summary refs log tree commit diff stats
path: root/compiler/vm.nim
blob: 2919e865a116771d5eca99ca7fcb970f8df097ce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This file implements the new evaluation engine for Nim code.
## An instruction is 1-3 int32s in memory, it is a register based VM.

import ast except getstr

import
  strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes,
  parser, vmdeps, idents, trees, renderer, options, transf, parseutils,
  vmmarshal, gorgeimpl, lineinfos, tables, btrees, macrocacheimpl,
  modulegraphs, sighashes

from semfold import leValueConv, ordinalValToString
from evaltempl import evalTemplate

const
  traceCode = defined(nimVMDebug)

when hasFFI:
  import evalffi

type
  TRegisterKind = enum
    rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr
  TFullReg = object   # with a custom mark proc, we could use the same
                      # data representation as LuaJit (tagged NaNs).
    case kind: TRegisterKind
    of rkNone: nil
    of rkInt: intVal: BiggestInt
    of rkFloat: floatVal: BiggestFloat
    of rkNode: node: PNode
    of rkRegisterAddr: regAddr: ptr TFullReg
    of rkNodeAddr: nodeAddr: ptr PNode

  PStackFrame* = ref TStackFrame
  TStackFrame* = object
    prc: PSym                 # current prc; proc that is evaluated
    slots: seq[TFullReg]      # parameters passed to the proc + locals;
                              # parameters come first
    next: PStackFrame         # for stacking
    comesFrom: int
    safePoints: seq[int]      # used for exception handling
                              # XXX 'break' should perform cleanup actions
                              # What does the C backend do for it?

proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
  if x != nil:
    if recursionLimit == 0:
      var calls = 0
      var x = x
      while x != nil:
        inc calls
        x = x.next
      msgWriteln(c.config, $calls & " calls omitted\n")
      return
    stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
    var info = c.debug[pc]
    # we now use a format similar to the one in lib/system/excpt.nim
    var s = ""
    # todo: factor with quotedFilename
    if optExcessiveStackTrace in c.config.globalOptions:
      s = toFullPath(c.config, info)
    else:
      s = toFilename(c.config, info)
    var line = toLinenumber(info)
    var col = toColumn(info)
    if line > 0:
      add(s, '(')
      add(s, $line)
      add(s, ", ")
      add(s, $(col + ColOffset))
      add(s, ')')
    if x.prc != nil:
      for k in 1..max(1, 25-s.len): add(s, ' ')
      add(s, x.prc.name.s)
    msgWriteln(c.config, s)

proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
                msg: string, lineInfo: TLineInfo) =
  msgWriteln(c.config, "stack trace: (most recent call last)")
  stackTraceAux(c, tos, pc)
  # XXX test if we want 'globalError' for every mode
  if c.mode == emRepl: globalError(c.config, lineInfo, msg)
  else: localError(c.config, lineInfo, msg)

template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
                    msg: string, lineInfo: TLineInfo) =
  stackTraceImpl(c, tos, pc, msg, lineInfo)
  return

template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string) =
  stackTraceImpl(c, tos, pc, msg, c.debug[pc])
  return

proc bailOut(c: PCtx; tos: PStackFrame) =
  stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
             c.currentExceptionA.sons[3].skipColon.strVal)

when not defined(nimComputedGoto):
  {.pragma: computedGoto.}

proc myreset(n: var TFullReg) = reset(n)

template ensureKind(k: untyped) {.dirty.} =
  if regs[ra].kind != k:
    myreset(regs[ra])
    regs[ra].kind = k

template decodeB(k: untyped) {.dirty.} =
  let rb = instr.regB
  ensureKind(k)

template decodeBC(k: untyped) {.dirty.} =
  let rb = instr.regB
  let rc = instr.regC
  ensureKind(k)

template declBC() {.dirty.} =
  let rb = instr.regB
  let rc = instr.regC

template decodeBImm(k: untyped) {.dirty.} =
  let rb = instr.regB
  let imm = instr.regC - byteExcess
  ensureKind(k)

template decodeBx(k: untyped) {.dirty.} =
  let rbx = instr.regBx - wordExcess
  ensureKind(k)

template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler

proc createStrKeepNode(x: var TFullReg; keepNode=true) =
  if x.node.isNil or not keepNode:
    x.node = newNode(nkStrLit)
  elif x.node.kind == nkNilLit and keepNode:
    when defined(useNodeIds):
      let id = x.node.id
    system.reset(x.node[])
    x.node.kind = nkStrLit
    when defined(useNodeIds):
      x.node.id = id
  elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
      nfAllConst in x.node.flags:
    # XXX this is hacky; tests/txmlgen triggers it:
    x.node = newNode(nkStrLit)
    # It not only hackey, it is also wrong for tgentemplate. The primary
    # cause of bugs like these is that the VM does not properly distinguish
    # between variable defintions (var foo = e) and variable updates (foo = e).

include vmhooks

template createStr(x) =
  x.node = newNode(nkStrLit)

template createSet(x) =
  x.node = newNode(nkCurly)

proc moveConst(x: var TFullReg, y: TFullReg) =
  if x.kind != y.kind:
    myreset(x)
    x.kind = y.kind
  case x.kind
  of rkNone: discard
  of rkInt: x.intVal = y.intVal
  of rkFloat: x.floatVal = y.floatVal
  of rkNode: x.node = y.node
  of rkRegisterAddr: x.regAddr = y.regAddr
  of rkNodeAddr: x.nodeAddr = y.nodeAddr

# this seems to be the best way to model the reference semantics
# of system.NimNode:
template asgnRef(x, y: untyped) = moveConst(x, y)

proc copyValue(src: PNode): PNode =
  if src == nil or nfIsRef in src.flags:
    return src
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  result.comment = src.comment
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else:
    newSeq(result.sons, sonsLen(src))
    for i in 0 ..< sonsLen(src):
      result.sons[i] = copyValue(src.sons[i])

proc asgnComplex(x: var TFullReg, y: TFullReg) =
  if x.kind != y.kind:
    myreset(x)
    x.kind = y.kind
  case x.kind
  of rkNone: discard
  of rkInt: x.intVal = y.intVal
  of rkFloat: x.floatVal = y.floatVal
  of rkNode: x.node = copyValue(y.node)
  of rkRegisterAddr: x.regAddr = y.regAddr
  of rkNodeAddr: x.nodeAddr = y.nodeAddr

proc writeField(n: var PNode, x: TFullReg) =
  case x.kind
  of rkNone: discard
  of rkInt: n.intVal = x.intVal
  of rkFloat: n.floatVal = x.floatVal
  of rkNode: n = copyValue(x.node)
  of rkRegisterAddr: writeField(n, x.regAddr[])
  of rkNodeAddr: n = x.nodeAddr[]

proc putIntoReg(dest: var TFullReg; n: PNode) =
  case n.kind
  of nkStrLit..nkTripleStrLit:
    dest.kind = rkNode
    createStr(dest)
    dest.node.strVal = n.strVal
  of nkCharLit..nkUInt64Lit:
    dest.kind = rkInt
    dest.intVal = n.intVal
  of nkFloatLit..nkFloat128Lit:
    dest.kind = rkFloat
    dest.floatVal = n.floatVal
  else:
    dest.kind = rkNode
    dest.node = n

proc regToNode(x: TFullReg): PNode =
  case x.kind
  of rkNone: result = newNode(nkEmpty)
  of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
  of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
  of rkNode: result = x.node
  of rkRegisterAddr: result = regToNode(x.regAddr[])
  of rkNodeAddr: result = x.nodeAddr[]

template getstr(a: untyped): untyped =
  (if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))

proc pushSafePoint(f: PStackFrame; pc: int) =
  when not defined(nimNoNilSeqs):
    if f.safePoints.isNil: f.safePoints = @[]
  f.safePoints.add(pc)

proc popSafePoint(f: PStackFrame) =
  discard f.safePoints.pop()

type
  ExceptionGoto = enum
    ExceptionGotoHandler,
    ExceptionGotoFinally,
    ExceptionGotoUnhandled

proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
  tuple[why: ExceptionGoto, where: int] =
  let raisedType = exc.typ.skipTypes(abstractPtrs)

  while f.safePoints.len > 0:
    var pc = f.safePoints.pop()

    var matched = false
    var pcEndExcept = pc

    # Scan the chain of exceptions starting at pc.
    # The structure is the following:
    # pc - opcExcept, <end of this block>
    #      - opcExcept, <pattern1>
    #      - opcExcept, <pattern2>
    #        ...
    #      - opcExcept, <patternN>
    #      - Exception handler body
    #    - ... more opcExcept blocks may follow
    #    - ... an optional opcFinally block may follow
    #
    # Note that the exception handler body already contains a jump to the
    # finally block or, if that's not present, to the point where the execution
    # should continue.
    # Also note that opcFinally blocks are the last in the chain.
    while c.code[pc].opcode == opcExcept:
      # Where this Except block ends
      pcEndExcept = pc + c.code[pc].regBx - wordExcess
      inc pc

      # A series of opcExcept follows for each exception type matched
      while c.code[pc].opcode == opcExcept:
        let excIndex = c.code[pc].regBx - wordExcess
        let exceptType =
          if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
          else: nil

        # echo typeToString(exceptType), " ", typeToString(raisedType)

        # Determine if the exception type matches the pattern
        if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
          matched = true
          break

        inc pc

      # Skip any further ``except`` pattern and find the first instruction of
      # the handler body
      while c.code[pc].opcode == opcExcept:
        inc pc

      if matched:
        break

      # If no handler in this chain is able to catch this exception we check if
      # the "parent" chains are able to. If this chain ends with a `finally`
      # block we must execute it before continuing.
      pc = pcEndExcept

    # Where the handler body starts
    let pcBody = pc

    if matched:
      return (ExceptionGotoHandler, pcBody)
    elif c.code[pc].opcode == opcFinally:
      # The +1 here is here because we don't want to execute it since we've
      # already pop'd this statepoint from the stack.
      return (ExceptionGotoFinally, pc + 1)

  return (ExceptionGotoUnhandled, 0)

proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
  # Walk up the chain of safepoints and return the PC of the first `finally`
  # block we find or -1 if no such block is found.
  # Note that the safepoint is removed once the function returns!
  result = -1

  # Traverse the stack starting from the end in order to execute the blocks in
  # the inteded order
  for i in 1 .. f.safePoints.len:
    var pc = f.safePoints[^i]
    # Skip the `except` blocks
    while c.code[pc].opcode == opcExcept:
      pc += c.code[pc].regBx - wordExcess
    if c.code[pc].opcode == opcFinally:
      discard f.safePoints.pop
      return pc + 1

proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
  if desttyp.kind == tyString:
    if dest.kind != rkNode:
      myreset(dest)
      dest.kind = rkNode
    dest.node = newNode(nkStrLit)
    let styp = srctyp.skipTypes(abstractRange)
    case styp.kind
    of tyEnum:
      let n = styp.n
      let x = src.intVal.int
      if x <% n.len and (let f = n.sons[x].sym; f.position == x):
        dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
      else:
        for i in 0..<n.len:
          if n.sons[i].kind != nkSym: internalError(c.config, "opConv for enum")
          let f = n.sons[i].sym
          if f.position == x:
            dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
            return
        dest.node.strVal = styp.sym.name.s & " " & $x
    of tyInt..tyInt64:
      dest.node.strVal = $src.intVal
    of tyUInt..tyUInt64:
      dest.node.strVal = $uint64(src.intVal)
    of tyBool:
      dest.node.strVal = if src.intVal == 0: "false" else: "true"
    of tyFloat..tyFloat128:
      dest.node.strVal = $src.floatVal
    of tyString:
      dest.node.strVal = src.node.strVal
    of tyCString:
      if src.node.kind == nkBracket:
        # Array of chars
        var strVal = ""
        for son in src.node.sons:
          let c = char(son.intVal)
          if c == '\0': break
          strVal.add(c)
        dest.node.strVal = strVal
      else:
        dest.node.strVal = src.node.strVal
    of tyChar:
      dest.node.strVal = $chr(src.intVal)
    else:
      internalError(c.config, "cannot convert to string " & desttyp.typeToString)
  else:
    case skipTypes(desttyp, abstractRange).kind
    of tyInt..tyInt64:
      if dest.kind != rkInt:
        myreset(dest); dest.kind = rkInt
      case skipTypes(srctyp, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = int(src.floatVal)
      else:
        dest.intVal = src.intVal
      if dest.intVal < firstOrd(c.config, desttyp) or dest.intVal > lastOrd(c.config, desttyp):
        return true
    of tyUInt..tyUInt64:
      if dest.kind != rkInt:
        myreset(dest); dest.kind = rkInt
      case skipTypes(srctyp, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = int(src.floatVal)
      else:
        let srcDist = (sizeof(src.intVal) - srctyp.size) * 8
        let destDist = (sizeof(dest.intVal) - desttyp.size) * 8

        var value = cast[BiggestUInt](src.intVal)
        when system.cpuEndian == bigEndian:
          value = (value shr srcDist) shl srcDist
          value = (value shr destDist) shl destDist
        else:
          value = (value shl srcDist) shr srcDist
          value = (value shl destDist) shr destDist
        dest.intVal = cast[BiggestInt](value)
    of tyFloat..tyFloat64:
      if dest.kind != rkFloat:
        myreset(dest); dest.kind = rkFloat
      case skipTypes(srctyp, abstractRange).kind
      of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
        dest.floatVal = toBiggestFloat(src.intVal)
      else:
        dest.floatVal = src.floatVal
    of tyObject:
      if srctyp.skipTypes(abstractRange).kind != tyObject:
        internalError(c.config, "invalid object-to-object conversion")
      # A object-to-object conversion is essentially a no-op
      moveConst(dest, src)
    else:
      asgnComplex(dest, src)

proc compile(c: PCtx, s: PSym): int =
  result = vmgen.genProc(c, s)
  when debugEchoCode: c.echoCode result
  #c.echoCode

template handleJmpBack() {.dirty.} =
  if c.loopIterations <= 0:
    if allowInfiniteLoops in c.features:
      c.loopIterations = MaxLoopIterations
    else:
      msgWriteln(c.config, "stack trace: (most recent call last)")
      stackTraceAux(c, tos, pc)
      globalError(c.config, c.debug[pc], errTooManyIterations)
  dec(c.loopIterations)

proc recSetFlagIsRef(arg: PNode) =
  arg.flags.incl(nfIsRef)
  for i in 0 ..< arg.safeLen:
    arg.sons[i].recSetFlagIsRef

proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
  let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
  let oldLen = node.len
  setLen(node.sons, newLen)
  if oldLen < newLen:
    for i in oldLen ..< newLen:
      node.sons[i] = getNullValue(typ.sons[0], info, c.config)

const
  errNilAccess = "attempt to access a nil address"
  errOverOrUnderflow = "over- or underflow"
  errConstantDivisionByZero = "division by zero"
  errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
  errTooManyIterations = "interpretation requires too many iterations; " &
    "if you are sure this is not a bug in your code edit " &
    "compiler/vmdef.MaxLoopIterations and rebuild the compiler"
  errFieldXNotFound = "node lacks field: "

proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
  var pc = start
  var tos = tos
  # Used to keep track of where the execution is resumed.
  var savedPC = -1
  var savedFrame: PStackFrame
  var regs: seq[TFullReg] # alias to tos.slots for performance
  move(regs, tos.slots)
  #echo "NEW RUN ------------------------"
  while true:
    #{.computedGoto.}
    let instr = c.code[pc]
    let ra = instr.regA

    when traceCode:
      template regDescr(name, r): string =
        let kind = if r < regs.len: $regs[r].kind else: ""
        let ret = name & ": " & $r & " " & $kind
        alignLeft(ret, 15)
      echo "PC:$pc $opcode $ra $rb $rc" % [
        "pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
        "ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
        "rc", regDescr("rc", instr.regC)]

    case instr.opcode
    of opcEof: return regs[ra]
    of opcRet:
      let newPc = c.cleanUpOnReturn(tos)
      # Perform any cleanup action before returning
      if newPc < 0:
        pc = tos.comesFrom
        tos = tos.next
        let retVal = regs[0]
        if tos.isNil:
          return retVal

        move(regs, tos.slots)
        assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
        if c.code[pc].opcode == opcIndCallAsgn:
          regs[c.code[pc].regA] = retVal
      else:
        savedPC = pc
        savedFrame = tos
        # The -1 is needed because at the end of the loop we increment `pc`
        pc = newPc - 1
    of opcYldYoid: assert false
    of opcYldVal: assert false
    of opcAsgnInt:
      decodeB(rkInt)
      regs[ra].intVal = regs[rb].intVal
    of opcAsgnStr:
      decodeBC(rkNode)
      createStrKeepNode regs[ra], rc != 0
      regs[ra].node.strVal = regs[rb].node.strVal
    of opcAsgnFloat:
      decodeB(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal
    of opcAsgnIntFromFloat32:
      let rb = instr.regB
      ensureKind(rkInt)
      regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
    of opcAsgnIntFromFloat64:
      let rb = instr.regB
      ensureKind(rkInt)
      regs[ra].intVal = cast[int64](regs[rb].floatVal)
    of opcAsgnFloat32FromInt:
      let rb = instr.regB
      ensureKind(rkFloat)
      regs[ra].floatVal = cast[float32](int32(regs[rb].intVal))
    of opcAsgnFloat64FromInt:
      let rb = instr.regB
      ensureKind(rkFloat)
      regs[ra].floatVal = cast[float64](int64(regs[rb].intVal))
    of opcAsgnComplex:
      asgnComplex(regs[ra], regs[instr.regB])
    of opcAsgnRef:
      asgnRef(regs[ra], regs[instr.regB])
    of opcNodeToReg:
      let ra = instr.regA
      let rb = instr.regB
      # opcDeref might already have loaded it into a register. XXX Let's hope
      # this is still correct this way:
      if regs[rb].kind != rkNode:
        regs[ra] = regs[rb]
      else:
        assert regs[rb].kind == rkNode
        let nb = regs[rb].node
        case nb.kind
        of nkCharLit..nkUInt64Lit:
          ensureKind(rkInt)
          regs[ra].intVal = nb.intVal
        of nkFloatLit..nkFloat64Lit:
          ensureKind(rkFloat)
          regs[ra].floatVal = nb.floatVal
        else:
          ensureKind(rkNode)
          regs[ra].node = nb
    of opcLdArr:
      # a = b[c]
      decodeBC(rkNode)
      if regs[rc].intVal > high(int):
        stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
      let idx = regs[rc].intVal.int
      let src = regs[rb].node
      if src.kind in {nkStrLit..nkTripleStrLit}:
        if idx <% src.strVal.len:
          regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
          regs[ra].node.intVal = src.strVal[idx].ord
        else:
          stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
      elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
        regs[ra].node = src.sons[idx]
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
    of opcLdStrIdx:
      decodeBC(rkInt)
      let idx = regs[rc].intVal.int
      let s = regs[rb].node.strVal
      if idx <% s.len:
        regs[ra].intVal = s[idx].ord
      elif idx == s.len and optLaxStrings in c.config.options:
        regs[ra].intVal = 0
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
    of opcWrArr:
      # a[b] = c
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      let arr = regs[ra].node
      if arr.kind in {nkStrLit..nkTripleStrLit}:
        if idx <% arr.strVal.len:
          arr.strVal[idx] = chr(regs[rc].intVal)
        else:
          stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
      elif idx <% arr.len:
        writeField(arr.sons[idx], regs[rc])
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.len-1))
    of opcLdObj:
      # a = b.c
      decodeBC(rkNode)
      let src = regs[rb].node
      case src.kind
      of nkEmpty..nkNilLit:
        stackTrace(c, tos, pc, errNilAccess)
      of nkObjConstr:
        let n = src.sons[rc + 1].skipColon
        regs[ra].node = n
      else:
        let n = src.sons[rc]
        regs[ra].node = n
    of opcWrObj:
      # a.b = c
      decodeBC(rkNode)
      let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
      let dest = regs[ra].node
      if dest.kind == nkNilLit:
        stackTrace(c, tos, pc, errNilAccess)
      elif dest.sons[shiftedRb].kind == nkExprColonExpr:
        writeField(dest.sons[shiftedRb].sons[1], regs[rc])
      else:
        writeField(dest.sons[shiftedRb], regs[rc])
    of opcWrStrIdx:
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      if idx <% regs[ra].node.strVal.len:
        regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
    of opcAddrReg:
      decodeB(rkRegisterAddr)
      regs[ra].regAddr = addr(regs[rb])
    of opcAddrNode:
      decodeB(rkNodeAddr)
      if regs[rb].kind == rkNode:
        regs[ra].nodeAddr = addr(regs[rb].node)
      else:
        stackTrace(c, tos, pc, "limited VM support for 'addr'")
    of opcLdDeref:
      # a = b[]
      let ra = instr.regA
      let rb = instr.regB
      case regs[rb].kind
      of rkNodeAddr:
        ensureKind(rkNode)
        regs[ra].node = regs[rb].nodeAddr[]
      of rkRegisterAddr:
        ensureKind(regs[rb].regAddr.kind)
        regs[ra] = regs[rb].regAddr[]
      of rkNode:
        if regs[rb].node.kind == nkNilLit:
          stackTrace(c, tos, pc, errNilAccess)
        if regs[rb].node.kind == nkRefTy:
          regs[ra].node = regs[rb].node.sons[0]
        else:
          ensureKind(rkNode)
          regs[ra].node = regs[rb].node
      else:
        stackTrace(c, tos, pc, errNilAccess)
    of opcWrDeref:
      # a[] = c; b unused
      let ra = instr.regA
      let rc = instr.regC
      case regs[ra].kind
      of rkNodeAddr:
        let n = regs[rc].regToNode
        # `var object` parameters are sent as rkNodeAddr. When they are mutated
        # vmgen generates opcWrDeref, which means that we must dereference
        # twice.
        # TODO: This should likely be handled differently in vmgen.
        if (nfIsRef notin regs[ra].nodeAddr[].flags and
            nfIsRef notin n.flags):
          regs[ra].nodeAddr[][] = n[]
        else:
          regs[ra].nodeAddr[] = n
      of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
      of rkNode:
        if regs[ra].node.kind == nkNilLit:
          stackTrace(c, tos, pc, errNilAccess)
        assert nfIsRef in regs[ra].node.flags
        regs[ra].node[] = regs[rc].regToNode[]
        regs[ra].node.flags.incl nfIsRef
      else: stackTrace(c, tos, pc, errNilAccess)
    of opcAddInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        sum = bVal +% cVal
      if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
        regs[ra].intVal = sum
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcAddImmInt:
      decodeBImm(rkInt)
      #message(c.config, c.debug[pc], warnUser, "came here")
      #debug regs[rb].node
      let
        bVal = regs[rb].intVal
        cVal = imm
        sum = bVal +% cVal
      if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
        regs[ra].intVal = sum
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcSubInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        diff = bVal -% cVal
      if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
        regs[ra].intVal = diff
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcSubImmInt:
      decodeBImm(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = imm
        diff = bVal -% cVal
      if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
        regs[ra].intVal = diff
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcLenSeq:
      decodeBImm(rkInt)
      #assert regs[rb].kind == nkBracket
      let high = (imm and 1) # discard flags
      if (imm and nimNodeFlag) != 0:
        # used by mNLen (NimNode.len)
        regs[ra].intVal = regs[rb].node.safeLen - high
      else:
        # safeArrLen also return string node len
        # used when string is passed as openArray in VM
        regs[ra].intVal = regs[rb].node.safeArrLen - high
    of opcLenStr:
      decodeBImm(rkInt)
      assert regs[rb].kind == rkNode
      regs[ra].intVal = regs[rb].node.strVal.len - imm
    of opcIncl:
      decodeB(rkNode)
      let b = regs[rb].regToNode
      if not inSet(regs[ra].node, b):
        addSon(regs[ra].node, copyTree(b))
    of opcInclRange:
      decodeBC(rkNode)
      var r = newNode(nkRange)
      r.add regs[rb].regToNode
      r.add regs[rc].regToNode
      addSon(regs[ra].node, r.copyTree)
    of opcExcl:
      decodeB(rkNode)
      var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
      addSon(b, regs[rb].regToNode)
      var r = diffSets(c.config, regs[ra].node, b)
      discardSons(regs[ra].node)
      for i in 0 ..< sonsLen(r): addSon(regs[ra].node, r.sons[i])
    of opcCard:
      decodeB(rkInt)
      regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
    of opcMulInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        product = bVal *% cVal
        floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
        resAsFloat = toBiggestFloat(product)
      if resAsFloat == floatProd:
        regs[ra].intVal = product
      elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
        regs[ra].intVal = product
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcDivInt:
      decodeBC(rkInt)
      if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
      else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
    of opcModInt:
      decodeBC(rkInt)
      if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
      else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
    of opcAddFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
    of opcSubFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
    of opcMulFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
    of opcDivFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
    of opcShrInt:
      decodeBC(rkInt)
      let b = cast[uint64](regs[rb].intVal)
      let c = cast[uint64](regs[rc].intVal)
      let a = cast[int64](b shr c)
      regs[ra].intVal = a
    of opcShlInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
    of opcAshrInt:
      decodeBC(rkInt)
      regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
    of opcBitandInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
    of opcBitorInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
    of opcBitxorInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
    of opcAddu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
    of opcSubu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
    of opcMulu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
    of opcDivu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
    of opcModu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
    of opcEqInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
    of opcLeInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
    of opcLtInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
    of opcEqFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
    of opcLeFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
    of opcLtFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
    of opcLeu:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
    of opcLtu:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
    of opcEqRef:
      decodeBC(rkInt)
      if regs[rb].kind == rkNodeAddr:
        if regs[rc].kind == rkNodeAddr:
          regs[ra].intVal = ord(regs[rb].nodeAddr == regs[rc].nodeAddr)
        else:
          assert regs[rc].kind == rkNode
          # we know these cannot be equal
          regs[ra].intVal = ord(false)
      elif regs[rc].kind == rkNodeAddr:
        assert regs[rb].kind == rkNode
        # we know these cannot be equal
        regs[ra].intVal = ord(false)
      else:
        regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and
                              regs[rc].node.kind == nkNilLit) or
                              regs[rb].node == regs[rc].node)
    of opcEqNimNode:
      decodeBC(rkInt)
      regs[ra].intVal =
        ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
                                     strictSymEquality=true))
    of opcSameNodeType:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ)
    of opcXor:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
    of opcNot:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      regs[ra].intVal = 1 - regs[rb].intVal
    of opcUnaryMinusInt:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      let val = regs[rb].intVal
      if val != int64.low:
        regs[ra].intVal = -val
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcUnaryMinusFloat:
      decodeB(rkFloat)
      assert regs[rb].kind == rkFloat
      regs[ra].floatVal = -regs[rb].floatVal
    of opcBitnotInt:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      regs[ra].intVal = not regs[rb].intVal
    of opcEqStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
    of opcLeStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
    of opcLtStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
    of opcLeSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
    of opcEqSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
    of opcLtSet:
      decodeBC(rkInt)
      let a = regs[rb].node
      let b = regs[rc].node
      regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
    of opcMulSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
            nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
    of opcPlusSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
    of opcMinusSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
    of opcSymdiffSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.symdiffSets(c.config, regs[rb].node, regs[rc].node).sons)
    of opcConcatStr:
      decodeBC(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = getstr(regs[rb])
      for i in rb+1..rb+rc-1:
        regs[ra].node.strVal.add getstr(regs[i])
    of opcAddStrCh:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.add(regs[rb].intVal.chr)
    of opcAddStrStr:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.add(regs[rb].node.strVal)
    of opcAddSeqElem:
      decodeB(rkNode)
      if regs[ra].node.kind == nkBracket:
        regs[ra].node.add(copyValue(regs[rb].regToNode))
      else:
        stackTrace(c, tos, pc, errNilAccess)
    of opcGetImpl:
      decodeB(rkNode)
      var a = regs[rb].node
      if a.kind == nkVarTy: a = a[0]
      if a.kind == nkSym:
        regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
                        else: copyTree(a.sym.ast)
        regs[ra].node.flags.incl nfIsRef
      else:
        stackTrace(c, tos, pc, "node is not a symbol")
    of opcGetImplTransf:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkSym:
        regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
                        else:
                          let ast = a.sym.ast.shallowCopy
                          for i in 0..<a.sym.ast.len:
                            ast[i] = a.sym.ast[i]
                          ast[bodyPos] = transformBody(c.graph, a.sym)
                          ast.copyTree()
    of opcSymOwner:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkSym:
        regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
                        else: newSymNode(a.sym.skipGenericOwner)
        regs[ra].node.flags.incl nfIsRef
      else:
        stackTrace(c, tos, pc, "node is not a symbol")
    of opcSymIsInstantiationOf:
      decodeBC(rkInt)
      let a = regs[rb].node
      let b = regs[rc].node
      if a.kind == nkSym and a.sym.kind in skProcKinds and
         b.kind == nkSym and b.sym.kind in skProcKinds:
        regs[ra].intVal =
          if sfFromGeneric in a.sym.flags and a.sym.owner == b.sym: 1
          else: 0
      else:
        stackTrace(c, tos, pc, "node is not a proc symbol")
    of opcEcho:
      let rb = instr.regB
      if rb == 1:
        msgWriteln(c.config, regs[ra].node.strVal, {msgStdout})
      else:
        var outp = ""
        for i in ra..ra+rb-1:
          #if regs[i].kind != rkNode: debug regs[i]
          outp.add(regs[i].node.strVal)
        msgWriteln(c.config, outp, {msgStdout})
    of opcContainsSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
    of opcSubStr:
      decodeBC(rkNode)
      inc pc
      assert c.code[pc].opcode == opcSubStr
      let rd = c.code[pc].regA
      createStr regs[ra]
      regs[ra].node.strVal = substr(regs[rb].node.strVal,
                                    regs[rc].intVal.int, regs[rd].intVal.int)
    of opcParseFloat:
      decodeBC(rkInt)
      inc pc
      assert c.code[pc].opcode == opcParseFloat
      let rd = c.code[pc].regA
      var rcAddr = addr(regs[rc])
      if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
      elif regs[rc].kind != rkFloat:
        myreset(regs[rc])
        regs[rc].kind = rkFloat
      regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
                                          rcAddr.floatVal, regs[rd].intVal.int)
    of opcRangeChck:
      let rb = instr.regB
      let rc = instr.regC
      if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
              leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
        stackTrace(c, tos, pc,
          errIllegalConvFromXtoY % [
             $regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
    of opcIndCall, opcIndCallAsgn:
      # dest = call regStart, n; where regStart = fn, arg1, ...
      let rb = instr.regB
      let rc = instr.regC
      let bb = regs[rb].node
      let isClosure = bb.kind == nkTupleConstr
      let prc = if not isClosure: bb.sym else: bb.sons[0].sym
      if prc.offset < -1:
        # it's a callback:
        c.callbacks[-prc.offset-2].value(
          VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
                 currentException: c.currentExceptionA,
                 currentLineInfo: c.debug[pc]))
      elif sfImportc in prc.flags:
        if compiletimeFFI notin c.config.features:
          globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
        # we pass 'tos.slots' instead of 'regs' so that the compiler can keep
        # 'regs' in a register:
        when hasFFI:
          let prcValue = c.globals.sons[prc.position-1]
          if prcValue.kind == nkEmpty:
            globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
          var slots2: TNodeSeq
          slots2.setLen(tos.slots.len)
          for i in 0..<tos.slots.len:
            slots2[i] = regToNode(tos.slots[i])
          let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
                                             rb+1, rc-1, c.debug[pc])
          if newValue.kind != nkEmpty:
            assert instr.opcode == opcIndCallAsgn
            putIntoReg(regs[ra], newValue)
        else:
          globalError(c.config, c.debug[pc], "VM not built with FFI support")
      elif prc.kind != skTemplate:
        let newPc = compile(c, prc)
        # tricky: a recursion is also a jump back, so we use the same
        # logic as for loops:
        if newPc < pc: handleJmpBack()
        #echo "new pc ", newPc, " calling: ", prc.name.s
        var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
        newSeq(newFrame.slots, prc.offset+ord(isClosure))
        if not isEmptyType(prc.typ.sons[0]):
          putIntoReg(newFrame.slots[0], getNullValue(prc.typ.sons[0], prc.info, c.config))
        for i in 1 .. rc-1:
          newFrame.slots[i] = regs[rb+i]
        if isClosure:
          newFrame.slots[rc].kind = rkNode
          newFrame.slots[rc].node = regs[rb].node.sons[1]
        tos = newFrame
        move(regs, newFrame.slots)
        # -1 for the following 'inc pc'
        pc = newPc-1
      else:
        # for 'getAst' support we need to support template expansion here:
        let genSymOwner = if tos.next != nil and tos.next.prc != nil:
                            tos.next.prc
                          else:
                            c.module
        var macroCall = newNodeI(nkCall, c.debug[pc])
        macroCall.add(newSymNode(prc))
        for i in 1 .. rc-1:
          let node = regs[rb+i].regToNode
          node.info = c.debug[pc]
          macroCall.add(node)
        var a = evalTemplate(macroCall, prc, genSymOwner, c.config)
        if a.kind == nkStmtList and a.len == 1: a = a[0]
        a.recSetFlagIsRef
        ensureKind(rkNode)
        regs[ra].node = a
    of opcTJmp:
      # jump Bx if A != 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal != 0:
        inc pc, rbx
    of opcFJmp:
      # jump Bx if A == 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal == 0:
        inc pc, rbx
    of opcJmp:
      # jump Bx
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
    of opcJmpBack:
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
      handleJmpBack()
    of opcBranch:
      # we know the next instruction is a 'fjmp':
      let branch = c.constants[instr.regBx-wordExcess]
      var cond = false
      for j in 0 .. sonsLen(branch) - 2:
        if overlap(regs[ra].regToNode, branch.sons[j]):
          cond = true
          break
      assert c.code[pc+1].opcode == opcFJmp
      inc pc
      # we skip this instruction so that the final 'inc(pc)' skips
      # the following jump
      if not cond:
        let instr2 = c.code[pc]
        let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
        inc pc, rbx
    of opcTry:
      let rbx = instr.regBx - wordExcess
      tos.pushSafePoint(pc + rbx)
      assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
    of opcExcept:
      # This opcode is never executed, it only holds informations for the
      # exception handling routines.
      doAssert(false)
    of opcFinally:
      # Pop the last safepoint introduced by a opcTry. This opcode is only
      # executed _iff_ no exception was raised in the body of the `try`
      # statement hence the need to pop the safepoint here.
      doAssert(savedPC < 0)
      tos.popSafePoint()
    of opcFinallyEnd:
      # The control flow may not resume at the next instruction since we may be
      # raising an exception or performing a cleanup.
      if savedPC >= 0:
        pc = savedPC - 1
        savedPC = -1
        if tos != savedFrame:
          tos = savedFrame
          move(regs, tos.slots)
    of opcRaise:
      let raised = regs[ra].node
      c.currentExceptionA = raised
      c.exceptionInstr = pc

      var frame = tos
      var jumpTo = findExceptionHandler(c, frame, raised)
      while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
        frame = frame.next
        jumpTo = findExceptionHandler(c, frame, raised)

      case jumpTo.why:
      of ExceptionGotoHandler:
        # Jump to the handler, do nothing when the `finally` block ends.
        savedPC = -1
        pc = jumpTo.where - 1
        if tos != frame:
          tos = frame
          move(regs, tos.slots)
      of ExceptionGotoFinally:
        # Jump to the `finally` block first then re-jump here to continue the
        # traversal of the exception chain
        savedPC = pc
        savedFrame = tos
        pc = jumpTo.where - 1
        if tos != frame:
          tos = frame
          move(regs, tos.slots)
      of ExceptionGotoUnhandled:
        # Nobody handled this exception, error out.
        bailOut(c, tos)
    of opcNew:
      ensureKind(rkNode)
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
      regs[ra].node.flags.incl nfIsRef
    of opcNewSeq:
      let typ = c.types[instr.regBx - wordExcess]
      inc pc
      ensureKind(rkNode)
      let instr2 = c.code[pc]
      let count = regs[instr2.regA].intVal.int
      regs[ra].node = newNodeI(nkBracket, c.debug[pc])
      regs[ra].node.typ = typ
      newSeq(regs[ra].node.sons, count)
      for i in 0 ..< count:
        regs[ra].node.sons[i] = getNullValue(typ.sons[0], c.debug[pc], c.config)
    of opcNewStr:
      decodeB(rkNode)
      regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
      regs[ra].node.strVal = newString(regs[rb].intVal.int)
    of opcLdImmInt:
      # dest = immediate value
      decodeBx(rkInt)
      regs[ra].intVal = rbx
    of opcLdNull:
      ensureKind(rkNode)
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
      # opcLdNull really is the gist of the VM's problems: should it load
      # a fresh null to  regs[ra].node  or to regs[ra].node[]? This really
      # depends on whether regs[ra] represents the variable itself or wether
      # it holds the indirection! Due to the way registers are re-used we cannot
      # say for sure here! --> The codegen has to deal with it
      # via 'genAsgnPatch'.
    of opcLdNullReg:
      let typ = c.types[instr.regBx - wordExcess]
      if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
          tyFloat..tyFloat128}:
        ensureKind(rkFloat)
        regs[ra].floatVal = 0.0
      else:
        ensureKind(rkInt)
        regs[ra].intVal = 0
    of opcLdConst:
      let rb = instr.regBx - wordExcess
      let cnst = c.constants.sons[rb]
      if fitsRegister(cnst.typ):
        myreset(regs[ra])
        putIntoReg(regs[ra], cnst)
      else:
        ensureKind(rkNode)
        regs[ra].node = cnst
    of opcAsgnConst:
      let rb = instr.regBx - wordExcess
      let cnst = c.constants.sons[rb]
      if fitsRegister(cnst.typ):
        putIntoReg(regs[ra], cnst)
      else:
        ensureKind(rkNode)
        regs[ra].node = cnst.copyTree
    of opcLdGlobal:
      let rb = instr.regBx - wordExcess - 1
      ensureKind(rkNode)
      regs[ra].node = c.globals.sons[rb]
    of opcLdGlobalAddr:
      let rb = instr.regBx - wordExcess - 1
      ensureKind(rkNodeAddr)
      regs[ra].nodeAddr = addr(c.globals.sons[rb])
    of opcRepr:
      decodeB(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments})
    of opcQuit:
      if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
        message(c.config, c.debug[pc], hintQuitCalled)
        msgQuit(int8(getOrdValue(regs[ra].regToNode)))
      else:
        return TFullReg(kind: rkNone)
    of opcSetLenStr:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.setLen(regs[rb].intVal.int)
    of opcOf:
      decodeBC(rkInt)
      let typ = c.types[regs[rc].intVal.int]
      regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
    of opcIs:
      decodeBC(rkInt)
      let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
      let t2 = c.types[regs[rc].intVal.int]
      # XXX: This should use the standard isOpImpl
      let match = if t2.kind == tyUserTypeClass: true
                  else: sameType(t1, t2)
      regs[ra].intVal = ord(match)
    of opcSetLenSeq:
      decodeB(rkNode)
      let newLen = regs[rb].intVal.int
      if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
      else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
    of opcNarrowS:
      decodeB(rkInt)
      let min = -(1.BiggestInt shl (rb-1))
      let max = (1.BiggestInt shl (rb-1))-1
      if regs[ra].intVal < min or regs[ra].intVal > max:
        stackTrace(c, tos, pc, "unhandled exception: value out of range")
    of opcNarrowU:
      decodeB(rkInt)
      regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
    of opcSignExtend:
      # like opcNarrowS, but no out of range possible
      decodeB(rkInt)
      let imm = 64 - rb
      regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
    of opcIsNil:
      decodeB(rkInt)
      let node = regs[rb].node
      regs[ra].intVal = ord(
        # Note that `nfIsRef` + `nkNilLit` represents an allocated
        # reference with the value `nil`, so `isNil` should be false!
        (node.kind == nkNilLit and nfIsRef notin node.flags) or
        (not node.typ.isNil and node.typ.kind == tyProc and
          node.typ.callConv == ccClosure and node.sons[0].kind == nkNilLit and
          node.sons[1].kind == nkNilLit))
    of opcNBindSym:
      # cannot use this simple check
      # if dynamicBindSym notin c.config.features:

      # bindSym with static input
      decodeBx(rkNode)
      regs[ra].node = copyTree(c.constants.sons[rbx])
      regs[ra].node.flags.incl nfIsRef
    of opcNDynBindSym:
      # experimental bindSym
      let
        rb = instr.regB
        rc = instr.regC
        idx = int(regs[rb+rc-1].intVal)
        callback = c.callbacks[idx].value
        args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
                currentException: c.currentExceptionA,
                currentLineInfo: c.debug[pc])
      callback(args)
      regs[ra].node.flags.incl nfIsRef
    of opcNChild:
      decodeBC(rkNode)
      let idx = regs[rc].intVal.int
      let src = regs[rb].node
      if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
        regs[ra].node = src.sons[idx]
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
    of opcNSetChild:
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      var dest = regs[ra].node
      if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
        dest.sons[idx] = regs[rc].node
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
    of opcNAdd:
      decodeBC(rkNode)
      var u = regs[rb].node
      if u.kind notin {nkEmpty..nkNilLit}:
        u.add(regs[rc].node)
      else:
        stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
      regs[ra].node = u
    of opcNAddMultiple:
      decodeBC(rkNode)
      let x = regs[rc].node
      var u = regs[rb].node
      if u.kind notin {nkEmpty..nkNilLit}:
        # XXX can be optimized:
        for i in 0..<x.len: u.add(x.sons[i])
      else:
        stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind)
      regs[ra].node = u
    of opcNKind:
      decodeB(rkInt)
      regs[ra].intVal = ord(regs[rb].node.kind)
      c.comesFromHeuristic = regs[rb].node.info
    of opcNSymKind:
      decodeB(rkInt)
      let a = regs[rb].node
      if a.kind == nkSym:
        regs[ra].intVal = ord(a.sym.kind)
      else:
        stackTrace(c, tos, pc, "node is not a symbol")
      c.comesFromHeuristic = regs[rb].node.info
    of opcNIntVal:
      decodeB(rkInt)
      let a = regs[rb].node
      if a.kind in {nkCharLit..nkUInt64Lit}:
        regs[ra].intVal = a.intVal
      elif a.kind == nkSym and a.sym.kind == skEnumField:
        regs[ra].intVal = a.sym.position
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
    of opcNFloatVal:
      decodeB(rkFloat)
      let a = regs[rb].node
      case a.kind
      of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
      else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
    of opcNSymbol:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkSym:
        regs[ra].node = copyNode(a)
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
    of opcNIdent:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkIdent:
        regs[ra].node = copyNode(a)
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "ident")
    of opcNGetType:
      let rb = instr.regB
      let rc = instr.regC
      case rc
      of 0:
        # getType opcode:
        ensureKind(rkNode)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc])
        elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
          regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
        else:
          stackTrace(c, tos, pc, "node has no type")
      of 1:
        # typeKind opcode:
        ensureKind(rkInt)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].intVal = ord(regs[rb].node.typ.kind)
        elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
          regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
        #else:
        #  stackTrace(c, tos, pc, "node has no type")
      of 2:
        # getTypeInst opcode:
        ensureKind(rkNode)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc])
        elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
          regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
        else:
          stackTrace(c, tos, pc, "node has no type")
      else:
        # getTypeImpl opcode:
        ensureKind(rkNode)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc])
        elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
          regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
        else:
          stackTrace(c, tos, pc, "node has no type")
    of opcNGetSize:
      decodeBImm(rkInt)
      let n = regs[rb].node
      case imm
      of 0: # size
        if n.typ == nil:
          stackTrace(c, tos, pc, "node has no type")
        else:
          regs[ra].intVal = getSize(c.config, n.typ)
      of 1: # align
        if n.typ == nil:
          stackTrace(c, tos, pc, "node has no type")
        else:
          regs[ra].intVal = getAlign(c.config, n.typ)
      else: # offset
        if n.kind != nkSym:
          stackTrace(c, tos, pc, "node is not a symbol")
        elif n.sym.kind != skField:
          stackTrace(c, tos, pc, "symbol is not a field (nskField)")
        else:
          regs[ra].intVal = n.sym.offset
    of opcNStrVal:
      decodeB(rkNode)
      createStr regs[ra]
      let a = regs[rb].node
      case a.kind
      of nkStrLit..nkTripleStrLit:
        regs[ra].node.strVal = a.strVal
      of nkCommentStmt:
        regs[ra].node.strVal = a.comment
      of nkIdent:
        regs[ra].node.strVal = a.ident.s
      of nkSym:
        regs[ra].node.strVal = a.sym.name.s
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
    of opcNSigHash:
      decodeB(rkNode)
      createStr regs[ra]
      if regs[rb].node.kind != nkSym:
        stackTrace(c, tos, pc, "node is not a symbol")
      else:
        regs[ra].node.strVal = $sigHash(regs[rb].node.sym)
    of opcSlurp:
      decodeB(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
                                     c.module, c.config)
    of opcGorge:
      when defined(nimcore):
        decodeBC(rkNode)
        inc pc
        let rd = c.code[pc].regA

        createStr regs[ra]
        regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
                                      regs[rc].node.strVal, regs[rd].node.strVal,
                                      c.debug[pc], c.config)[0]
      else:
        globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
    of opcNError, opcNWarning, opcNHint:
      decodeB(rkNode)
      let a = regs[ra].node
      let b = regs[rb].node
      let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
      if instr.opcode == opcNError:
        stackTrace(c, tos, pc, a.strVal, info)
      elif instr.opcode == opcNWarning:
        message(c.config, info, warnUser, a.strVal)
      elif instr.opcode == opcNHint:
        message(c.config, info, hintUser, a.strVal)
    of opcParseExprToAst:
      decodeB(rkNode)
      # c.debug[pc].line.int - countLines(regs[rb].strVal) ?
      var error: string
      let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
                            toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
                            proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
                              if error.len == 0 and msg <= errMax:
                                error = formatMsg(conf, info, msg, arg))
      if error.len > 0:
        c.errorFlag = error
      elif sonsLen(ast) != 1:
        c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
          "expected expression, but got multiple statements")
      else:
        regs[ra].node = ast.sons[0]
    of opcParseStmtToAst:
      decodeB(rkNode)
      var error: string
      let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
                            toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
                            proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
                              if error.len == 0 and msg <= errMax:
                                error = formatMsg(conf, info, msg, arg))
      if error.len > 0:
        c.errorFlag = error
      else:
        regs[ra].node = ast
    of opcQueryErrorFlag:
      createStr regs[ra]
      regs[ra].node.strVal = c.errorFlag
      c.errorFlag.setLen 0
    of opcCallSite:
      ensureKind(rkNode)
      if c.callsite != nil: regs[ra].node = c.callsite
      else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
    of opcNGetLineInfo:
      decodeBImm(rkNode)
      let n = regs[rb].node
      case imm
      of 0: # getFile
        regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
      of 1: # getLine
        regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
      of 2: # getColumn
        regs[ra].node = newIntNode(nkIntLit, n.info.col)
      else:
        internalAssert c.config, false
      regs[ra].node.info = n.info
      regs[ra].node.typ = n.typ
    of opcNSetLineInfo:
      decodeB(rkNode)
      regs[ra].node.info = regs[rb].node.info
    of opcEqIdent:
      decodeBC(rkInt)
      # aliases for shorter and easier to understand code below
      let aNode = regs[rb].node
      let bNode = regs[rc].node
      # these are cstring to prevent string copy, and cmpIgnoreStyle from
      # takes cstring arguments
      var aStrVal: cstring = nil
      var bStrVal: cstring = nil
      # extract strVal from argument ``a``
      case aNode.kind
      of nkStrLit..nkTripleStrLit:
        aStrVal = aNode.strVal.cstring
      of nkIdent:
        aStrVal = aNode.ident.s.cstring
      of nkSym:
        aStrVal = aNode.sym.name.s.cstring
      of nkOpenSymChoice, nkClosedSymChoice:
        aStrVal = aNode[0].sym.name.s.cstring
      else:
        discard
      # extract strVal from argument ``b``
      case bNode.kind
      of nkStrLit..nkTripleStrLit:
        bStrVal = bNode.strVal.cstring
      of nkIdent:
        bStrVal = bNode.ident.s.cstring
      of nkSym:
        bStrVal = bNode.sym.name.s.cstring
      of nkOpenSymChoice, nkClosedSymChoice:
        bStrVal = bNode[0].sym.name.s.cstring
      else:
        discard
      # set result
      regs[ra].intVal =
        if aStrVal != nil and bStrVal != nil:
          ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
        else:
          0

    of opcStrToIdent:
      decodeB(rkNode)
      if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
        stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
      else:
        regs[ra].node = newNodeI(nkIdent, c.debug[pc])
        regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
        regs[ra].node.flags.incl nfIsRef
    of opcSetType:
      let typ = c.types[instr.regBx - wordExcess]
      if regs[ra].kind != rkNode:
        let temp = regToNode(regs[ra])
        ensureKind(rkNode)
        regs[ra].node = temp
        regs[ra].node.info = c.debug[pc]
      regs[ra].node.typ = typ
    of opcConv:
      let rb = instr.regB
      inc pc
      let desttyp = c.types[c.code[pc].regBx - wordExcess]
      inc pc
      let srctyp = c.types[c.code[pc].regBx - wordExcess]

      if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
        stackTrace(c, tos, pc,
          errIllegalConvFromXtoY % [
          typeToString(srctyp), typeToString(desttyp)])
    of opcCast:
      let rb = instr.regB
      inc pc
      let desttyp = c.types[c.code[pc].regBx - wordExcess]
      inc pc
      let srctyp = c.types[c.code[pc].regBx - wordExcess]

      when hasFFI:
        let dest = fficast(c.config, regs[rb].node, desttyp)
        # todo: check whether this is correct
        # asgnRef(regs[ra], dest)
        putIntoReg(regs[ra], dest)
      else:
        globalError(c.config, c.debug[pc], "cannot evaluate cast")
    of opcNSetIntVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkCharLit..nkUInt64Lit} and
         regs[rb].kind in {rkInt}:
        dest.intVal = regs[rb].intVal
      elif dest.kind == nkSym and dest.sym.kind == skEnumField:
        stackTrace(c, tos, pc, "`intVal` cannot be changed for an enum symbol.")
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
    of opcNSetFloatVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkFloatLit..nkFloat64Lit} and
         regs[rb].kind in {rkFloat}:
        dest.floatVal = regs[rb].floatVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
    of opcNSetSymbol:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind == nkSym and regs[rb].node.kind == nkSym:
        dest.sym = regs[rb].node.sym
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
    of opcNSetIdent:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
        dest.ident = regs[rb].node.ident
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "ident")
    of opcNSetType:
      decodeB(rkNode)
      let b = regs[rb].node
      internalAssert c.config, b.kind == nkSym and b.sym.kind == skType
      internalAssert c.config, regs[ra].node != nil
      regs[ra].node.typ = b.sym.typ
    of opcNSetStrVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkStrLit..nkTripleStrLit} and
         regs[rb].kind in {rkNode}:
        dest.strVal = regs[rb].node.strVal
      elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
        dest.comment = regs[rb].node.strVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
    of opcNNewNimNode:
      decodeBC(rkNode)
      var k = regs[rb].intVal
      if k < 0 or k > ord(high(TNodeKind)):
        internalError(c.config, c.debug[pc],
          "request to create a NimNode of invalid kind")
      let cc = regs[rc].node

      let x = newNodeI(TNodeKind(int(k)),
        if cc.kind != nkNilLit:
          cc.info
        elif c.comesFromHeuristic.line != 0'u16:
          c.comesFromHeuristic
        elif c.callsite != nil and c.callsite.safeLen > 1:
          c.callsite[1].info
        else:
          c.debug[pc])
      x.flags.incl nfIsRef
      # prevent crashes in the compiler resulting from wrong macros:
      if x.kind == nkIdent: x.ident = c.cache.emptyIdent
      regs[ra].node = x
    of opcNCopyNimNode:
      decodeB(rkNode)
      regs[ra].node = copyNode(regs[rb].node)
    of opcNCopyNimTree:
      decodeB(rkNode)
      regs[ra].node = copyTree(regs[rb].node)
    of opcNDel:
      decodeBC(rkNode)
      let bb = regs[rb].intVal.int
      for i in 0 ..< regs[rc].intVal.int:
        delSon(regs[ra].node, bb)
    of opcGenSym:
      decodeBC(rkNode)
      let k = regs[rb].intVal
      let name = if regs[rc].node.strVal.len == 0: ":tmp"
                 else: regs[rc].node.strVal
      if k < 0 or k > ord(high(TSymKind)):
        internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
      var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.module.owner, c.debug[pc])
      incl(sym.flags, sfGenSym)
      regs[ra].node = newSymNode(sym)
      regs[ra].node.flags.incl nfIsRef
    of opcNccValue:
      decodeB(rkInt)
      let destKey = regs[rb].node.strVal
      regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
    of opcNccInc:
      let g = c.graph
      declBC()
      let destKey = regs[rb].node.strVal
      let by = regs[rc].intVal
      let v = getOrDefault(g.cacheCounters, destKey)
      g.cacheCounters[destKey] = v+by
      recordInc(c, c.debug[pc], destKey, by)
    of opcNcsAdd:
      let g = c.graph
      declBC()
      let destKey = regs[rb].node.strVal
      let val = regs[rc].node
      if not contains(g.cacheSeqs, destKey):
        g.cacheSeqs[destKey] = newTree(nkStmtList, val)
      else:
        g.cacheSeqs[destKey].add val
      recordAdd(c, c.debug[pc], destKey, val)
    of opcNcsIncl:
      let g = c.graph
      declBC()
      let destKey = regs[rb].node.strVal
      let val = regs[rc].node
      if not contains(g.cacheSeqs, destKey):
        g.cacheSeqs[destKey] = newTree(nkStmtList, val)
      else:
        block search:
          for existing in g.cacheSeqs[destKey]:
            if exprStructuralEquivalent(existing, val, strictSymEquality=true):
              break search
          g.cacheSeqs[destKey].add val
      recordIncl(c, c.debug[pc], destKey, val)
    of opcNcsLen:
      let g = c.graph
      decodeB(rkInt)
      let destKey = regs[rb].node.strVal
      regs[ra].intVal =
        if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
    of opcNcsAt:
      let g = c.graph
      decodeBC(rkNode)
      let idx = regs[rc].intVal
      let destKey = regs[rb].node.strVal
      if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
        regs[ra].node = g.cacheSeqs[destKey][idx.int]
      else:
        stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
    of opcNctPut:
      let g = c.graph
      let destKey = regs[ra].node.strVal
      let key = regs[instr.regB].node.strVal
      let val = regs[instr.regC].node
      if not contains(g.cacheTables, destKey):
        g.cacheTables[destKey] = initBTree[string, PNode]()
      if not contains(g.cacheTables[destKey], key):
        g.cacheTables[destKey].add(key, val)
        recordPut(c, c.debug[pc], destKey, key, val)
      else:
        stackTrace(c, tos, pc, "key already exists: " & key)
    of opcNctLen:
      let g = c.graph
      decodeB(rkInt)
      let destKey = regs[rb].node.strVal
      regs[ra].intVal =
        if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
    of opcNctGet:
      let g = c.graph
      decodeBC(rkNode)
      let destKey = regs[rb].node.strVal
      let key = regs[rc].node.strVal
      if contains(g.cacheTables, destKey):
        if contains(g.cacheTables[destKey], key):
          regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
        else:
          stackTrace(c, tos, pc, "key does not exist: " & key)
      else:
        stackTrace(c, tos, pc, "key does not exist: " & destKey)
    of opcNctHasNext:
      let g = c.graph
      decodeBC(rkInt)
      let destKey = regs[rb].node.strVal
      regs[ra].intVal =
        if g.cacheTables.contains(destKey):
          ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
        else:
          0
    of opcNctNext:
      let g = c.graph
      decodeBC(rkNode)
      let destKey = regs[rb].node.strVal
      let index = regs[rc].intVal
      if contains(g.cacheTables, destKey):
        let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
        regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
                                newIntNode(nkIntLit, nextIndex))
      else:
        stackTrace(c, tos, pc, "key does not exist: " & destKey)

    of opcTypeTrait:
      # XXX only supports 'name' for now; we can use regC to encode the
      # type trait operation
      decodeB(rkNode)
      var typ = regs[rb].node.typ
      internalAssert c.config, typ != nil
      while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0]
      createStr regs[ra]
      regs[ra].node.strVal = typ.typeToString(preferExported)
    of opcMarshalLoad:
      let ra = instr.regA
      let rb = instr.regB
      inc pc
      let typ = c.types[c.code[pc].regBx - wordExcess]
      putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ, c.cache, c.config))
    of opcMarshalStore:
      decodeB(rkNode)
      inc pc
      let typ = c.types[c.code[pc].regBx - wordExcess]
      createStrKeepNode(regs[ra])
      when not defined(nimNoNilSeqs):
        if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000)
      storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode, c.config)

    inc pc

proc execute(c: PCtx, start: int): PNode =
  var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  result = rawExecute(c, start, tos).regToNode

proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
  if sym.kind in routineKinds:
    if sym.typ.len-1 != args.len:
      localError(c.config, sym.info,
        "NimScript: expected $# arguments, but got $#" % [
        $(sym.typ.len-1), $args.len])
    else:
      let start = genProc(c, sym)

      var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
      let maxSlots = sym.offset
      newSeq(tos.slots, maxSlots)

      # setup parameters:
      if not isEmptyType(sym.typ.sons[0]) or sym.kind == skMacro:
        putIntoReg(tos.slots[0], getNullValue(sym.typ.sons[0], sym.info, c.config))
      # XXX We could perform some type checking here.
      for i in 1..<sym.typ.len:
        putIntoReg(tos.slots[i], args[i-1])

      result = rawExecute(c, start, tos).regToNode
  else:
    localError(c.config, sym.info,
      "NimScript: attempt to call non-routine: " & sym.name.s)

proc evalStmt*(c: PCtx, n: PNode) =
  let n = transformExpr(c.graph, c.module, n, noDestructors = true)
  let start = genStmt(c, n)
  # execute new instructions; this redundant opcEof check saves us lots
  # of allocations in 'execute':
  if c.code[start].opcode != opcEof:
    discard execute(c, start)

proc evalExpr*(c: PCtx, n: PNode): PNode =
  let n = transformExpr(c.graph, c.module, n, noDestructors = true)
  let start = genExpr(c, n)
  assert c.code[start].opcode != opcEof
  result = execute(c, start)

proc getGlobalValue*(c: PCtx; s: PSym): PNode =
  internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
  result = c.globals.sons[s.position-1]

include vmops

proc setupGlobalCtx*(module: PSym; graph: ModuleGraph) =
  if graph.vm.isNil:
    graph.vm = newCtx(module, graph.cache, graph)
    registerAdditionalOps(PCtx graph.vm)
  else:
    refresh(PCtx graph.vm, module)

proc myOpen(graph: ModuleGraph; module: PSym): PPassContext =
  #var c = newEvalContext(module, emRepl)
  #c.features = {allowCast, allowInfiniteLoops}
  #pushStackFrame(c, newStackFrame())

  # XXX produce a new 'globals' environment here:
  setupGlobalCtx(module, graph)
  result = PCtx graph.vm

proc myProcess(c: PPassContext, n: PNode): PNode =
  let c = PCtx(c)
  # don't eval errornous code:
  if c.oldErrorCount == c.config.errorCounter:
    evalStmt(c, n)
    result = newNodeI(nkEmpty, n.info)
  else:
    result = n
  c.oldErrorCount = c.config.errorCounter

proc myClose(graph: ModuleGraph; c: PPassContext, n: PNode): PNode =
  myProcess(c, n)

const evalPass* = makePass(myOpen, myProcess, myClose)

proc evalConstExprAux(module: PSym;
                      g: ModuleGraph; prc: PSym, n: PNode,
                      mode: TEvalMode): PNode =
  if g.config.errorCounter > 0: return n
  let n = transformExpr(g, module, n, noDestructors = true)
  setupGlobalCtx(module, g)
  var c = PCtx g.vm
  let oldMode = c.mode
  defer: c.mode = oldMode
  c.mode = mode
  let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
  if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
  assert c.code[start].opcode != opcEof
  when debugEchoCode: c.echoCode start
  var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  #for i in 0 ..< c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos).regToNode
  if result.info.col < 0: result.info = n.info

proc evalConstExpr*(module: PSym; g: ModuleGraph; e: PNode): PNode =
  result = evalConstExprAux(module, g, nil, e, emConst)

proc evalStaticExpr*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym): PNode =
  result = evalConstExprAux(module, g, prc, e, emStaticExpr)

proc evalStaticStmt*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym) =
  discard evalConstExprAux(module, g, prc, e, emStaticStmt)

proc setupCompileTimeVar*(module: PSym; g: ModuleGraph; n: PNode) =
  discard evalConstExprAux(module, g, nil, n, emStaticStmt)

proc prepareVMValue(arg: PNode): PNode =
  ## strip nkExprColonExpr from tuple values recurively. That is how
  ## they are expected to be stored in the VM.

  # Early abort without copy. No transformation takes place.
  if arg.kind in nkLiterals:
    return arg

  result = copyNode(arg)
  if arg.kind == nkTupleConstr:
    for child in arg:
      if child.kind == nkExprColonExpr:
        result.add prepareVMValue(child[1])
      else:
        result.add prepareVMValue(child)
  else:
    for child in arg:
      result.add prepareVMValue(child)

proc setupMacroParam(x: PNode, typ: PType): TFullReg =
  case typ.kind
  of tyStatic:
    putIntoReg(result, prepareVMValue(x))
  else:
    result.kind = rkNode
    var n = x
    if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n.sons[1]
    n = n.canonValue
    n.flags.incl nfIsRef
    n.typ = x.typ
    result.node = n

iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
  let gp = macroSym.ast[genericParamsPos]
  for i in 0 ..< gp.len:
    let genericParam = gp[i].sym
    let posInCall = macroSym.typ.len + i
    yield (genericParam, call[posInCall])

# to prevent endless recursion in macro instantiation
const evalMacroLimit = 1000

proc evalMacroCall*(module: PSym; g: ModuleGraph;
                    n, nOrig: PNode, sym: PSym): PNode =
  # XXX globalError() is ugly here, but I don't know a better solution for now
  inc(g.config.evalMacroCounter)
  if g.config.evalMacroCounter > evalMacroLimit:
    globalError(g.config, n.info, "macro instantiation too nested")

  # immediate macros can bypass any type and arity checking so we check the
  # arity here too:
  if sym.typ.len > n.safeLen and sym.typ.len > 1:
    globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
        n.renderTree, $(n.safeLen-1), $(sym.typ.len-1)])

  setupGlobalCtx(module, g)
  var c = PCtx g.vm
  c.comesFromHeuristic.line = 0'u16

  c.callsite = nOrig
  let start = genProc(c, sym)

  var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
  let maxSlots = sym.offset
  newSeq(tos.slots, maxSlots)
  # setup arguments:
  var L = n.safeLen
  if L == 0: L = 1
  # This is wrong for tests/reject/tind1.nim where the passed 'else' part
  # doesn't end up in the parameter:
  #InternalAssert tos.slots.len >= L

  # return value:
  tos.slots[0].kind = rkNode
  tos.slots[0].node = newNodeI(nkEmpty, n.info)

  # setup parameters:
  for i in 1..<sym.typ.len:
    tos.slots[i] = setupMacroParam(n.sons[i], sym.typ.sons[i])

  let gp = sym.ast[genericParamsPos]
  for i in 0 ..< gp.len:
    let idx = sym.typ.len + i
    if idx < n.len:
      tos.slots[idx] = setupMacroParam(n.sons[idx], gp[i].sym.typ)
    else:
      dec(g.config.evalMacroCounter)
      c.callsite = nil
      localError(c.config, n.info, "expected " & $gp.len &
                 " generic parameter(s)")
  # temporary storage:
  #for i in L ..< maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos).regToNode
  if result.info.line < 0: result.info = n.info
  if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
  dec(g.config.evalMacroCounter)
  c.callsite = nil