bool Hide_warnings = false;
struct trace_stream {
vector<pair<string, string> > past_lines; // [(layer label, line)]
// accumulator for current line
ostringstream* curr_stream;
string curr_layer;
trace_stream() :curr_stream(NULL) {}
~trace_stream() { if (curr_stream) delete curr_stream; }
ostringstream& stream(string layer) {
newline();
curr_stream = new ostringstream;
curr_layer = layer;
return *curr_stream;
}
// be sure to call this before messing with curr_stream or curr_layer
void newline() {
if (!curr_stream) return;
string curr_contents = curr_stream->str();
curr_contents.erase(curr_contents.find_last_not_of("\r\n")+1);
past_lines.push_back(pair<string, string>(curr_layer, curr_contents));
delete curr_stream;
curr_stream = NULL;
}
string readable_contents(string layer) { // missing layer = everything
newline();
ostringstream output;
for (vector<pair<string, string> >::iterator p = past_lines.begin(); p != past_lines.end(); ++p)
if (layer.empty() || layer == p->first)
output << p->first << ": " << with_newline(p->second);
return output.str();
}
string with_newline(string s) {
if (s[s.size()-1] != '\n') return s+'\n';
return s;
}
};
trace_stream* Trace_stream = NULL;
// Top-level helper. IMPORTANT: can't nest.
#define trace(layer) !Trace_stream ? cerr /*print nothing*/ : Trace_stream->stream(layer)
// Warnings should go straight to cerr by default since calls to trace() have
// some unfriendly constraints (they delay printing, they can't nest)
#define raise ((!Trace_stream || !Hide_warnings) ? cerr /*do print*/ : Trace_stream->stream("warn")) << __FILE__ << ":" << __LINE__ << " "
// raise << die exits after printing -- unless Hide_warnings is set.
struct die {};
ostream& operator<<(ostream& os, __attribute__((unused)) die) {
if (Hide_warnings) return os;
os << "dying";
exit(1);
}
#define CLEAR_TRACE delete Trace_stream, Trace_stream = new trace_stream;
#define DUMP(layer) cerr << Trace_stream->readable_contents(layer)
// Trace_stream is a resource, lease_tracer uses RAII to manage it.
struct lease_tracer {
lease_tracer() { Trace_stream = new trace_stream; }
~lease_tracer() { delete Trace_stream, Trace_stream = NULL; }
};
#define START_TRACING_UNTIL_END_OF_SCOPE lease_tracer leased_tracer;
bool check_trace_contents(string FUNCTION, string FILE, int LINE, string layer, string expected) { // empty layer == everything
vector<string> expected_lines = split(expected, "");
size_t curr_expected_line = 0;
while (curr_expected_line < expected_lines.size() && expected_lines[curr_expected_line].empty())
++curr_expected_line;
if (curr_expected_line == expected_lines.size()) return true;
Trace_stream->newline();
ostringstream output;
for (vector<pair<string, string> >::iterator p = Trace_stream->past_lines.begin(); p != Trace_stream->past_lines.end(); ++p) {
if (!layer.empty() && layer != p->first)
continue;
if (p->second != expected_lines[curr_expected_line])
continue;
++curr_expected_line;
while (curr_expected_line < expected_lines.size() && expected_lines[curr_expected_line].empty())
++curr_expected_line;
if (curr_expected_line == expected_lines.size()) return true;
}
++Num_failures;
cerr << "\nF " << FUNCTION << "(" << FILE << ":" << LINE << "): missing [" << expected_lines[curr_expected_line] << "] in trace:\n";
DUMP(layer);
Passed = false;
return false;
}
#define CHECK_TRACE_CONTENTS(...) check_trace_contents(__FUNCTION__, __FILE__, __LINE__, __VA_ARGS__)
int trace_count(string pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module implements the transformator. It transforms the syntax tree
# to ease the work of the code generators. Does some transformations:
#
# * inlines iterators
# * inlines constants
# * performs constant folding
# * converts "continue" to "break"; disambiguates "break"
# * introduces method dispatchers
# * performs lambda lifting for closure support
# * transforms 'defer' into a 'try finally' statement
import
intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os,
idents, renderer, types, passes, semfold, magicsys, cgmeth, rodread,
lambdalifting, sempass2, lowerings
# implementation
type
PTransNode* = distinct PNode
PTransCon = ref TTransCon
TTransCon{.final.} = object # part of TContext; stackable
mapping: TIdNodeTable # mapping from symbols to nodes
owner: PSym # current owner
forStmt: PNode # current for stmt
forLoopBody: PTransNode # transformed for loop body
yieldStmts: int # we count the number of yield statements,
# because we need to introduce new variables
# if we encounter the 2nd yield statement
next: PTransCon # for stacking
TTransfContext = object of passes.TPassContext
module: PSym
transCon: PTransCon # top of a TransCon stack
inlining: int # > 0 if we are in inlining context (copy vars)
nestedProcs: int # > 0 if we are in a nested proc
contSyms, breakSyms: seq[PSym] # to transform 'continue' and 'break'
deferDetected, tooEarly: bool
PTransf = ref TTransfContext
proc newTransNode(a: PNode): PTransNode {.inline.} =
result = PTransNode(shallowCopy(a))
proc newTransNode(kind: TNodeKind, info: TLineInfo,
sons: int): PTransNode {.inline.} =
var x = newNodeI(kind, info)
newSeq(x.sons, sons)
result = x.PTransNode
proc newTransNode(kind: TNodeKind, n: PNode,
sons: int): PTransNode {.inline.} =
var x = newNodeIT(kind, n.info, n.typ)
newSeq(x.sons, sons)
x.typ = n.typ
result = x.PTransNode
proc `[]=`(a: PTransNode, i: int, x: PTransNode) {.inline.} =
var n = PNode(a)
n.sons[i] = PNode(x)
proc `[]`(a: PTransNode, i: int): PTransNode {.inline.} =
var n = PNode(a)
result = n.sons[i].PTransNode
proc add(a, b: PTransNode) {.inline.} = addSon(PNode(a), PNode(b))
proc len(a: PTransNode): int {.inline.} = result = sonsLen(a.PNode)
proc newTransCon(owner: PSym): PTransCon =
assert owner != nil
new(result)
initIdNodeTable(result.mapping)
result.owner = owner
proc pushTransCon(c: PTransf, t: PTransCon) =
t.next = c.transCon
c.transCon = t
proc popTransCon(c: PTransf) =
if (c.transCon == nil): internalError("popTransCon")
c.transCon = c.transCon.next
proc getCurrOwner(c: PTransf): PSym =
if c.transCon != nil: result = c.transCon.owner
else: result = c.module
proc newTemp(c: PTransf, typ: PType, info: TLineInfo): PNode =
let r = newSym(skTemp, getIdent(genPrefix), getCurrOwner(c), info)
r.typ = typ #skipTypes(typ, {tyGenericInst})
incl(r.flags, sfFromGeneric)
let owner = getCurrOwner(c)
if owner.isIterator and not c.tooEarly:
result = freshVarForClosureIter(r, owner)
else:
result = newSymNode(r)
proc transform(c: PTransf, n: PNode): PTransNode
proc transformSons(c: PTransf, n: PNode): PTransNode =
result = newTransNode(n)
for i in countup(0, sonsLen(n)-1):
result[i] = transform(c, n.sons[i])
proc newAsgnStmt(c: PTransf, le: PNode, ri: PTransNode): PTransNode =
result = newTransNode(nkFastAsgn, PNode(ri).info, 2)
result[0] = PTransNode(le)
result[1] = ri
proc transformSymAux(c: PTransf, n: PNode): PNode =
let s = n.sym
if s.typ != nil and s.typ.callConv == ccClosure:
if s.kind == skIterator:
if c.tooEarly: return n
else: return liftIterSym(n, getCurrOwner(c))
elif s.kind in {skProc, skConverter, skMethod} and not c.tooEarly:
# top level .closure procs are still somewhat supported for 'Nake':
return makeClosure(s, nil, n.info)
#elif n.sym.kind in {skVar, skLet} and n.sym.typ.callConv == ccClosure:
# echo n.info, " come heer for ", c.tooEarly
# if not c.tooEarly:
var b: PNode
var tc = c.transCon
if sfBorrow in s.flags and s.kind in routineKinds:
# simply exchange the symbol:
b = s.getBody
if b.kind != nkSym: internalError(n.info, "wrong AST for borrowed symbol")
b = newSymNode(b.sym)
b.info = n.info
else:
b = n
while tc != nil:
result = idNodeTableGet(tc.mapping, b.sym)
if result != nil: return
tc = tc.next
result = b
proc transformSym(c: PTransf, n: PNode): PTransNode =
result = PTransNode(transformSymAux(c, n))
proc freshVar(c: PTransf; v: PSym): PNode =
let owner = getCurrOwner(c)
if owner.isIterator and not c.tooEarly:
result = freshVarForClosureIter(v, owner)
else:
var newVar = copySym(v)
incl(newVar.flags, sfFromGeneric)
newVar.owner = owner
result = newSymNode(newVar)
proc transformVarSection(c: PTransf, v: PNode): PTransNode =
result = newTransNode(v)
for i in countup(0, sonsLen(v)-1):
var it = v.sons[i]
if it.kind == nkCommentStmt:
result[i] = PTransNode(it)
elif it.kind == nkIdentDefs:
if it.sons[0].kind == nkSym:
internalAssert(it.len == 3)
let x = freshVar(c, it.sons[0].sym)
idNodeTablePut(c.transCon.mapping, it.sons[0].sym, x)
var defs = newTransNode(nkIdentDefs, it.info, 3)
if importantComments():
# keep documentation information:
PNode(defs).comment = it.comment
defs[0] = x.PTransNode
defs[1] = it.sons[1].PTransNode
defs[2] = transform(c, it.sons[2])
if x.kind == nkSym: x.sym.ast = defs[2].PNode
result[i] = defs
else:
# has been transformed into 'param.x' for closure iterators, so just
# transform it:
result[i] = transform(c, it)
else:
if it.kind != nkVarTuple:
internalError(it.info, "transformVarSection: not nkVarTuple")
var L = sonsLen(it)
var defs = newTransNode(it.kind, it.info, L)
for j in countup(0, L-3):
let x = freshVar(c, it.sons[j].sym)
idNodeTablePut(c.transCon.mapping, it.sons[j].sym, x)
defs[j] = x.PTransNode
assert(it.sons[L-2].kind == nkEmpty)
defs[L-2] = ast.emptyNode.PTransNode
defs[L-1] = transform(c, it.sons[L-1])
result[i] = defs
proc transformConstSection(c: PTransf, v: PNode): PTransNode =
result = newTransNode(v)
for i in countup(0, sonsLen(v)-1):
var it = v.sons[i]
if it.kind == nkCommentStmt:
result[i] = PTransNode(it)
else:
if it.kind != nkConstDef: internalError(it.info, "transformConstSection")
if it.sons[0].kind != nkSym:
internalError(it.info, "transformConstSection")
if sfFakeConst in it[0].sym.flags:
var b = newNodeI(nkConstDef, it.info)
addSon(b, it[0])
addSon(b, ast.emptyNode) # no type description
addSon(b, transform(c, it[2]).PNode)
result[i] = PTransNode(b)
else:
result[i] = PTransNode(it)
proc hasContinue(n: PNode): bool =
case n.kind
of nkEmpty..nkNilLit, nkForStmt, nkParForStmt, nkWhileStmt: discard
of nkContinueStmt: result = true
else:
for i in countup(0, sonsLen(n) - 1):
if hasContinue(n.sons[i]): return true
proc newLabel(c: PTransf, n: PNode): PSym =
result = newSym(skLabel, nil, getCurrOwner(c), n.info)
result.name = getIdent(genPrefix & $result.id)
proc freshLabels(c: PTransf, n: PNode; symMap: var TIdTable) =
if n.kind in {nkBlockStmt, nkBlockExpr}:
if n.sons[0].kind == nkSym:
let x = newLabel(c, n[0])
idTablePut(symMap, n[0].sym, x)
n.sons[0].sym = x
if n.kind == nkSym and n.sym.kind == skLabel:
let x = PSym(idTableGet(symMap, n.sym))
if x != nil: n.sym = x
else:
for i in 0 .. <safeLen(n): freshLabels(c, n.sons[i], symMap)
proc transformBlock(c: PTransf, n: PNode): PTransNode =
var labl: PSym
if n.sons[0].kind != nkEmpty:
# already named block? -> Push symbol on the stack:
labl = n.sons[0].sym
else:
labl = newLabel(c, n)
c.breakSyms.add(labl)
result = transformSons(c, n)
discard c.breakSyms.pop
result[0] = newSymNode(labl).PTransNode
proc transformLoopBody(c: PTransf, n: PNode): PTransNode =
# What if it contains "continue" and "break"? "break" needs
# an explicit label too, but not the same!
# We fix this here by making every 'break' belong to its enclosing loop
# and changing all breaks that belong to a 'block' by annotating it with
# a label (if it hasn't one already).
if hasContinue(n):
let labl = newLabel(c, n)
c.contSyms.add(labl)
result = newTransNode(nkBlockStmt, n.info, 2)
result[0] = newSymNode(labl).PTransNode
result[1] = transform(c, n)
discard c.contSyms.pop()
else:
result = transform(c, n)
proc transformWhile(c: PTransf; n: PNode): PTransNode =
if c.inlining > 0:
result = transformSons(c, n)
else:
let labl = newLabel(c, n)
c.breakSyms.add(labl)
result = newTransNode(nkBlockStmt, n.info, 2)
result[0] = newSymNode(labl).PTransNode
var body = newTransNode(n)
for i in 0..n.len-2:
body[i] = transform(c, n.sons[i])
body[<n.len] = transformLoopBody(c, n.sons[<n.len])
result[1] = body
discard c.breakSyms.pop
proc transformBreak(c: PTransf, n: PNode): PTransNode =
if n.sons[0].kind != nkEmpty or c.inlining > 0:
result = n.PTransNode
when false:
let lablCopy = idNodeTableGet(c.transCon.mapping, n.sons[0].sym)
if lablCopy.isNil:
result = n.PTransNode
else:
result = newTransNode(n.kind, n.info, 1)
result[0] = lablCopy.PTransNode
else:
let labl = c.breakSyms[c.breakSyms.high]
result = transformSons(c, n)
result[0] = newSymNode(labl).PTransNode
proc unpackTuple(c: PTransf, n: PNode, father: PTransNode) =
# XXX: BUG: what if `n` is an expression with side-effects?
for i in countup(0, sonsLen(c.transCon.forStmt) - 3):
add(father, newAsgnStmt(c, c.transCon.forStmt.sons[i],
transform(c, newTupleAccess(n, i))))
proc introduceNewLocalVars(c: PTransf, n: PNode): PTransNode =
case n.kind
of nkSym:
result = transformSym(c, n)
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
# nothing to be done for leaves:
result = PTransNode(n)
of nkVarSection, nkLetSection:
result = transformVarSection(c, n)
of nkClosure:
# it can happen that for-loop-inlining produced a fresh
# set of variables, including some computed environment
# (bug #2604). We need to patch this environment here too:
let a = n[1]
if a.kind == nkSym:
n.sons[1] = transformSymAux(c, a)
return PTransNode(n)
else:
result = newTransNode(n)
for i in countup(0, sonsLen(n)-1):
result[i] = introduceNewLocalVars(c, n.sons[i])
proc transformYield(c: PTransf, n: PNode): PTransNode =
result = newTransNode(nkStmtList, n.info, 0)
var e = n.sons[0]
# c.transCon.forStmt.len == 3 means that there is one for loop variable
# and thus no tuple unpacking:
if e.typ.isNil: return result # can happen in nimsuggest for unknown reasons
if skipTypes(e.typ, {tyGenericInst}).kind == tyTuple and
c.transCon.forStmt.len != 3:
e = skipConv(e)
if e.kind == nkPar:
for i in countup(0, sonsLen(e) - 1):
add(result, newAsgnStmt(c, c.transCon.forStmt.sons[i],
transform(c, e.sons[i])))
else:
unpackTuple(c, e, result)
else:
var x = transform(c, e)
add(result, newAsgnStmt(c, c.transCon.forStmt.sons[0], x))
inc(c.transCon.yieldStmts)
if c.transCon.yieldStmts <= 1:
# common case
add(result, c.transCon.forLoopBody)
else:
# we need to introduce new local variables:
add(result, introduceNewLocalVars(c, c.transCon.forLoopBody.PNode))
proc transformAddrDeref(c: PTransf, n: PNode, a, b: TNodeKind): PTransNode =
result = transformSons(c, n)
if gCmd == cmdCompileToCpp or sfCompileToCpp in c.module.flags: return
var n = result.PNode
case n.sons[0].kind
of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
var m = n.sons[0].sons[0]
if m.kind == a or m.kind == b:
# addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
n.sons[0].sons[0] = m.sons[0]
result = PTransNode(n.sons[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
var m = n.sons[0].sons[1]
if m.kind == a or m.kind == b:
# addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
n.sons[0].sons[1] = m.sons[0]
result = PTransNode(n.sons[0])
else:
if n.sons[0].kind == a or n.sons[0].kind == b:
# addr ( deref ( x )) --> x
result = PTransNode(n.sons[0].sons[0])
proc generateThunk(prc: PNode, dest: PType): PNode =
## Converts 'prc' into '(thunk, nil)' so that it's compatible with
## a closure.
# we cannot generate a proper thunk here for GC-safety reasons
# (see internal documentation):
if gCmd == cmdCompileToJS: return prc
result = newNodeIT(nkClosure, prc.info, dest)
var conv = newNodeIT(nkHiddenSubConv, prc.info, dest)
conv.add(emptyNode)
conv.add(prc)
if prc.kind == nkClosure:
internalError(prc.info, "closure to closure created")
result.add(conv)
result.add(newNodeIT(nkNilLit, prc.info, getSysType(tyNil)))
proc transformConv(c: PTransf, n: PNode): PTransNode =
# numeric types need range checks:
var dest = skipTypes(n.typ, abstractVarRange)
var source = skipTypes(n.sons[1].typ, abstractVarRange)
case dest.kind
of tyInt..tyInt64, tyEnum, tyChar, tyBool, tyUInt8..tyUInt32:
# we don't include uint and uint64 here as these are no ordinal types ;-)
if not isOrdinalType(source):
# float -> int conversions. ugh.
result = transformSons(c, n)
elif firstOrd(n.typ) <= firstOrd(n.sons[1].typ) and
lastOrd(n.sons[1].typ) <= lastOrd(n.typ):
# BUGFIX: simply leave n as it is; we need a nkConv node,
# but no range check:
result = transformSons(c, n)
else:
# generate a range check:
if dest.kind == tyInt64 or source.kind == tyInt64:
result = newTransNode(nkChckRange64, n, 3)
else:
result = newTransNode(nkChckRange, n, 3)
dest = skipTypes(n.typ, abstractVar)
result[0] = transform(c, n.sons[1])
result[1] = newIntTypeNode(nkIntLit, firstOrd(dest), dest).PTransNode
result[2] = newIntTypeNode(nkIntLit, lastOrd(dest), dest).PTransNode
of tyFloat..tyFloat128:
# XXX int64 -> float conversion?
if skipTypes(n.typ, abstractVar).kind == tyRange:
result = newTransNode(nkChckRangeF, n, 3)
dest = skipTypes(n.typ, abstractVar)
result[0] = transform(c, n.sons[1])
result[1] = copyTree(dest.n.sons[0]).PTransNode
result[2] = copyTree(dest.n.sons[1]).PTransNode
else:
result = transformSons(c, n)
of tyOpenArray, tyVarargs:
result = transform(c, n.sons[1])
PNode(result).typ = takeType(n.typ, n.sons[1].typ)
#echo n.info, " came here and produced ", typeToString(PNode(result).typ),
# " from ", typeToString(n.typ), " and ", typeToString(n.sons[1].typ)
of tyCString:
if source.kind == tyString:
result = newTransNode(nkStringToCString, n, 1)
result[0] = transform(c, n.sons[1])
else:
result = transformSons(c, n)
of tyString:
if source.kind == tyCString:
result = newTransNode(nkCStringToString, n, 1)
result[0] = transform(c, n.sons[1])
else:
result = transformSons(c, n)
of tyRef, tyPtr:
dest = skipTypes(dest, abstractPtrs)
source = skipTypes(source, abstractPtrs)
if source.kind == tyObject:
var diff = inheritanceDiff(dest, source)
if diff < 0:
result = newTransNode(nkObjUpConv, n, 1)
result[0] = transform(c, n.sons[1])
elif diff > 0 and diff != high(int):
result = newTransNode(nkObjDownConv, n, 1)
result[0] = transform(c, n.sons[1])
else:
result = transform(c, n.sons[1])
else:
result = transformSons(c, n)
of tyObject:
var diff = inheritanceDiff(dest, source)
if diff < 0:
result = newTransNode(nkObjUpConv, n, 1)
result[0] = transform(c, n.sons[1])
elif diff > 0 and diff != high(int):
result = newTransNode(nkObjDownConv, n, 1)
result[0] = transform(c, n.sons[1])
else:
result = transform(c, n.sons[1])
of tyGenericParam, tyOrdinal:
result = transform(c, n.sons[1])
# happens sometimes for generated assignments, etc.
of tyProc:
result = transformSons(c, n)
if dest.callConv == ccClosure and source.callConv == ccDefault:
result = generateThunk(result[1].PNode, dest).PTransNode
else:
result = transformSons(c, n)
type
TPutArgInto = enum
paDirectMapping, paFastAsgn, paVarAsgn
proc putArgInto(arg: PNode, formal: PType): TPutArgInto =
# This analyses how to treat the mapping "formal <-> arg" in an
# inline context.
if skipTypes(formal, abstractInst).kind in {tyOpenArray, tyVarargs}:
return paDirectMapping # XXX really correct?
# what if ``arg`` has side-effects?
case arg.kind
of nkEmpty..nkNilLit:
result = paDirectMapping
of nkPar, nkCurly, nkBracket:
result = paFastAsgn
for i in countup(0, sonsLen(arg) - 1):
if putArgInto(arg.sons[i], formal) != paDirectMapping: return
result = paDirectMapping
else:
if skipTypes(formal, abstractInst).kind == tyVar: result = paVarAsgn
else: result = paFastAsgn
proc findWrongOwners(c: PTransf, n: PNode) =
if n.kind == nkVarSection:
let x = n.sons[0].sons[0]
if x.kind == nkSym and x.sym.owner != getCurrOwner(c):
internalError(x.info, "bah " & x.sym.name.s & " " &
x.sym.owner.name.s & " " & getCurrOwner(c).name.s)
else:
for i in 0 .. <safeLen(n): findWrongOwners(c, n.sons[i])
proc transformFor(c: PTransf, n: PNode): PTransNode =
# generate access statements for the parameters (unless they are constant)
# put mapping from formal parameters to actual parameters
if n.kind != nkForStmt: internalError(n.info, "transformFor")
var length = sonsLen(n)
var call = n.sons[length - 2]
let labl = newLabel(c, n)
result = newTransNode(nkBlockStmt, n.info, 2)
result[0] = newSymNode(labl).PTransNode
if call.typ.isNil:
# see bug #3051
result[1] = newNode(nkEmpty).PTransNode
return result
c.breakSyms.add(labl)
if call.kind notin nkCallKinds or call.sons[0].kind != nkSym or
call.sons[0].typ.callConv == ccClosure:
n.sons[length-1] = transformLoopBody(c, n.sons[length-1]).PNode
if not c.tooEarly:
n.sons[length-2] = transform(c, n.sons[length-2]).PNode
result[1] = lambdalifting.liftForLoop(n, getCurrOwner(c)).PTransNode
else:
result[1] = newNode(nkEmpty).PTransNode
discard c.breakSyms.pop
return result
#echo "transforming: ", renderTree(n)
var stmtList = newTransNode(nkStmtList, n.info, 0)
result[1] = stmtList
var loopBody = transformLoopBody(c, n.sons[length-1])
discard c.breakSyms.pop
var v = newNodeI(nkVarSection, n.info)
for i in countup(0, length - 3):
addVar(v, copyTree(n.sons[i])) # declare new vars
add(stmtList, v.PTransNode)
# Bugfix: inlined locals belong to the invoking routine, not to the invoked
# iterator!
let iter = call.sons[0].sym
var newC = newTransCon(getCurrOwner(c))
newC.forStmt = n
newC.forLoopBody = loopBody
# this can fail for 'nimsuggest' and 'check':
if iter.kind != skIterator: return result
# generate access statements for the parameters (unless they are constant)
pushTransCon(c, newC)
for i in countup(1, sonsLen(call) - 1):
var arg = transform(c, call.sons[i]).PNode
var formal = skipTypes(iter.typ, abstractInst).n.sons[i].sym
case putArgInto(arg, formal.typ)
of paDirectMapping:
idNodeTablePut(newC.mapping, formal, arg)
of paFastAsgn:
# generate a temporary and produce an assignment statement:
var temp = newTemp(c, formal.typ, formal.info)
addVar(v, temp)
add(stmtList, newAsgnStmt(c, temp, arg.PTransNode))
idNodeTablePut(newC.mapping, formal, temp)
of paVarAsgn:
assert(skipTypes(formal.typ, abstractInst).kind == tyVar)
idNodeTablePut(newC.mapping, formal, arg)
# XXX BUG still not correct if the arg has a side effect!
var body = iter.getBody.copyTree
pushInfoContext(n.info)
# XXX optimize this somehow. But the check "c.inlining" is not correct:
var symMap: TIdTable
initIdTable symMap
freshLabels(c, body, symMap)
inc(c.inlining)
add(stmtList, transform(c, body))
#findWrongOwners(c, stmtList.pnode)
dec(c.inlining)
popInfoContext()
popTransCon(c)
# echo "transformed: ", stmtList.PNode.renderTree
proc getMagicOp(call: PNode): TMagic =
if call.sons[0].kind == nkSym and
call.sons[0].sym.kind in {skProc, skMethod, skConverter}:
result = call.sons[0].sym.magic
else:
result = mNone
proc transformCase(c: PTransf, n: PNode): PTransNode =
# removes `elif` branches of a case stmt
# adds ``else: nil`` if needed for the code generator
result = newTransNode(nkCaseStmt, n, 0)
var ifs = PTransNode(nil)
for i in 0 .. sonsLen(n)-1:
var it = n.sons[i]
var e = transform(c, it)
case it.kind
of nkElifBranch:
if ifs.PNode == nil:
ifs = newTransNode(nkIfStmt, it.info, 0)
ifs.add(e)
of nkElse:
if ifs.PNode == nil: result.add(e)
else: ifs.add(e)
else:
result.add(e)
if ifs.PNode != nil:
var elseBranch = newTransNode(nkElse, n.info, 1)
elseBranch[0] = ifs
result.add(elseBranch)
elif result.PNode.lastSon.kind != nkElse and not (
skipTypes(n.sons[0].typ, abstractVarRange).kind in
{tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt32}):
# fix a stupid code gen bug by normalizing:
var elseBranch = newTransNode(nkElse, n.info, 1)
elseBranch[0] = newTransNode(nkNilLit, n.info, 0)
add(result, elseBranch)
proc transformArrayAccess(c: PTransf, n: PNode): PTransNode =
# XXX this is really bad; transf should use a proper AST visitor
if n.sons[0].kind == nkSym and n.sons[0].sym.kind == skType:
result = n.PTransNode
else:
result = newTransNode(n)
for i in 0 .. < n.len:
result[i] = transform(c, skipConv(n.sons[i]))
proc getMergeOp(n: PNode): PSym =
case n.kind
of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix,
nkCallStrLit:
if n.sons[0].kind == nkSym and n.sons[0].sym.magic == mConStrStr:
result = n.sons[0].sym
else: discard
proc flattenTreeAux(d, a: PNode, op: PSym) =
let op2 = getMergeOp(a)
if op2 != nil and
(op2.id == op.id or op.magic != mNone and op2.magic == op.magic):
for i in countup(1, sonsLen(a)-1): flattenTreeAux(d, a.sons[i], op)
else:
addSon(d, copyTree(a))
proc flattenTree(root: PNode): PNode =
let op = getMergeOp(root)
if op != nil:
result = copyNode(root)
addSon(result, copyTree(root.sons[0]))
flattenTreeAux(result, root, op)
else:
result = root
proc transformCall(c: PTransf, n: PNode): PTransNode =
var n = flattenTree(n)
let op = getMergeOp(n)
let magic = getMagic(n)
if op != nil and op.magic != mNone and n.len >= 3:
result = newTransNode(nkCall, n, 0)
add(result, transform(c, n.sons[0]))
var j = 1
while j < sonsLen(n):
var a = transform(c, n.sons[j]).PNode
inc(j)
if isConstExpr(a):
while (j < sonsLen(n)):
let b = transform(c, n.sons[j]).PNode
if not isConstExpr(b): break
a = evalOp(op.magic, n, a, b, nil)
inc(j)
add(result, a.PTransNode)
if len(result) == 2: result = result[1]
elif magic == mNBindSym:
# for bindSym(myconst) we MUST NOT perform constant folding:
result = n.PTransNode
elif magic == mProcCall:
# but do not change to its dispatcher:
result = transformSons(c, n[1])
else:
let s = transformSons(c, n).PNode
# bugfix: check after 'transformSons' if it's still a method call:
# use the dispatcher for the call:
if s.sons[0].kind == nkSym and s.sons[0].sym.kind == skMethod:
let t = lastSon(s.sons[0].sym.ast)
if t.kind != nkSym or sfDispatcher notin t.sym.flags:
methodDef(s.sons[0].sym, false)
result = methodCall(s).PTransNode
else:
result = s.PTransNode
proc dontInlineConstant(orig, cnst: PNode): bool {.inline.} =
# symbols that expand to a complex constant (array, etc.) should not be
# inlined, unless it's the empty array:
result = orig.kind == nkSym and cnst.kind in {nkCurly, nkPar, nkBracket} and
cnst.len != 0
proc commonOptimizations*(c: PSym, n: PNode): PNode =
result = n
for i in 0 .. < n.safeLen:
result.sons[i] = commonOptimizations(c, n.sons[i])
var op = getMergeOp(n)
if (op != nil) and (op.magic != mNone) and (sonsLen(n) >= 3):
result = newNodeIT(nkCall, n.info, n.typ)
add(result, n.sons[0])
var args = newNode(nkArgList)
flattenTreeAux(args, n, op)
var j = 0
while j < sonsLen(args):
var a = args.sons[j]
inc(j)
if isConstExpr(a):
while j < sonsLen(args):
let b = args.sons[j]
if not isConstExpr(b): break
a = evalOp(op.magic, result, a, b, nil)
inc(j)
add(result, a)
if len(result) == 2: result = result[1]
else:
var cnst = getConstExpr(c, n)
# we inline constants if they are not complex constants:
if cnst != nil and not dontInlineConstant(n, cnst):
result = cnst
else:
result = n
proc transform(c: PTransf, n: PNode): PTransNode =
when false:
var oldDeferAnchor: PNode
if n.kind in {nkElifBranch, nkOfBranch, nkExceptBranch, nkElifExpr,
nkElseExpr, nkElse, nkForStmt, nkWhileStmt, nkFinally,
nkBlockStmt, nkBlockExpr}:
oldDeferAnchor = c.deferAnchor
c.deferAnchor = n
case n.kind
of nkSym:
result = transformSym(c, n)
of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
# nothing to be done for leaves:
result = PTransNode(n)
of nkBracketExpr: result = transformArrayAccess(c, n)
of procDefs:
var s = n.sons[namePos].sym
if n.typ != nil and s.typ.callConv == ccClosure:
result = transformSym(c, n.sons[namePos])
# use the same node as before if still a symbol:
if result.PNode.kind == nkSym: result = PTransNode(n)
else:
result = PTransNode(n)
of nkMacroDef:
# XXX no proper closure support yet:
when false:
if n.sons[genericParamsPos].kind == nkEmpty:
var s = n.sons[namePos].sym
n.sons[bodyPos] = PNode(transform(c, s.getBody))
if n.kind == nkMethodDef: methodDef(s, false)
result = PTransNode(n)
of nkForStmt:
result = transformFor(c, n)
of nkParForStmt:
result = transformSons(c, n)
of nkCaseStmt:
result = transformCase(c, n)
of nkWhileStmt: result = transformWhile(c, n)
of nkBlockStmt, nkBlockExpr:
result = transformBlock(c, n)
of nkDefer:
c.deferDetected = true
result = transformSons(c, n)
when false:
let deferPart = newNodeI(nkFinally, n.info)
deferPart.add n.sons[0]
let tryStmt = newNodeI(nkTryStmt, n.info)
if c.deferAnchor.isNil:
tryStmt.add c.root
c.root = tryStmt
result = PTransNode(tryStmt)
else:
# modify the corresponding *action*, don't rely on nkStmtList:
let L = c.deferAnchor.len-1
tryStmt.add c.deferAnchor.sons[L]
c.deferAnchor.sons[L] = tryStmt
result = newTransNode(nkCommentStmt, n.info, 0)
tryStmt.addSon(deferPart)
# disable the original 'defer' statement:
n.kind = nkEmpty
of nkContinueStmt:
result = PTransNode(newNodeI(nkBreakStmt, n.info))
var labl = c.contSyms[c.contSyms.high]
add(result, PTransNode(newSymNode(labl)))
of nkBreakStmt: result = transformBreak(c, n)
of nkCallKinds:
result = transformCall(c, n)
of nkAddr, nkHiddenAddr:
result = transformAddrDeref(c, n, nkDerefExpr, nkHiddenDeref)
of nkDerefExpr, nkHiddenDeref:
result = transformAddrDeref(c, n, nkAddr, nkHiddenAddr)
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
result = transformConv(c, n)
of nkDiscardStmt:
result = PTransNode(n)
if n.sons[0].kind != nkEmpty:
result = transformSons(c, n)
if isConstExpr(PNode(result).sons[0]):
# ensure that e.g. discard "some comment" gets optimized away
# completely:
result = PTransNode(newNode(nkCommentStmt))
of nkCommentStmt, nkTemplateDef:
return n.PTransNode
of nkConstSection:
# do not replace ``const c = 3`` with ``const 3 = 3``
return transformConstSection(c, n)
of nkTypeSection:
# no need to transform type sections:
return PTransNode(n)
of nkVarSection, nkLetSection:
if c.inlining > 0:
# we need to copy the variables for multiple yield statements:
result = transformVarSection(c, n)
else:
result = transformSons(c, n)
of nkYieldStmt:
if c.inlining > 0:
result = transformYield(c, n)
else:
result = transformSons(c, n)
of nkIdentDefs, nkConstDef:
result = transformSons(c, n)
# XXX comment handling really sucks:
if importantComments():
PNode(result).comment = n.comment
of nkClosure:
# it can happen that for-loop-inlining produced a fresh
# set of variables, including some computed environment
# (bug #2604). We need to patch this environment here too:
let a = n[1]
if a.kind == nkSym:
n.sons[1] = transformSymAux(c, a)
return PTransNode(n)
else:
result = transformSons(c, n)
when false:
if oldDeferAnchor != nil: c.deferAnchor = oldDeferAnchor
var cnst = getConstExpr(c.module, PNode(result))
# we inline constants if they are not complex constants:
if cnst != nil and not dontInlineConstant(n, cnst):
result = PTransNode(cnst) # do not miss an optimization
proc processTransf(c: PTransf, n: PNode, owner: PSym): PNode =
# Note: For interactive mode we cannot call 'passes.skipCodegen' and skip
# this step! We have to rely that the semantic pass transforms too errornous
# nodes into an empty node.
if c.fromCache or nfTransf in n.flags: return n
pushTransCon(c, newTransCon(owner))
result = PNode(transform(c, n))
popTransCon(c)
incl(result.flags, nfTransf)
proc openTransf(module: PSym, filename: string): PTransf =
new(result)
result.contSyms = @[]
result.breakSyms = @[]
result.module = module
proc flattenStmts(n: PNode) =
var goOn = true
while goOn:
goOn = false
var i = 0
while i < n.len:
let it = n[i]
if it.kind in {nkStmtList, nkStmtListExpr}:
n.sons[i..i] = it.sons[0..<it.len]
goOn = true
inc i
proc liftDeferAux(n: PNode) =
if n.kind in {nkStmtList, nkStmtListExpr}:
flattenStmts(n)
var goOn = true
while goOn:
goOn = false
let last = n.len-1
for i in 0..last:
if n.sons[i].kind == nkDefer:
let deferPart = newNodeI(nkFinally, n.sons[i].info)
deferPart.add n.sons[i].sons[0]
var tryStmt = newNodeI(nkTryStmt, n.sons[i].info)
var body = newNodeI(n.kind, n.sons[i].info)
if i < last:
body.sons = n.sons[(i+1)..last]
tryStmt.addSon(body)
tryStmt.addSon(deferPart)
n.sons[i] = tryStmt
n.sons.setLen(i+1)
n.typ = n.sons[i].typ
goOn = true
break
for i in 0..n.safeLen-1:
liftDeferAux(n.sons[i])
template liftDefer(c, root) =
if c.deferDetected:
liftDeferAux(root)
proc transformBody*(module: PSym, n: PNode, prc: PSym): PNode =
if nfTransf in n.flags or prc.kind in {skTemplate}:
result = n
else:
var c = openTransf(module, "")
result = liftLambdas(prc, n, c.tooEarly)
#result = n
result = processTransf(c, result, prc)
liftDefer(c, result)
#result = liftLambdas(prc, result)
incl(result.flags, nfTransf)
when useEffectSystem: trackProc(prc, result)
#if prc.name.s == "testbody":
# echo renderTree(result)
proc transformStmt*(module: PSym, n: PNode): PNode =
if nfTransf in n.flags:
result = n
else:
var c = openTransf(module, "")
result = processTransf(c, n, module)
liftDefer(c, result)
#result = liftLambdasForTopLevel(module, result)
incl(result.flags, nfTransf)
when useEffectSystem: trackTopLevelStmt(module, result)
#if n.info ?? "temp.nim":
# echo renderTree(result, {renderIds})
proc transformExpr*(module: PSym, n: PNode): PNode =
if nfTransf in n.flags:
result = n
else:
var c = openTransf(module, "")
result = processTransf(c, n, module)
liftDefer(c, result)
incl(result.flags, nfTransf)