError(c.graph.config, prc.info, "closure to closure created")
  result.add(conv)
  result.add(newNodeIT(nkNilLit, prc.info, getSysType(c.graph, prc.info, tyNil)))

proc transformConv(c: PTransf, n: PNode): PNode =
  # numeric types need range checks:
  var dest = skipTypes(n.typ, abstractVarRange)
  var source = skipTypes(n[1].typ, abstractVarRange)
  case dest.kind
  of tyInt..tyInt64, tyEnum, tyChar, tyUInt8..tyUInt32:
    # we don't include uint and uint64 here as these are no ordinal types ;-)
    if not isOrdinalType(source):
      # float -> int conversions. ugh.
      result = transformSons(c, n)
    elif firstOrd(c.graph.config, n.typ) <= firstOrd(c.graph.config, n[1].typ) and
        lastOrd(c.graph.config, n[1].typ) <= lastOrd(c.graph.config, n.typ):
      # BUGFIX: simply leave n as it is; we need a nkConv node,
      # but no range check:
      result = transformSons(c, n)
    else:
      # generate a range check:
      if dest.kind == tyInt64 or source.kind == tyInt64:
        result = newTransNode(nkChckRange64, n, 3)
      else:
        result = newTransNode(nkChckRange, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n[1])
      result[1] = newIntTypeNode(firstOrd(c.graph.config, dest), dest)
      result[2] = newIntTypeNode(lastOrd(c.graph.config, dest), dest)
  of tyFloat..tyFloat128:
    # XXX int64 -> float conversion?
    if skipTypes(n.typ, abstractVar).kind == tyRange:
      result = newTransNode(nkChckRangeF, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n[1])
      result[1] = copyTree(dest.n[0])
      result[2] = copyTree(dest.n[1])
    else:
      result = transformSons(c, n)
  of tyOpenArray, tyVarargs:
    if keepOpenArrayConversions in c.flags:
      result = transformSons(c, n)
    else:
      result = transform(c, n[1])
      #result = transformSons(c, n)
      result.typ = takeType(n.typ, n[1].typ, c.graph, c.idgen)
      #echo n.info, " came here and produced ", typeToString(result.typ),
      #   " from ", typeToString(n.typ), " and ", typeToString(n[1].typ)
  of tyCstring:
    if source.kind == tyString:
      result = newTransNode(nkStringToCString, n, 1)
      result[0] = transform(c, n[1])
    else:
      result = transformSons(c, n)
  of tyString:
    if source.kind == tyCstring:
      result = newTransNode(nkCStringToString, n, 1)
      result[0] = transform(c, n[1])
    else:
      result = transformSons(c, n)
  of tyRef, tyPtr:
    dest = skipTypes(dest, abstractPtrs)
    source = skipTypes(source, abstractPtrs)
    if source.kind == tyObject:
      var diff = inheritanceDiff(dest, source)
      if diff < 0:
        result = newTransNode(nkObjUpConv, n, 1)
        result[0] = transform(c, n[1])
      elif diff > 0 and diff != high(int):
        result = newTransNode(nkObjDownConv, n, 1)
        result[0] = transform(c, n[1])
      else:
        result = transform(c, n[1])
        result.typ = n.typ
    else:
      result = transformSons(c, n)
  of tyObject:
    var diff = inheritanceDiff(dest, source)
    if diff < 0:
      result = newTransNode(nkObjUpConv, n, 1)
      result[0] = transform(c, n[1])
    elif diff > 0 and diff != high(int):
      result = newTransNode(nkObjDownConv, n, 1)
      result[0] = transform(c, n[1])
    else:
      result = transform(c, n[1])
      result.typ = n.typ
  of tyGenericParam, tyOrdinal:
    result = transform(c, n[1])
    # happens sometimes for generated assignments, etc.
  of tyProc:
    result = transformSons(c, n)
    if dest.callConv == ccClosure and source.callConv == ccNimCall:
      result = generateThunk(c, result[1], dest)
  else:
    result = transformSons(c, n)

type
  TPutArgInto = enum
    paDirectMapping, paFastAsgn, paFastAsgnTakeTypeFromArg
    paVarAsgn, paComplexOpenarray, paViaIndirection

proc putArgInto(arg: PNode, formal: PType): TPutArgInto =
  # This analyses how to treat the mapping "formal <-> arg" in an
  # inline context.
  if formal.kind == tyTypeDesc: return paDirectMapping
  if skipTypes(formal, abstractInst).kind in {tyOpenArray, tyVarargs}:
    case arg.kind
    of nkStmtListExpr:
      return paComplexOpenarray
    of nkBracket:
      return paFastAsgnTakeTypeFromArg
    else:
      # XXX incorrect, causes #13417 when `arg` has side effects.
      return paDirectMapping
  case arg.kind
  of nkEmpty..nkNilLit:
    result = paDirectMapping
  of nkDotExpr, nkDerefExpr, nkHiddenDeref:
    result = putArgInto(arg[0], formal)
  of nkAddr, nkHiddenAddr:
    result = putArgInto(arg[0], formal)
    if result == paViaIndirection: result = paFastAsgn
  of nkCurly, nkBracket:
    for i in 0..<arg.len:
      if putArgInto(arg[i], formal) != paDirectMapping:
        return paFastAsgn
    result = paDirectMapping
  of nkPar, nkTupleConstr, nkObjConstr:
    for i in 0..<arg.len:
      let a = if arg[i].kind == nkExprColonExpr: arg[i][1]
              else: arg[0]
      if putArgInto(a, formal) != paDirectMapping:
        return paFastAsgn
    result = paDirectMapping
  of nkBracketExpr:
    if skipTypes(formal, abstractInst).kind in {tyVar, tyLent}: result = paVarAsgn
    else: result = paViaIndirection
  else:
    if skipTypes(formal, abstractInst).kind in {tyVar, tyLent}: result = paVarAsgn
    else: result = paFastAsgn

proc findWrongOwners(c: PTransf, n: PNode) =
  if n.kind == nkVarSection:
    let x = n[0][0]
    if x.kind == nkSym and x.sym.owner != getCurrOwner(c):
      internalError(c.graph.config, x.info, "bah " & x.sym.name.s & " " &
        x.sym.owner.name.s & " " & getCurrOwner(c).name.s)
  else:
    for i in 0..<n.safeLen: findWrongOwners(c, n[i])

proc isSimpleIteratorVar(c: PTransf; iter: PSym; call: PNode; owner: PSym): bool =
  proc rec(n: PNode; owner: PSym; dangerousYields: var int) =
    case n.kind
    of nkEmpty..nkNilLit: discard
    of nkYieldStmt:
      if n[0].kind == nkSym and n[0].sym.owner == owner:
        discard "good: yield a single variable that we own"
      else:
        inc dangerousYields
    else:
      for c in n: rec(c, owner, dangerousYields)

  proc recSym(n: PNode; owner: PSym; sameOwner: var bool) =
    case n.kind
    of {nkEmpty..nkNilLit} - {nkSym}: discard
    of nkSym:
      if n.sym.owner != owner:
        sameOwner = false
    else:
      for c in n: recSym(c, owner, sameOwner)

  var dangerousYields = 0
  rec(getBody(c.graph, iter), iter, dangerousYields)
  result = dangerousYields == 0
  # the parameters should be owned by the owner
  # bug #22237
  for i in 1..<call.len:
    recSym(call[i], owner, result)

template destructor(t: PType): PSym = getAttachedOp(c.graph, t, attachedDestructor)

proc transformFor(c: PTransf, n: PNode): PNode =
  # generate access statements for the parameters (unless they are constant)
  # put mapping from formal parameters to actual parameters
  if n.kind != nkForStmt: internalError(c.graph.config, n.info, "transformFor")

  var call = n[^2]

  let labl = newLabel(c, n)
  result = newTransNode(nkBlockStmt, n.info, 2)
  result[0] = newSymNode(labl)
  if call.typ.isNil:
    # see bug #3051
    result[1] = newNode(nkEmpty)
    return result
  c.breakSyms.add(labl)
  if call.kind notin nkCallKinds or call[0].kind != nkSym or
      call[0].typ.skipTypes(abstractInst).callConv == ccClosure:
    result[1] = n
    result[1][^1] = transformLoopBody(c, n[^1])
    result[1][^2] = transform(c, n[^2])
    result[1] = lambdalifting.liftForLoop(c.graph, result[1], c.idgen, getCurrOwner(c))
    discard c.breakSyms.pop
    return result

  #echo "transforming: ", renderTree(n)
  var stmtList = newTransNode(nkStmtList, n.info, 0)
  result[1] = stmtList

  var loopBody = transformLoopBody(c, n[^1])

  discard c.breakSyms.pop

  let iter = call[0].sym

  var v = newNodeI(nkVarSection, n.info)
  for i in 0..<n.len - 2:
    if n[i].kind == nkVarTuple:
      for j in 0..<n[i].len-1:
        addVar(v, copyTree(n[i][j])) # declare new vars
    else:
      if n[i].kind == nkSym and isSimpleIteratorVar(c, iter, call, n[i].sym.owner):
        incl n[i].sym.flags, sfCursor
      addVar(v, copyTree(n[i])) # declare new vars
  stmtList.add(v)


  # Bugfix: inlined locals belong to the invoking routine, not to the invoked
  # iterator!
  var newC = newTransCon(getCurrOwner(c))
  newC.forStmt = n
  newC.forLoopBody = loopBody
  # this can fail for 'nimsuggest' and 'check':
  if iter.kind != skIterator: return result
  # generate access statements for the parameters (unless they are constant)
  pushTransCon(c, newC)
  for i in 1..<call.len:
    var arg = transform(c, call[i])
    let ff = skipTypes(iter.typ, abstractInst)
    # can happen for 'nim check':
    if i >= ff.n.len: return result
    var formal = ff.n[i].sym
    let pa = putArgInto(arg, formal.typ)
    case pa
    of paDirectMapping:
      newC.mapping[formal.itemId] = arg
    of paFastAsgn, paFastAsgnTakeTypeFromArg:
      var t = formal.typ
      if pa == paFastAsgnTakeTypeFromArg:
        t = arg.typ
      elif formal.ast != nil and formal.ast.typ.destructor != nil and t.destructor == nil:
        t = formal.ast.typ # better use the type that actually has a destructor.
      elif t.destructor == nil and arg.typ.destructor != nil:
        t = arg.typ
      # generate a temporary and produce an assignment statement:
      var temp = newTemp(c, t, formal.info)
      #incl(temp.sym.flags, sfCursor)
      addVar(v, temp)
      stmtList.add(newAsgnStmt(c, nkFastAsgn, temp, arg, true))
      newC.mapping[formal.itemId] = temp
    of paVarAsgn:
      assert(skipTypes(formal.typ, abstractInst).kind in {tyVar, tyLent})
      newC.mapping[formal.itemId] = arg
      # XXX BUG still not correct if the arg has a side effect!
    of paViaIndirection:
      let t = formal.typ
      let vt = makeVarType(t.owner, t, c.idgen)
      vt.flags.incl tfVarIsPtr
      var temp = newTemp(c, vt, formal.info)
      addVar(v, temp)
      var addrExp = newNodeIT(nkHiddenAddr, formal.info, makeVarType(t.owner, t, c.idgen, tyPtr))
      addrExp.add(arg)
      stmtList.add(newAsgnStmt(c, nkFastAsgn, temp, addrExp, true))
      newC.mapping[formal.itemId] = newDeref(temp)
    of paComplexOpenarray:
      # arrays will deep copy here (pretty bad).
      var temp = newTemp(c, arg.typ, formal.info)
      addVar(v, temp)
      stmtList.add(newAsgnStmt(c, nkFastAsgn, temp, arg, true))
      newC.mapping[formal.itemId] = temp

  let body = transformBody(c.graph, c.idgen, iter, {useCache}+c.flags)
  pushInfoContext(c.graph.config, n.info)
  inc(c.inlining)
  stmtList.add(transform(c, body))
  #findWrongOwners(c, stmtList.PNode)
  dec(c.inlining)
  popInfoContext(c.graph.config)
  popTransCon(c)
  # echo "transformed: ", stmtList.renderTree

proc transformCase(c: PTransf, n: PNode): PNode =
  # removes `elif` branches of a case stmt
  # adds ``else: nil`` if needed for the code generator
  result = newTransNode(nkCaseStmt, n, 0)
  var ifs: PNode = nil
  for it in n:
    var e = transform(c, it)
    case it.kind
    of nkElifBranch:
      if ifs == nil:
        # Generate the right node depending on whether `n` is used as a stmt or
        # as an expr
        let kind = if n.typ != nil: nkIfExpr else: nkIfStmt
        ifs = newTransNode(kind, it.info, 0)
        ifs.typ = n.typ
      ifs.add(e)
    of nkElse:
      if ifs == nil: result.add(e)
      else: ifs.add(e)
    else:
      result.add(e)
  if ifs != nil:
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = ifs
    result.add(elseBranch)
  elif result.lastSon.kind != nkElse and not (
      skipTypes(n[0].typ, abstractVarRange).kind in
        {tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt64}):
    # fix a stupid code gen bug by normalizing:
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = newTransNode(nkNilLit, n.info, 0)
    result.add(elseBranch)

proc transformArrayAccess(c: PTransf, n: PNode): PNode =
  # XXX this is really bad; transf should use a proper AST visitor
  if n[0].kind == nkSym and n[0].sym.kind == skType:
    result = n
  else:
    result = newTransNode(n)
    for i in 0..<n.len:
      result[i] = transform(c, skipConv(n[i]))

proc getMergeOp(n: PNode): PSym =
  case n.kind
  of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix,
     nkCallStrLit:
    if n[0].kind == nkSym and n[0].sym.magic == mConStrStr:
      result = n[0].sym
    else:
      result = nil
  else: result = nil

proc flattenTreeAux(d, a: PNode, op: PSym) =
  ## Optimizes away the `&` calls in the children nodes and
  ## lifts the leaf nodes to the same level as `op2`.
  let op2 = getMergeOp(a)
  if op2 != nil and
      (op2.id == op.id or op.magic != mNone and op2.magic == op.magic):
    for i in 1..<a.len: flattenTreeAux(d, a[i], op)
  else:
    d.add copyTree(a)

proc flattenTree(root: PNode): PNode =
  let op = getMergeOp(root)
  if op != nil:
    result = copyNode(root)
    result.add copyTree(root[0])
    flattenTreeAux(result, root, op)
  else:
    result = root

proc transformCall(c: PTransf, n: PNode): PNode =
  var n = flattenTree(n)
  let op = getMergeOp(n)
  let magic = getMagic(n)
  if op != nil and op.magic != mNone and n.len >= 3:
    result = newTransNode(nkCall, n, 0)
    result.add(transform(c, n[0]))
    var j = 1
    while j < n.len:
      var a = transform(c, n[j])
      inc(j)
      if isConstExpr(a):
        while (j < n.len):
          let b = transform(c, n[j])
          if not isConstExpr(b): break
          a = evalOp(op.magic, n, a, b, nil, c.idgen, c.graph)
          inc(j)
      result.add(a)
    if result.len == 2: result = result[1]
  elif magic in {mNBindSym, mTypeOf, mRunnableExamples}:
    # for bindSym(myconst) we MUST NOT perform constant folding:
    result = n
  elif magic == mProcCall:
    # but do not change to its dispatcher:
    result = transformSons(c, n[1])
  elif magic == mStrToStr:
    result = transform(c, n[1])
  else:
    let s = transformSons(c, n)
    # bugfix: check after 'transformSons' if it's still a method call:
    # use the dispatcher for the call:
    if s[0].kind == nkSym and s[0].sym.kind == skMethod:
      when false:
        let t = lastSon(s[0].sym.ast)
        if t.kind != nkSym or sfDispatcher notin t.sym.flags:
          methodDef(s[0].sym, false)
      result = methodCall(s, c.graph.config)
    else:
      result = s

proc transformExceptBranch(c: PTransf, n: PNode): PNode =
  if n[0].isInfixAs() and not isImportedException(n[0][1].typ, c.graph.config):
    let excTypeNode = n[0][1]
    let actions = newTransNode(nkStmtListExpr, n[1], 2)
    # Generating `let exc = (excType)(getCurrentException())`
    # -> getCurrentException()
    let excCall = callCodegenProc(c.graph, "getCurrentException")
    # -> (excType)
    let convNode = newTransNode(nkHiddenSubConv, n[1].info, 2)
    convNode[0] = newNodeI(nkEmpty, n.info)
    convNode[1] = excCall
    convNode.typ = excTypeNode.typ.toRef(c.idgen)
    # -> let exc = ...
    let identDefs = newTransNode(nkIdentDefs, n[1].info, 3)
    identDefs[0] = n[0][2]
    identDefs[1] = newNodeI(nkEmpty, n.info)
    identDefs[2] = convNode

    let letSection = newTransNode(nkLetSection, n[1].info, 1)
    letSection[0] = identDefs
    # Place the let statement and body of the 'except' branch into new stmtList.
    actions[0] = letSection
    actions[1] = transform(c, n[1])
    # Overwrite 'except' branch body with our stmtList.
    result = newTransNode(nkExceptBranch, n[1].info, 2)
    # Replace the `Exception as foobar` with just `Exception`.
    result[0] = transform(c, n[0][1])
    result[1] = actions
  else:
    result = transformSons(c, n)

proc commonOptimizations*(g: ModuleGraph; idgen: IdGenerator; c: PSym, n: PNode): PNode =
  ## Merges adjacent constant expressions of the children of the `&` call into
  ## a single constant expression. It also inlines constant expressions which are not
  ## complex.
  result = n
  for i in 0..<n.safeLen:
    result[i] = commonOptimizations(g, idgen, c, n[i])
  var op = getMergeOp(n)
  if (op != nil) and (op.magic != mNone) and (n.len >= 3):
    result = newNodeIT(nkCall, n.info, n.typ)
    result.add(n[0])
    var args = newNode(nkArgList)
    flattenTreeAux(args, n, op)
    var j = 0
    while j < args.len:
      var a = args[j]
      inc(j)
      if isConstExpr(a):
        while j < args.len:
          let b = args[j]
          if not isConstExpr(b): break
          a = evalOp(op.magic, result, a, b, nil, idgen, g)
          inc(j)
      result.add(a)
    if result.len == 2: result = result[1]
  else:
    var cnst = getConstExpr(c, n, idgen, g)
    # we inline constants if they are not complex constants:
    if cnst != nil and not dontInlineConstant(n, cnst):
      result = cnst
    else:
      result = n

proc transformDerefBlock(c: PTransf, n: PNode): PNode =
  # We transform (block: x)[] to (block: x[])
  let e0 = n[0]
  result = shallowCopy(e0)
  result.typ = n.typ
  for i in 0 ..< e0.len - 1:
    result[i] = e0[i]
  result[e0.len-1] = newTreeIT(nkHiddenDeref, n.info, n.typ, e0[e0.len-1])

proc transform(c: PTransf, n: PNode): PNode =
  when false:
    var oldDeferAnchor: PNode
    if n.kind in {nkElifBranch, nkOfBranch, nkExceptBranch, nkElifExpr,
                  nkElseExpr, nkElse, nkForStmt, nkWhileStmt, nkFinally,
                  nkBlockStmt, nkBlockExpr}:
      oldDeferAnchor = c.deferAnchor
      c.deferAnchor = n
  case n.kind
  of nkSym:
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit, nkComesFrom:
    # nothing to be done for leaves:
    result = n
  of nkBracketExpr: result = transformArrayAccess(c, n)
  of procDefs:
    var s = n[namePos].sym
    if n.typ != nil and s.typ.callConv == ccClosure:
      result = transformSym(c, n[namePos])
      # use the same node as before if still a symbol:
      if result.kind == nkSym: result = n
    else:
      result = n
  of nkMacroDef:
    # XXX no proper closure support yet:
    when false:
      if n[genericParamsPos].kind == nkEmpty:
        var s = n[namePos].sym
        n[bodyPos] = transform(c, s.getBody)
        if n.kind == nkMethodDef: methodDef(s, false)
    result = n
  of nkForStmt:
    result = transformFor(c, n)
  of nkParForStmt:
    result = transformSons(c, n)
  of nkCaseStmt:
    result = transformCase(c, n)
  of nkWhileStmt: result = transformWhile(c, n)
  of nkBlockStmt, nkBlockExpr:
    result = transformBlock(c, n)
  of nkDefer:
    c.deferDetected = true
    result = transformSons(c, n)
    when false:
      let deferPart = newNodeI(nkFinally, n.info)
      deferPart.add n[0]
      let tryStmt = newNodeI(nkTryStmt, n.info)
      if c.deferAnchor.isNil:
        tryStmt.add c.root
        c.root = tryStmt
        result = tryStmt
      else:
        # modify the corresponding *action*, don't rely on nkStmtList:
        tryStmt.add c.deferAnchor[^1]
        c.deferAnchor[^1] = tryStmt
        result = newTransNode(nkCommentStmt, n.info, 0)
      tryStmt.add deferPart
      # disable the original 'defer' statement:
      n.kind = nkEmpty
  of nkContinueStmt:
    result = newNodeI(nkBreakStmt, n.info)
    var labl = c.contSyms[c.contSyms.high]
    result.add(newSymNode(labl))
  of nkBreakStmt: result = transformBreak(c, n)
  of nkCallKinds:
    result = transformCall(c, n)
  of nkHiddenAddr:
    result = transformAddrDeref(c, n, {nkHiddenDeref})
  of nkAddr:
    let oldInAddr = c.inAddr
    c.inAddr = true
    result = transformAddrDeref(c, n, {nkDerefExpr, nkHiddenDeref})
    c.inAddr = oldInAddr
  of nkDerefExpr:
    result = transformAddrDeref(c, n, {nkAddr, nkHiddenAddr})
  of nkHiddenDeref:
    if n[0].kind in {nkBlockExpr, nkBlockStmt}:
      # bug #20107 bug #21540. Watch out to not deref the pointer too late.
      let e = transformDerefBlock(c, n)
      result = transformBlock(c, e)
    else:
      result = transformAddrDeref(c, n, {nkAddr, nkHiddenAddr})
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    result = transformConv(c, n)
  of nkDiscardStmt:
    result = n
    if n[0].kind != nkEmpty:
      result = transformSons(c, n)
      if isConstExpr(result[0]):
        # ensure that e.g. discard "some comment" gets optimized away
        # completely:
        result = newNode(nkCommentStmt)
  of nkCommentStmt, nkTemplateDef, nkImportStmt, nkStaticStmt,
      nkExportStmt, nkExportExceptStmt:
    return n
  of nkConstSection:
    # do not replace ``const c = 3`` with ``const 3 = 3``
    return transformConstSection(c, n)
  of nkTypeSection, nkTypeOfExpr, nkMixinStmt, nkBindStmt:
    # no need to transform type sections:
    return n
  of nkVarSection, nkLetSection:
    if c.inlining > 0:
      # we need to copy the variables for multiple yield statements:
      result = transformVarSection(c, n)
    else:
      result = transformSons(c, n)
  of nkYieldStmt:
    if c.inlining > 0 and not c.isIntroducingNewLocalVars:
      result = transformYield(c, n)
    else:
      result = transformSons(c, n)
  of nkAsgn:
    result = transformAsgn(c, n)
  of nkIdentDefs, nkConstDef:
    result = newTransNode(n)
    result[0] = transform(c, skipPragmaExpr(n[0]))
    # Skip the second son since it only contains an unsemanticized copy of the
    # variable type used by docgen
    let last = n.len-1
    for i in 1..<last: result[i] = n[i]
    result[last] = transform(c, n[last])
    # XXX comment handling really sucks:
    if importantComments(c.graph.config):
      result.comment = n.comment
  of nkClosure:
    # it can happen that for-loop-inlining produced a fresh
    # set of variables, including some computed environment
    # (bug #2604). We need to patch this environment here too:
    let a = n[1]
    if a.kind == nkSym:
      result = copyTree(n)
      result[1] = transformSymAux(c, a)
    else:
      result = n
  of nkExceptBranch:
    result = transformExceptBranch(c, n)
  of nkCheckedFieldExpr:
    result = transformSons(c, n)
    if result[0].kind != nkDotExpr:
      # simplfied beyond a dot expression --> simplify further.
      result = result[0]
  else:
    result = transformSons(c, n)
  when false:
    if oldDeferAnchor != nil: c.deferAnchor = oldDeferAnchor

  # Constants can be inlined here, but only if they cannot result in a cast
  # in the back-end (e.g. var p: pointer = someProc)
  let exprIsPointerCast = n.kind in {nkCast, nkConv, nkHiddenStdConv} and
                          n.typ != nil and
                          n.typ.kind == tyPointer
  if not exprIsPointerCast and not c.inAddr:
    var cnst = getConstExpr(c.module, result, c.idgen, c.graph)
    # we inline constants if they are not complex constants:
    if cnst != nil and not dontInlineConstant(n, cnst):
      result = cnst # do not miss an optimization

proc processTransf(c: PTransf, n: PNode, owner: PSym): PNode =
  # Note: For interactive mode we cannot call 'passes.skipCodegen' and skip
  # this step! We have to rely that the semantic pass transforms too errornous
  # nodes into an empty node.
  if nfTransf in n.flags: return n
  pushTransCon(c, newTransCon(owner))
  result = transform(c, n)
  popTransCon(c)
  incl(result.flags, nfTransf)

proc openTransf(g: ModuleGraph; module: PSym, filename: string; idgen: IdGenerator; flags: TransformFlags): PTransf =
  result = PTransf(module: module, graph: g, idgen: idgen, flags: flags)

proc flattenStmts(n: PNode) =
  var goOn = true
  while goOn:
    goOn = false
    var i = 0
    while i < n.len:
      let it = n[i]
      if it.kind in {nkStmtList, nkStmtListExpr}:
        n.sons[i..i] = it.sons[0..<it.len]
        goOn = true
      inc i

proc liftDeferAux(n: PNode) =
  if n.kind in {nkStmtList, nkStmtListExpr}:
    flattenStmts(n)
    var goOn = true
    while goOn:
      goOn = false
      let last = n.len-1
      for i in 0..last:
        if n[i].kind == nkDefer:
          let deferPart = newNodeI(nkFinally, n[i].info)
          deferPart.add n[i][0]
          var tryStmt = newNodeIT(nkTryStmt, n[i].info, n.typ)
          var body = newNodeIT(n.kind, n[i].info, n.typ)
          if i < last:
            body.sons = n.sons[(i+1)..last]
          tryStmt.add body
          tryStmt.add deferPart
          n[i] = tryStmt
          n.sons.setLen(i+1)
          n.typ = tryStmt.typ
          goOn = true
          break
  for i in 0..n.safeLen-1:
    liftDeferAux(n[i])

template liftDefer(c, root) =
  if c.deferDetected:
    liftDeferAux(root)

proc transformBody*(g: ModuleGraph; idgen: IdGenerator; prc: PSym; flags: TransformFlags): PNode =
  assert prc.kind in routineKinds

  if prc.transformedBody != nil:
    result = prc.transformedBody
  elif nfTransf in getBody(g, prc).flags or prc.kind in {skTemplate}:
    result = getBody(g, prc)
  else:
    prc.transformedBody = newNode(nkEmpty) # protects from recursion
    var c = openTransf(g, prc.getModule, "", idgen, flags)
    result = liftLambdas(g, prc, getBody(g, prc), c.tooEarly, c.idgen, flags)
    result = processTransf(c, result, prc)
    liftDefer(c, result)
    result = liftLocalsIfRequested(prc, result, g.cache, g.config, c.idgen)

    if prc.isIterator:
      result = g.transformClosureIterator(c.idgen, prc, result)

    incl(result.flags, nfTransf)

    if useCache in flags or prc.typ.callConv == ccInline:
      # genProc for inline procs will be called multiple times from different modules,
      # it is important to transform exactly once to get sym ids and locations right
      prc.transformedBody = result
    else:
      prc.transformedBody = nil
    # XXX Rodfile support for transformedBody!

  #if prc.name.s == "main":
  #  echo "transformed into ", renderTree(result, {renderIds})

proc transformStmt*(g: ModuleGraph; idgen: IdGenerator; module: PSym, n: PNode; flags: TransformFlags = {}): PNode =
  if nfTransf in n.flags:
    result = n
  else:
    var c = openTransf(g, module, "", idgen, flags)
    result = processTransf(c, n, module)
    liftDefer(c, result)
    #result = liftLambdasForTopLevel(module, result)
    incl(result.flags, nfTransf)

proc transformExpr*(g: ModuleGraph; idgen: IdGenerator; module: PSym, n: PNode; flags: TransformFlags = {}): PNode =
  if nfTransf in n.flags:
    result = n
  else:
    var c = openTransf(g, module, "", idgen, flags)
    result = processTransf(c, n, module)
    liftDefer(c, result)
    # expressions are not to be injected with destructor calls as that
    # the list of top level statements needs to be collected before.
    incl(result.flags, nfTransf)