summary refs log tree commit diff stats
path: root/compiler/transf.nim
blob: 25988fb8c5c07be01f44b846eb07ea95d167b4c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
bool Hide_warnings = false;

struct trace_stream {
  vector<pair<string, string> > past_lines;  // [(layer label, line)]
  // accumulator for current line
  ostringstream* curr_stream;
  string curr_layer;
  trace_stream() :curr_stream(NULL) {}
  ~trace_stream() { if (curr_stream) delete curr_stream; }

  ostringstream& stream(string layer) {
    newline();
    curr_stream = new ostringstream;
    curr_layer = layer;
    return *curr_stream;
  }

  // be sure to call this before messing with curr_stream or curr_layer
  void newline() {
    if (!curr_stream) return;
    string curr_contents = curr_stream->str();
    curr_contents.erase(curr_contents.find_last_not_of("\r\n")+1);
    past_lines.push_back(pair<string, string>(curr_layer, curr_contents));
    delete curr_stream;
    curr_stream = NULL;
  }

  string readable_contents(string layer) {  // missing layer = everything
    newline();
    ostringstream output;
    for (vector<pair<string, string> >::iterator p = past_lines.begin(); p != past_lines.end(); ++p)
      if (layer.empty() || layer == p->first)
        output << p->first << ": " << with_newline(p->second);
    return output.str();
  }

  string with_newline(string s) {
    if (s[s.size()-1] != '\n') return s+'\n';
    return s;
  }
};



trace_stream* Trace_stream = NULL;

// Top-level helper. IMPORTANT: can't nest.
#define trace(layer)  !Trace_stream ? cerr /*print nothing*/ : Trace_stream->stream(layer)
// Warnings should go straight to cerr by default since calls to trace() have
// some unfriendly constraints (they delay printing, they can't nest)
#define raise  ((!Trace_stream || !Hide_warnings) ? cerr /*do print*/ : Trace_stream->stream("warn")) << __FILE__ << ":" << __LINE__ << " "

// raise << die exits after printing -- unless Hide_warnings is set.
struct die {};
ostream& operator<<(ostream& os, __attribute__((unused)) die) {
  if (Hide_warnings) return os;
  os << "dying";
  exit(1);
}

#define CLEAR_TRACE  delete Trace_stream, Trace_stream = new trace_stream;

#define DUMP(layer)  cerr << Trace_stream->readable_contents(layer)

// Trace_stream is a resource, lease_tracer uses RAII to manage it.
struct lease_tracer {
  lease_tracer() { Trace_stream = new trace_stream; }
  ~lease_tracer() { delete Trace_stream, Trace_stream = NULL; }
};

#define START_TRACING_UNTIL_END_OF_SCOPE  lease_tracer leased_tracer;



bool check_trace_contents(string FUNCTION, string FILE, int LINE, string layer, string expected) {  // empty layer == everything
  vector<string> expected_lines = split(expected, "");
  size_t curr_expected_line = 0;
  while (curr_expected_line < expected_lines.size() && expected_lines[curr_expected_line].empty())
    ++curr_expected_line;
  if (curr_expected_line == expected_lines.size()) return true;
  Trace_stream->newline();
  ostringstream output;
  for (vector<pair<string, string> >::iterator p = Trace_stream->past_lines.begin(); p != Trace_stream->past_lines.end(); ++p) {
    if (!layer.empty() && layer != p->first)
      continue;
    if (p->second != expected_lines[curr_expected_line])
      continue;
    ++curr_expected_line;
    while (curr_expected_line < expected_lines.size() && expected_lines[curr_expected_line].empty())
      ++curr_expected_line;
    if (curr_expected_line == expected_lines.size()) return true;
  }

  ++Num_failures;
  cerr << "\nF " << FUNCTION << "(" << FILE << ":" << LINE << "): missing [" << expected_lines[curr_expected_line] << "] in trace:\n";
  DUMP(layer);
  Passed = false;
  return false;
}

#define CHECK_TRACE_CONTENTS(...)  check_trace_contents(__FUNCTION__, __FILE__, __LINE__, __VA_ARGS__)

int trace_count(string pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# This module implements the transformator. It transforms the syntax tree
# to ease the work of the code generators. Does some transformations:
#
# * inlines iterators
# * inlines constants
# * performs constant folding
# * converts "continue" to "break"; disambiguates "break"
# * introduces method dispatchers
# * performs lambda lifting for closure support
# * transforms 'defer' into a 'try finally' statement

import
  intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os,
  idents, renderer, types, passes, semfold, magicsys, cgmeth, rodread,
  lambdalifting, sempass2, lowerings

# implementation

type
  PTransNode* = distinct PNode

  PTransCon = ref TTransCon
  TTransCon{.final.} = object # part of TContext; stackable
    mapping: TIdNodeTable     # mapping from symbols to nodes
    owner: PSym               # current owner
    forStmt: PNode            # current for stmt
    forLoopBody: PTransNode   # transformed for loop body
    yieldStmts: int           # we count the number of yield statements,
                              # because we need to introduce new variables
                              # if we encounter the 2nd yield statement
    next: PTransCon           # for stacking

  TTransfContext = object of passes.TPassContext
    module: PSym
    transCon: PTransCon      # top of a TransCon stack
    inlining: int            # > 0 if we are in inlining context (copy vars)
    nestedProcs: int         # > 0 if we are in a nested proc
    contSyms, breakSyms: seq[PSym]  # to transform 'continue' and 'break'
    deferDetected, tooEarly: bool
  PTransf = ref TTransfContext

proc newTransNode(a: PNode): PTransNode {.inline.} =
  result = PTransNode(shallowCopy(a))

proc newTransNode(kind: TNodeKind, info: TLineInfo,
                  sons: int): PTransNode {.inline.} =
  var x = newNodeI(kind, info)
  newSeq(x.sons, sons)
  result = x.PTransNode

proc newTransNode(kind: TNodeKind, n: PNode,
                  sons: int): PTransNode {.inline.} =
  var x = newNodeIT(kind, n.info, n.typ)
  newSeq(x.sons, sons)
  x.typ = n.typ
  result = x.PTransNode

proc `[]=`(a: PTransNode, i: int, x: PTransNode) {.inline.} =
  var n = PNode(a)
  n.sons[i] = PNode(x)

proc `[]`(a: PTransNode, i: int): PTransNode {.inline.} =
  var n = PNode(a)
  result = n.sons[i].PTransNode

proc add(a, b: PTransNode) {.inline.} = addSon(PNode(a), PNode(b))
proc len(a: PTransNode): int {.inline.} = result = sonsLen(a.PNode)

proc newTransCon(owner: PSym): PTransCon =
  assert owner != nil
  new(result)
  initIdNodeTable(result.mapping)
  result.owner = owner

proc pushTransCon(c: PTransf, t: PTransCon) =
  t.next = c.transCon
  c.transCon = t

proc popTransCon(c: PTransf) =
  if (c.transCon == nil): internalError("popTransCon")
  c.transCon = c.transCon.next

proc getCurrOwner(c: PTransf): PSym =
  if c.transCon != nil: result = c.transCon.owner
  else: result = c.module

proc newTemp(c: PTransf, typ: PType, info: TLineInfo): PNode =
  let r = newSym(skTemp, getIdent(genPrefix), getCurrOwner(c), info)
  r.typ = typ #skipTypes(typ, {tyGenericInst})
  incl(r.flags, sfFromGeneric)
  let owner = getCurrOwner(c)
  if owner.isIterator and not c.tooEarly:
    result = freshVarForClosureIter(r, owner)
  else:
    result = newSymNode(r)

proc transform(c: PTransf, n: PNode): PTransNode

proc transformSons(c: PTransf, n: PNode): PTransNode =
  result = newTransNode(n)
  for i in countup(0, sonsLen(n)-1):
    result[i] = transform(c, n.sons[i])

proc newAsgnStmt(c: PTransf, le: PNode, ri: PTransNode): PTransNode =
  result = newTransNode(nkFastAsgn, PNode(ri).info, 2)
  result[0] = PTransNode(le)
  result[1] = ri

proc transformSymAux(c: PTransf, n: PNode): PNode =
  let s = n.sym
  if s.typ != nil and s.typ.callConv == ccClosure:
    if s.kind == skIterator:
      if c.tooEarly: return n
      else: return liftIterSym(n, getCurrOwner(c))
    elif s.kind in {skProc, skConverter, skMethod} and not c.tooEarly:
      # top level .closure procs are still somewhat supported for 'Nake':
      return makeClosure(s, nil, n.info)
  #elif n.sym.kind in {skVar, skLet} and n.sym.typ.callConv == ccClosure:
  #  echo n.info, " come heer for ", c.tooEarly
  #  if not c.tooEarly:
  var b: PNode
  var tc = c.transCon
  if sfBorrow in s.flags and s.kind in routineKinds:
    # simply exchange the symbol:
    b = s.getBody
    if b.kind != nkSym: internalError(n.info, "wrong AST for borrowed symbol")
    b = newSymNode(b.sym)
    b.info = n.info
  else:
    b = n
  while tc != nil:
    result = idNodeTableGet(tc.mapping, b.sym)
    if result != nil: return
    tc = tc.next
  result = b

proc transformSym(c: PTransf, n: PNode): PTransNode =
  result = PTransNode(transformSymAux(c, n))

proc freshVar(c: PTransf; v: PSym): PNode =
  let owner = getCurrOwner(c)
  if owner.isIterator and not c.tooEarly:
    result = freshVarForClosureIter(v, owner)
  else:
    var newVar = copySym(v)
    incl(newVar.flags, sfFromGeneric)
    newVar.owner = owner
    result = newSymNode(newVar)

proc transformVarSection(c: PTransf, v: PNode): PTransNode =
  result = newTransNode(v)
  for i in countup(0, sonsLen(v)-1):
    var it = v.sons[i]
    if it.kind == nkCommentStmt:
      result[i] = PTransNode(it)
    elif it.kind == nkIdentDefs:
      if it.sons[0].kind == nkSym:
        internalAssert(it.len == 3)
        let x = freshVar(c, it.sons[0].sym)
        idNodeTablePut(c.transCon.mapping, it.sons[0].sym, x)
        var defs = newTransNode(nkIdentDefs, it.info, 3)
        if importantComments():
          # keep documentation information:
          PNode(defs).comment = it.comment
        defs[0] = x.PTransNode
        defs[1] = it.sons[1].PTransNode
        defs[2] = transform(c, it.sons[2])
        if x.kind == nkSym: x.sym.ast = defs[2].PNode
        result[i] = defs
      else:
        # has been transformed into 'param.x' for closure iterators, so just
        # transform it:
        result[i] = transform(c, it)
    else:
      if it.kind != nkVarTuple:
        internalError(it.info, "transformVarSection: not nkVarTuple")
      var L = sonsLen(it)
      var defs = newTransNode(it.kind, it.info, L)
      for j in countup(0, L-3):
        let x = freshVar(c, it.sons[j].sym)
        idNodeTablePut(c.transCon.mapping, it.sons[j].sym, x)
        defs[j] = x.PTransNode
      assert(it.sons[L-2].kind == nkEmpty)
      defs[L-2] = ast.emptyNode.PTransNode
      defs[L-1] = transform(c, it.sons[L-1])
      result[i] = defs

proc transformConstSection(c: PTransf, v: PNode): PTransNode =
  result = newTransNode(v)
  for i in countup(0, sonsLen(v)-1):
    var it = v.sons[i]
    if it.kind == nkCommentStmt:
      result[i] = PTransNode(it)
    else:
      if it.kind != nkConstDef: internalError(it.info, "transformConstSection")
      if it.sons[0].kind != nkSym:
        internalError(it.info, "transformConstSection")
      if sfFakeConst in it[0].sym.flags:
        var b = newNodeI(nkConstDef, it.info)
        addSon(b, it[0])
        addSon(b, ast.emptyNode)            # no type description
        addSon(b, transform(c, it[2]).PNode)
        result[i] = PTransNode(b)
      else:
        result[i] = PTransNode(it)

proc hasContinue(n: PNode): bool =
  case n.kind
  of nkEmpty..nkNilLit, nkForStmt, nkParForStmt, nkWhileStmt: discard
  of nkContinueStmt: result = true
  else:
    for i in countup(0, sonsLen(n) - 1):
      if hasContinue(n.sons[i]): return true

proc newLabel(c: PTransf, n: PNode): PSym =
  result = newSym(skLabel, nil, getCurrOwner(c), n.info)
  result.name = getIdent(genPrefix & $result.id)

proc freshLabels(c: PTransf, n: PNode; symMap: var TIdTable) =
  if n.kind in {nkBlockStmt, nkBlockExpr}:
    if n.sons[0].kind == nkSym:
      let x = newLabel(c, n[0])
      idTablePut(symMap, n[0].sym, x)
      n.sons[0].sym = x
  if n.kind == nkSym and n.sym.kind == skLabel:
    let x = PSym(idTableGet(symMap, n.sym))
    if x != nil: n.sym = x
  else:
    for i in 0 .. <safeLen(n): freshLabels(c, n.sons[i], symMap)

proc transformBlock(c: PTransf, n: PNode): PTransNode =
  var labl: PSym
  if n.sons[0].kind != nkEmpty:
    # already named block? -> Push symbol on the stack:
    labl = n.sons[0].sym
  else:
    labl = newLabel(c, n)
  c.breakSyms.add(labl)
  result = transformSons(c, n)
  discard c.breakSyms.pop
  result[0] = newSymNode(labl).PTransNode

proc transformLoopBody(c: PTransf, n: PNode): PTransNode =
  # What if it contains "continue" and "break"? "break" needs
  # an explicit label too, but not the same!

  # We fix this here by making every 'break' belong to its enclosing loop
  # and changing all breaks that belong to a 'block' by annotating it with
  # a label (if it hasn't one already).
  if hasContinue(n):
    let labl = newLabel(c, n)
    c.contSyms.add(labl)

    result = newTransNode(nkBlockStmt, n.info, 2)
    result[0] = newSymNode(labl).PTransNode
    result[1] = transform(c, n)
    discard c.contSyms.pop()
  else:
    result = transform(c, n)

proc transformWhile(c: PTransf; n: PNode): PTransNode =
  if c.inlining > 0:
    result = transformSons(c, n)
  else:
    let labl = newLabel(c, n)
    c.breakSyms.add(labl)
    result = newTransNode(nkBlockStmt, n.info, 2)
    result[0] = newSymNode(labl).PTransNode

    var body = newTransNode(n)
    for i in 0..n.len-2:
      body[i] = transform(c, n.sons[i])
    body[<n.len] = transformLoopBody(c, n.sons[<n.len])
    result[1] = body
    discard c.breakSyms.pop

proc transformBreak(c: PTransf, n: PNode): PTransNode =
  if n.sons[0].kind != nkEmpty or c.inlining > 0:
    result = n.PTransNode
    when false:
      let lablCopy = idNodeTableGet(c.transCon.mapping, n.sons[0].sym)
      if lablCopy.isNil:
        result = n.PTransNode
      else:
        result = newTransNode(n.kind, n.info, 1)
        result[0] = lablCopy.PTransNode
  else:
    let labl = c.breakSyms[c.breakSyms.high]
    result = transformSons(c, n)
    result[0] = newSymNode(labl).PTransNode

proc unpackTuple(c: PTransf, n: PNode, father: PTransNode) =
  # XXX: BUG: what if `n` is an expression with side-effects?
  for i in countup(0, sonsLen(c.transCon.forStmt) - 3):
    add(father, newAsgnStmt(c, c.transCon.forStmt.sons[i],
        transform(c, newTupleAccess(n, i))))

proc introduceNewLocalVars(c: PTransf, n: PNode): PTransNode =
  case n.kind
  of nkSym:
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
    # nothing to be done for leaves:
    result = PTransNode(n)
  of nkVarSection, nkLetSection:
    result = transformVarSection(c, n)
  of nkClosure:
    # it can happen that for-loop-inlining produced a fresh
    # set of variables, including some computed environment
    # (bug #2604). We need to patch this environment here too:
    let a = n[1]
    if a.kind == nkSym:
      n.sons[1] = transformSymAux(c, a)
    return PTransNode(n)
  else:
    result = newTransNode(n)
    for i in countup(0, sonsLen(n)-1):
      result[i] = introduceNewLocalVars(c, n.sons[i])

proc transformYield(c: PTransf, n: PNode): PTransNode =
  result = newTransNode(nkStmtList, n.info, 0)
  var e = n.sons[0]
  # c.transCon.forStmt.len == 3 means that there is one for loop variable
  # and thus no tuple unpacking:
  if e.typ.isNil: return result # can happen in nimsuggest for unknown reasons
  if skipTypes(e.typ, {tyGenericInst}).kind == tyTuple and
      c.transCon.forStmt.len != 3:
    e = skipConv(e)
    if e.kind == nkPar:
      for i in countup(0, sonsLen(e) - 1):
        add(result, newAsgnStmt(c, c.transCon.forStmt.sons[i],
                                transform(c, e.sons[i])))
    else:
      unpackTuple(c, e, result)
  else:
    var x = transform(c, e)
    add(result, newAsgnStmt(c, c.transCon.forStmt.sons[0], x))

  inc(c.transCon.yieldStmts)
  if c.transCon.yieldStmts <= 1:
    # common case
    add(result, c.transCon.forLoopBody)
  else:
    # we need to introduce new local variables:
    add(result, introduceNewLocalVars(c, c.transCon.forLoopBody.PNode))

proc transformAddrDeref(c: PTransf, n: PNode, a, b: TNodeKind): PTransNode =
  result = transformSons(c, n)
  if gCmd == cmdCompileToCpp or sfCompileToCpp in c.module.flags: return
  var n = result.PNode
  case n.sons[0].kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    var m = n.sons[0].sons[0]
    if m.kind == a or m.kind == b:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n.sons[0].sons[0] = m.sons[0]
      result = PTransNode(n.sons[0])
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var m = n.sons[0].sons[1]
    if m.kind == a or m.kind == b:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      n.sons[0].sons[1] = m.sons[0]
      result = PTransNode(n.sons[0])
  else:
    if n.sons[0].kind == a or n.sons[0].kind == b:
      # addr ( deref ( x )) --> x
      result = PTransNode(n.sons[0].sons[0])

proc generateThunk(prc: PNode, dest: PType): PNode =
  ## Converts 'prc' into '(thunk, nil)' so that it's compatible with
  ## a closure.

  # we cannot generate a proper thunk here for GC-safety reasons
  # (see internal documentation):
  if gCmd == cmdCompileToJS: return prc
  result = newNodeIT(nkClosure, prc.info, dest)
  var conv = newNodeIT(nkHiddenSubConv, prc.info, dest)
  conv.add(emptyNode)
  conv.add(prc)
  if prc.kind == nkClosure:
    internalError(prc.info, "closure to closure created")
  result.add(conv)
  result.add(newNodeIT(nkNilLit, prc.info, getSysType(tyNil)))

proc transformConv(c: PTransf, n: PNode): PTransNode =
  # numeric types need range checks:
  var dest = skipTypes(n.typ, abstractVarRange)
  var source = skipTypes(n.sons[1].typ, abstractVarRange)
  case dest.kind
  of tyInt..tyInt64, tyEnum, tyChar, tyBool, tyUInt8..tyUInt32:
    # we don't include uint and uint64 here as these are no ordinal types ;-)
    if not isOrdinalType(source):
      # float -> int conversions. ugh.
      result = transformSons(c, n)
    elif firstOrd(n.typ) <= firstOrd(n.sons[1].typ) and
        lastOrd(n.sons[1].typ) <= lastOrd(n.typ):
      # BUGFIX: simply leave n as it is; we need a nkConv node,
      # but no range check:
      result = transformSons(c, n)
    else:
      # generate a range check:
      if dest.kind == tyInt64 or source.kind == tyInt64:
        result = newTransNode(nkChckRange64, n, 3)
      else:
        result = newTransNode(nkChckRange, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n.sons[1])
      result[1] = newIntTypeNode(nkIntLit, firstOrd(dest), dest).PTransNode
      result[2] = newIntTypeNode(nkIntLit, lastOrd(dest), dest).PTransNode
  of tyFloat..tyFloat128:
    # XXX int64 -> float conversion?
    if skipTypes(n.typ, abstractVar).kind == tyRange:
      result = newTransNode(nkChckRangeF, n, 3)
      dest = skipTypes(n.typ, abstractVar)
      result[0] = transform(c, n.sons[1])
      result[1] = copyTree(dest.n.sons[0]).PTransNode
      result[2] = copyTree(dest.n.sons[1]).PTransNode
    else:
      result = transformSons(c, n)
  of tyOpenArray, tyVarargs:
    result = transform(c, n.sons[1])
    PNode(result).typ = takeType(n.typ, n.sons[1].typ)
    #echo n.info, " came here and produced ", typeToString(PNode(result).typ),
    #   " from ", typeToString(n.typ), " and ", typeToString(n.sons[1].typ)
  of tyCString:
    if source.kind == tyString:
      result = newTransNode(nkStringToCString, n, 1)
      result[0] = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyString:
    if source.kind == tyCString:
      result = newTransNode(nkCStringToString, n, 1)
      result[0] = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyRef, tyPtr:
    dest = skipTypes(dest, abstractPtrs)
    source = skipTypes(source, abstractPtrs)
    if source.kind == tyObject:
      var diff = inheritanceDiff(dest, source)
      if diff < 0:
        result = newTransNode(nkObjUpConv, n, 1)
        result[0] = transform(c, n.sons[1])
      elif diff > 0 and diff != high(int):
        result = newTransNode(nkObjDownConv, n, 1)
        result[0] = transform(c, n.sons[1])
      else:
        result = transform(c, n.sons[1])
    else:
      result = transformSons(c, n)
  of tyObject:
    var diff = inheritanceDiff(dest, source)
    if diff < 0:
      result = newTransNode(nkObjUpConv, n, 1)
      result[0] = transform(c, n.sons[1])
    elif diff > 0 and diff != high(int):
      result = newTransNode(nkObjDownConv, n, 1)
      result[0] = transform(c, n.sons[1])
    else:
      result = transform(c, n.sons[1])
  of tyGenericParam, tyOrdinal:
    result = transform(c, n.sons[1])
    # happens sometimes for generated assignments, etc.
  of tyProc:
    result = transformSons(c, n)
    if dest.callConv == ccClosure and source.callConv == ccDefault:
      result = generateThunk(result[1].PNode, dest).PTransNode
  else:
    result = transformSons(c, n)

type
  TPutArgInto = enum
    paDirectMapping, paFastAsgn, paVarAsgn

proc putArgInto(arg: PNode, formal: PType): TPutArgInto =
  # This analyses how to treat the mapping "formal <-> arg" in an
  # inline context.
  if skipTypes(formal, abstractInst).kind in {tyOpenArray, tyVarargs}:
    return paDirectMapping    # XXX really correct?
                              # what if ``arg`` has side-effects?
  case arg.kind
  of nkEmpty..nkNilLit:
    result = paDirectMapping
  of nkPar, nkCurly, nkBracket:
    result = paFastAsgn
    for i in countup(0, sonsLen(arg) - 1):
      if putArgInto(arg.sons[i], formal) != paDirectMapping: return
    result = paDirectMapping
  else:
    if skipTypes(formal, abstractInst).kind == tyVar: result = paVarAsgn
    else: result = paFastAsgn

proc findWrongOwners(c: PTransf, n: PNode) =
  if n.kind == nkVarSection:
    let x = n.sons[0].sons[0]
    if x.kind == nkSym and x.sym.owner != getCurrOwner(c):
      internalError(x.info, "bah " & x.sym.name.s & " " &
        x.sym.owner.name.s & " " & getCurrOwner(c).name.s)
  else:
    for i in 0 .. <safeLen(n): findWrongOwners(c, n.sons[i])

proc transformFor(c: PTransf, n: PNode): PTransNode =
  # generate access statements for the parameters (unless they are constant)
  # put mapping from formal parameters to actual parameters
  if n.kind != nkForStmt: internalError(n.info, "transformFor")

  var length = sonsLen(n)
  var call = n.sons[length - 2]

  let labl = newLabel(c, n)
  result = newTransNode(nkBlockStmt, n.info, 2)
  result[0] = newSymNode(labl).PTransNode
  if call.typ.isNil:
    # see bug #3051
    result[1] = newNode(nkEmpty).PTransNode
    return result
  c.breakSyms.add(labl)
  if call.kind notin nkCallKinds or call.sons[0].kind != nkSym or
      call.sons[0].typ.callConv == ccClosure:
    n.sons[length-1] = transformLoopBody(c, n.sons[length-1]).PNode
    if not c.tooEarly:
      n.sons[length-2] = transform(c, n.sons[length-2]).PNode
      result[1] = lambdalifting.liftForLoop(n, getCurrOwner(c)).PTransNode
    else:
      result[1] = newNode(nkEmpty).PTransNode
    discard c.breakSyms.pop
    return result

  #echo "transforming: ", renderTree(n)
  var stmtList = newTransNode(nkStmtList, n.info, 0)
  result[1] = stmtList

  var loopBody = transformLoopBody(c, n.sons[length-1])

  discard c.breakSyms.pop

  var v = newNodeI(nkVarSection, n.info)
  for i in countup(0, length - 3):
    addVar(v, copyTree(n.sons[i])) # declare new vars
  add(stmtList, v.PTransNode)

  # Bugfix: inlined locals belong to the invoking routine, not to the invoked
  # iterator!
  let iter = call.sons[0].sym
  var newC = newTransCon(getCurrOwner(c))
  newC.forStmt = n
  newC.forLoopBody = loopBody
  # this can fail for 'nimsuggest' and 'check':
  if iter.kind != skIterator: return result
  # generate access statements for the parameters (unless they are constant)
  pushTransCon(c, newC)
  for i in countup(1, sonsLen(call) - 1):
    var arg = transform(c, call.sons[i]).PNode
    var formal = skipTypes(iter.typ, abstractInst).n.sons[i].sym
    case putArgInto(arg, formal.typ)
    of paDirectMapping:
      idNodeTablePut(newC.mapping, formal, arg)
    of paFastAsgn:
      # generate a temporary and produce an assignment statement:
      var temp = newTemp(c, formal.typ, formal.info)
      addVar(v, temp)
      add(stmtList, newAsgnStmt(c, temp, arg.PTransNode))
      idNodeTablePut(newC.mapping, formal, temp)
    of paVarAsgn:
      assert(skipTypes(formal.typ, abstractInst).kind == tyVar)
      idNodeTablePut(newC.mapping, formal, arg)
      # XXX BUG still not correct if the arg has a side effect!
  var body = iter.getBody.copyTree
  pushInfoContext(n.info)
  # XXX optimize this somehow. But the check "c.inlining" is not correct:
  var symMap: TIdTable
  initIdTable symMap
  freshLabels(c, body, symMap)

  inc(c.inlining)
  add(stmtList, transform(c, body))
  #findWrongOwners(c, stmtList.pnode)
  dec(c.inlining)
  popInfoContext()
  popTransCon(c)
  # echo "transformed: ", stmtList.PNode.renderTree

proc getMagicOp(call: PNode): TMagic =
  if call.sons[0].kind == nkSym and
      call.sons[0].sym.kind in {skProc, skMethod, skConverter}:
    result = call.sons[0].sym.magic
  else:
    result = mNone

proc transformCase(c: PTransf, n: PNode): PTransNode =
  # removes `elif` branches of a case stmt
  # adds ``else: nil`` if needed for the code generator
  result = newTransNode(nkCaseStmt, n, 0)
  var ifs = PTransNode(nil)
  for i in 0 .. sonsLen(n)-1:
    var it = n.sons[i]
    var e = transform(c, it)
    case it.kind
    of nkElifBranch:
      if ifs.PNode == nil:
        ifs = newTransNode(nkIfStmt, it.info, 0)
      ifs.add(e)
    of nkElse:
      if ifs.PNode == nil: result.add(e)
      else: ifs.add(e)
    else:
      result.add(e)
  if ifs.PNode != nil:
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = ifs
    result.add(elseBranch)
  elif result.PNode.lastSon.kind != nkElse and not (
      skipTypes(n.sons[0].typ, abstractVarRange).kind in
        {tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt32}):
    # fix a stupid code gen bug by normalizing:
    var elseBranch = newTransNode(nkElse, n.info, 1)
    elseBranch[0] = newTransNode(nkNilLit, n.info, 0)
    add(result, elseBranch)

proc transformArrayAccess(c: PTransf, n: PNode): PTransNode =
  # XXX this is really bad; transf should use a proper AST visitor
  if n.sons[0].kind == nkSym and n.sons[0].sym.kind == skType:
    result = n.PTransNode
  else:
    result = newTransNode(n)
    for i in 0 .. < n.len:
      result[i] = transform(c, skipConv(n.sons[i]))

proc getMergeOp(n: PNode): PSym =
  case n.kind
  of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix,
     nkCallStrLit:
    if n.sons[0].kind == nkSym and n.sons[0].sym.magic == mConStrStr:
      result = n.sons[0].sym
  else: discard

proc flattenTreeAux(d, a: PNode, op: PSym) =
  let op2 = getMergeOp(a)
  if op2 != nil and
      (op2.id == op.id or op.magic != mNone and op2.magic == op.magic):
    for i in countup(1, sonsLen(a)-1): flattenTreeAux(d, a.sons[i], op)
  else:
    addSon(d, copyTree(a))

proc flattenTree(root: PNode): PNode =
  let op = getMergeOp(root)
  if op != nil:
    result = copyNode(root)
    addSon(result, copyTree(root.sons[0]))
    flattenTreeAux(result, root, op)
  else:
    result = root

proc transformCall(c: PTransf, n: PNode): PTransNode =
  var n = flattenTree(n)
  let op = getMergeOp(n)
  let magic = getMagic(n)
  if op != nil and op.magic != mNone and n.len >= 3:
    result = newTransNode(nkCall, n, 0)
    add(result, transform(c, n.sons[0]))
    var j = 1
    while j < sonsLen(n):
      var a = transform(c, n.sons[j]).PNode
      inc(j)
      if isConstExpr(a):
        while (j < sonsLen(n)):
          let b = transform(c, n.sons[j]).PNode
          if not isConstExpr(b): break
          a = evalOp(op.magic, n, a, b, nil)
          inc(j)
      add(result, a.PTransNode)
    if len(result) == 2: result = result[1]
  elif magic == mNBindSym:
    # for bindSym(myconst) we MUST NOT perform constant folding:
    result = n.PTransNode
  elif magic == mProcCall:
    # but do not change to its dispatcher:
    result = transformSons(c, n[1])
  else:
    let s = transformSons(c, n).PNode
    # bugfix: check after 'transformSons' if it's still a method call:
    # use the dispatcher for the call:
    if s.sons[0].kind == nkSym and s.sons[0].sym.kind == skMethod:
      let t = lastSon(s.sons[0].sym.ast)
      if t.kind != nkSym or sfDispatcher notin t.sym.flags:
        methodDef(s.sons[0].sym, false)
      result = methodCall(s).PTransNode
    else:
      result = s.PTransNode

proc dontInlineConstant(orig, cnst: PNode): bool {.inline.} =
  # symbols that expand to a complex constant (array, etc.) should not be
  # inlined, unless it's the empty array:
  result = orig.kind == nkSym and cnst.kind in {nkCurly, nkPar, nkBracket} and
      cnst.len != 0

proc commonOptimizations*(c: PSym, n: PNode): PNode =
  result = n
  for i in 0 .. < n.safeLen:
    result.sons[i] = commonOptimizations(c, n.sons[i])
  var op = getMergeOp(n)
  if (op != nil) and (op.magic != mNone) and (sonsLen(n) >= 3):
    result = newNodeIT(nkCall, n.info, n.typ)
    add(result, n.sons[0])
    var args = newNode(nkArgList)
    flattenTreeAux(args, n, op)
    var j = 0
    while j < sonsLen(args):
      var a = args.sons[j]
      inc(j)
      if isConstExpr(a):
        while j < sonsLen(args):
          let b = args.sons[j]
          if not isConstExpr(b): break
          a = evalOp(op.magic, result, a, b, nil)
          inc(j)
      add(result, a)
    if len(result) == 2: result = result[1]
  else:
    var cnst = getConstExpr(c, n)
    # we inline constants if they are not complex constants:
    if cnst != nil and not dontInlineConstant(n, cnst):
      result = cnst
    else:
      result = n

proc transform(c: PTransf, n: PNode): PTransNode =
  when false:
    var oldDeferAnchor: PNode
    if n.kind in {nkElifBranch, nkOfBranch, nkExceptBranch, nkElifExpr,
                  nkElseExpr, nkElse, nkForStmt, nkWhileStmt, nkFinally,
                  nkBlockStmt, nkBlockExpr}:
      oldDeferAnchor = c.deferAnchor
      c.deferAnchor = n

  case n.kind
  of nkSym:
    result = transformSym(c, n)
  of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit:
    # nothing to be done for leaves:
    result = PTransNode(n)
  of nkBracketExpr: result = transformArrayAccess(c, n)
  of procDefs:
    var s = n.sons[namePos].sym
    if n.typ != nil and s.typ.callConv == ccClosure:
      result = transformSym(c, n.sons[namePos])
      # use the same node as before if still a symbol:
      if result.PNode.kind == nkSym: result = PTransNode(n)
    else:
      result = PTransNode(n)
  of nkMacroDef:
    # XXX no proper closure support yet:
    when false:
      if n.sons[genericParamsPos].kind == nkEmpty:
        var s = n.sons[namePos].sym
        n.sons[bodyPos] = PNode(transform(c, s.getBody))
        if n.kind == nkMethodDef: methodDef(s, false)
    result = PTransNode(n)
  of nkForStmt:
    result = transformFor(c, n)
  of nkParForStmt:
    result = transformSons(c, n)
  of nkCaseStmt:
    result = transformCase(c, n)
  of nkWhileStmt: result = transformWhile(c, n)
  of nkBlockStmt, nkBlockExpr:
    result = transformBlock(c, n)
  of nkDefer:
    c.deferDetected = true
    result = transformSons(c, n)
    when false:
      let deferPart = newNodeI(nkFinally, n.info)
      deferPart.add n.sons[0]
      let tryStmt = newNodeI(nkTryStmt, n.info)
      if c.deferAnchor.isNil:
        tryStmt.add c.root
        c.root = tryStmt
        result = PTransNode(tryStmt)
      else:
        # modify the corresponding *action*, don't rely on nkStmtList:
        let L = c.deferAnchor.len-1
        tryStmt.add c.deferAnchor.sons[L]
        c.deferAnchor.sons[L] = tryStmt
        result = newTransNode(nkCommentStmt, n.info, 0)
      tryStmt.addSon(deferPart)
      # disable the original 'defer' statement:
      n.kind = nkEmpty
  of nkContinueStmt:
    result = PTransNode(newNodeI(nkBreakStmt, n.info))
    var labl = c.contSyms[c.contSyms.high]
    add(result, PTransNode(newSymNode(labl)))
  of nkBreakStmt: result = transformBreak(c, n)
  of nkCallKinds:
    result = transformCall(c, n)
  of nkAddr, nkHiddenAddr:
    result = transformAddrDeref(c, n, nkDerefExpr, nkHiddenDeref)
  of nkDerefExpr, nkHiddenDeref:
    result = transformAddrDeref(c, n, nkAddr, nkHiddenAddr)
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    result = transformConv(c, n)
  of nkDiscardStmt:
    result = PTransNode(n)
    if n.sons[0].kind != nkEmpty:
      result = transformSons(c, n)
      if isConstExpr(PNode(result).sons[0]):
        # ensure that e.g. discard "some comment" gets optimized away
        # completely:
        result = PTransNode(newNode(nkCommentStmt))
  of nkCommentStmt, nkTemplateDef:
    return n.PTransNode
  of nkConstSection:
    # do not replace ``const c = 3`` with ``const 3 = 3``
    return transformConstSection(c, n)
  of nkTypeSection:
    # no need to transform type sections:
    return PTransNode(n)
  of nkVarSection, nkLetSection:
    if c.inlining > 0:
      # we need to copy the variables for multiple yield statements:
      result = transformVarSection(c, n)
    else:
      result = transformSons(c, n)
  of nkYieldStmt:
    if c.inlining > 0:
      result = transformYield(c, n)
    else:
      result = transformSons(c, n)
  of nkIdentDefs, nkConstDef:
    result = transformSons(c, n)
    # XXX comment handling really sucks:
    if importantComments():
      PNode(result).comment = n.comment
  of nkClosure:
    # it can happen that for-loop-inlining produced a fresh
    # set of variables, including some computed environment
    # (bug #2604). We need to patch this environment here too:
    let a = n[1]
    if a.kind == nkSym:
      n.sons[1] = transformSymAux(c, a)
    return PTransNode(n)
  else:
    result = transformSons(c, n)
  when false:
    if oldDeferAnchor != nil: c.deferAnchor = oldDeferAnchor
  var cnst = getConstExpr(c.module, PNode(result))
  # we inline constants if they are not complex constants:
  if cnst != nil and not dontInlineConstant(n, cnst):
    result = PTransNode(cnst) # do not miss an optimization

proc processTransf(c: PTransf, n: PNode, owner: PSym): PNode =
  # Note: For interactive mode we cannot call 'passes.skipCodegen' and skip
  # this step! We have to rely that the semantic pass transforms too errornous
  # nodes into an empty node.
  if c.fromCache or nfTransf in n.flags: return n
  pushTransCon(c, newTransCon(owner))
  result = PNode(transform(c, n))
  popTransCon(c)
  incl(result.flags, nfTransf)

proc openTransf(module: PSym, filename: string): PTransf =
  new(result)
  result.contSyms = @[]
  result.breakSyms = @[]
  result.module = module

proc flattenStmts(n: PNode) =
  var goOn = true
  while goOn:
    goOn = false
    var i = 0
    while i < n.len:
      let it = n[i]
      if it.kind in {nkStmtList, nkStmtListExpr}:
        n.sons[i..i] = it.sons[0..<it.len]
        goOn = true
      inc i

proc liftDeferAux(n: PNode) =
  if n.kind in {nkStmtList, nkStmtListExpr}:
    flattenStmts(n)
    var goOn = true
    while goOn:
      goOn = false
      let last = n.len-1
      for i in 0..last:
        if n.sons[i].kind == nkDefer:
          let deferPart = newNodeI(nkFinally, n.sons[i].info)
          deferPart.add n.sons[i].sons[0]
          var tryStmt = newNodeI(nkTryStmt, n.sons[i].info)
          var body = newNodeI(n.kind, n.sons[i].info)
          if i < last:
            body.sons = n.sons[(i+1)..last]
          tryStmt.addSon(body)
          tryStmt.addSon(deferPart)
          n.sons[i] = tryStmt
          n.sons.setLen(i+1)
          n.typ = n.sons[i].typ
          goOn = true
          break
  for i in 0..n.safeLen-1:
    liftDeferAux(n.sons[i])

template liftDefer(c, root) =
  if c.deferDetected:
    liftDeferAux(root)

proc transformBody*(module: PSym, n: PNode, prc: PSym): PNode =
  if nfTransf in n.flags or prc.kind in {skTemplate}:
    result = n
  else:
    var c = openTransf(module, "")
    result = liftLambdas(prc, n, c.tooEarly)
    #result = n
    result = processTransf(c, result, prc)
    liftDefer(c, result)
    #result = liftLambdas(prc, result)
    incl(result.flags, nfTransf)
    when useEffectSystem: trackProc(prc, result)
    #if prc.name.s == "testbody":
    #  echo renderTree(result)

proc transformStmt*(module: PSym, n: PNode): PNode =
  if nfTransf in n.flags:
    result = n
  else:
    var c = openTransf(module, "")
    result = processTransf(c, n, module)
    liftDefer(c, result)
    #result = liftLambdasForTopLevel(module, result)
    incl(result.flags, nfTransf)
    when useEffectSystem: trackTopLevelStmt(module, result)
    #if n.info ?? "temp.nim":
    #  echo renderTree(result, {renderIds})

proc transformExpr*(module: PSym, n: PNode): PNode =
  if nfTransf in n.flags:
    result = n
  else:
    var c = openTransf(module, "")
    result = processTransf(c, n, module)
    liftDefer(c, result)
    incl(result.flags, nfTransf)