summary refs log tree commit diff stats
path: root/compiler/vm.nim
blob: 3b5c8e7f3bac243d2cf81b95b9c0276bc108ceb0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
discard """
sortoutput: true
output: '''
key1: value1
key2: value2
key_0: value0
key_10: value10
key_11: value11
key_12: value12
key_13: value13
key_14: value14
key_15: value15
key_16: value16
key_17: value17
key_18: value18
key_19: value19
key_20: value20
key_21: value21
key_22: value22
key_23: value23
key_24: value24
key_25: value25
key_26: value26
key_27: value27
key_28: value28
key_29: value29
key_30: value30
key_31: value31
key_32: value32
key_33: value33
key_34: value34
key_35: value35
key_36: value36
key_37: value37
key_38: value38
key_39: value39
key_3: value3
key_40: value40
key_41: value41
key_42: value42
key_43: value43
key_44: value44
key_45: value45
key_46: value46
key_47: value47
key_48: value48
key_49: value49
key_4: value4
key_50: value50
key_51: value51
key_52: value52
key_53: value53
key_54: value54
key_55: value55
key_56: value56
key_57: value57
key_58: value58
key_59: value59
key_5: value5
key_60: value60
key_61: value61
key_62: value62
key_63: value63
key_64: value64
key_65: value65
key_66: value66
key_67: value67
key_68: value68
key_69: value69
key_6: value6
key_70: value70
key_71: value71
key_72: value72
key_73: value73
key_74: value74
key_75: value75
key_76: value76
key_77: value77
key_78: value78
key_79: value79
key_7: value7
key_80: value80
key_8: value8
key_9: value9
length of table 81
value1 = value2
'''
"""

import strtabs

var tab = newStringTable({"key1": "val1", "key2": "val2"},
                         modeStyleInsensitive)
for i in 0..80:
  tab["key_" & $i] = "value" & $i

for key, val in pairs(tab):
  writeLine(stdout, key, ": ", val)
writeLine(stdout, "length of table ", $tab.len)

writeLine(stdout, `%`("$key1 = $key2", tab, {useEnvironment}))
id='n471' href='#n471'>471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This file implements the new evaluation engine for Nim code.
## An instruction is 1-3 int32s in memory, it is a register based VM.

const debugEchoCode = false

import ast except getstr

import
  strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes, unsigned,
  parser, vmdeps, idents, trees, renderer, options, transf, parseutils

from semfold import leValueConv, ordinalValToString
from evaltempl import evalTemplate

when hasFFI:
  import evalffi

type
  TRegisterKind = enum
    rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr
  TFullReg = object   # with a custom mark proc, we could use the same
                      # data representation as LuaJit (tagged NaNs).
    case kind: TRegisterKind
    of rkNone: nil
    of rkInt: intVal: BiggestInt
    of rkFloat: floatVal: BiggestFloat
    of rkNode: node: PNode
    of rkRegisterAddr: regAddr: ptr TFullReg
    of rkNodeAddr: nodeAddr: ptr PNode

  PStackFrame* = ref TStackFrame
  TStackFrame* = object
    prc: PSym                 # current prc; proc that is evaluated
    slots: seq[TFullReg]      # parameters passed to the proc + locals;
                              # parameters come first
    next: PStackFrame         # for stacking
    comesFrom: int
    safePoints: seq[int]      # used for exception handling
                              # XXX 'break' should perform cleanup actions
                              # What does the C backend do for it?

proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
  if x != nil:
    if recursionLimit == 0:
      var calls = 0
      var x = x
      while x != nil:
        inc calls
        x = x.next
      msgWriteln($calls & " calls omitted\n")
      return
    stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
    var info = c.debug[pc]
    # we now use the same format as in system/except.nim
    var s = toFilename(info)
    var line = toLinenumber(info)
    if line > 0:
      add(s, '(')
      add(s, $line)
      add(s, ')')
    if x.prc != nil:
      for k in 1..max(1, 25-s.len): add(s, ' ')
      add(s, x.prc.name.s)
    msgWriteln(s)

proc stackTrace(c: PCtx, tos: PStackFrame, pc: int,
                msg: TMsgKind, arg = "") =
  msgWriteln("stack trace: (most recent call last)")
  stackTraceAux(c, tos, pc)
  # XXX test if we want 'globalError' for every mode
  if c.mode == emRepl: globalError(c.debug[pc], msg, arg)
  else: localError(c.debug[pc], msg, arg)

proc bailOut(c: PCtx; tos: PStackFrame) =
  stackTrace(c, tos, c.exceptionInstr, errUnhandledExceptionX,
             c.currentExceptionA.sons[2].strVal)

when not defined(nimComputedGoto):
  {.pragma: computedGoto.}

proc myreset(n: var TFullReg) = reset(n)

template ensureKind(k: expr) {.immediate, dirty.} =
  if regs[ra].kind != k:
    myreset(regs[ra])
    regs[ra].kind = k

template decodeB(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  ensureKind(k)

template decodeBC(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  let rc = instr.regC
  ensureKind(k)

template declBC() {.immediate, dirty.} =
  let rb = instr.regB
  let rc = instr.regC

template decodeBImm(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  let imm = instr.regC - byteExcess
  ensureKind(k)

template decodeBx(k: expr) {.immediate, dirty.} =
  let rbx = instr.regBx - wordExcess
  ensureKind(k)

template move(a, b: expr) {.immediate, dirty.} = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler

proc createStrKeepNode(x: var TFullReg) =
  if x.node.isNil:
    x.node = newNode(nkStrLit)
  elif x.node.kind == nkNilLit:
    when defined(useNodeIds):
      let id = x.node.id
    system.reset(x.node[])
    x.node.kind = nkStrLit
    when defined(useNodeIds):
      x.node.id = id
  elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
      nfAllConst in x.node.flags:
    # XXX this is hacky; tests/txmlgen triggers it:
    x.node = newNode(nkStrLit)
    # It not only hackey, it is also wrong for tgentemplate. The primary
    # cause of bugs like these is that the VM does not properly distinguish
    # between variable defintions (var foo = e) and variable updates (foo = e).

include vmhooks

template createStr(x) =
  x.node = newNode(nkStrLit)

template createSet(x) =
  x.node = newNode(nkCurly)

proc moveConst(x: var TFullReg, y: TFullReg) =
  if x.kind != y.kind:
    myreset(x)
    x.kind = y.kind
  case x.kind
  of rkNone: discard
  of rkInt: x.intVal = y.intVal
  of rkFloat: x.floatVal = y.floatVal
  of rkNode: x.node = y.node
  of rkRegisterAddr: x.regAddr = y.regAddr
  of rkNodeAddr: x.nodeAddr = y.nodeAddr

# this seems to be the best way to model the reference semantics
# of system.NimNode:
template asgnRef(x, y: expr) = moveConst(x, y)

proc copyValue(src: PNode): PNode =
  if src == nil or nfIsRef in src.flags:
    return src
  result = newNode(src.kind)
  result.info = src.info
  result.typ = src.typ
  result.flags = src.flags * PersistentNodeFlags
  when defined(useNodeIds):
    if result.id == nodeIdToDebug:
      echo "COMES FROM ", src.id
  case src.kind
  of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
  of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
  of nkSym: result.sym = src.sym
  of nkIdent: result.ident = src.ident
  of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
  else:
    newSeq(result.sons, sonsLen(src))
    for i in countup(0, sonsLen(src) - 1):
      result.sons[i] = copyValue(src.sons[i])

proc asgnComplex(x: var TFullReg, y: TFullReg) =
  if x.kind != y.kind:
    myreset(x)
    x.kind = y.kind
  case x.kind
  of rkNone: discard
  of rkInt: x.intVal = y.intVal
  of rkFloat: x.floatVal = y.floatVal
  of rkNode: x.node = copyValue(y.node)
  of rkRegisterAddr: x.regAddr = y.regAddr
  of rkNodeAddr: x.nodeAddr = y.nodeAddr

proc putIntoNode(n: var PNode; x: TFullReg) =
  case x.kind
  of rkNone: discard
  of rkInt: n.intVal = x.intVal
  of rkFloat: n.floatVal = x.floatVal
  of rkNode:
    if nfIsRef in x.node.flags: n = x.node
    else: n[] = x.node[]
  of rkRegisterAddr: putIntoNode(n, x.regAddr[])
  of rkNodeAddr: n[] = x.nodeAddr[][]

proc putIntoReg(dest: var TFullReg; n: PNode) =
  case n.kind
  of nkStrLit..nkTripleStrLit:
    dest.kind = rkNode
    createStr(dest)
    dest.node.strVal = n.strVal
  of nkCharLit..nkUInt64Lit:
    dest.kind = rkInt
    dest.intVal = n.intVal
  of nkFloatLit..nkFloat128Lit:
    dest.kind = rkFloat
    dest.floatVal = n.floatVal
  else:
    dest.kind = rkNode
    dest.node = n

proc regToNode(x: TFullReg): PNode =
  case x.kind
  of rkNone: result = newNode(nkEmpty)
  of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
  of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
  of rkNode: result = x.node
  of rkRegisterAddr: result = regToNode(x.regAddr[])
  of rkNodeAddr: result = x.nodeAddr[]

template getstr(a: expr): expr =
  (if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))

proc pushSafePoint(f: PStackFrame; pc: int) =
  if f.safePoints.isNil: f.safePoints = @[]
  f.safePoints.add(pc)

proc popSafePoint(f: PStackFrame) = discard f.safePoints.pop()

proc cleanUpOnException(c: PCtx; tos: PStackFrame):
                                              tuple[pc: int, f: PStackFrame] =
  let raisedType = c.currentExceptionA.typ.skipTypes(abstractPtrs)
  var f = tos
  while true:
    while f.safePoints.isNil or f.safePoints.len == 0:
      f = f.next
      if f.isNil: return (-1, nil)
    var pc2 = f.safePoints[f.safePoints.high]

    var nextExceptOrFinally = -1
    if c.code[pc2].opcode == opcExcept:
      nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
      inc pc2
    while c.code[pc2].opcode == opcExcept:
      let exceptType = c.types[c.code[pc2].regBx-wordExcess].skipTypes(
                          abstractPtrs)
      if inheritanceDiff(exceptType, raisedType) <= 0:
        # mark exception as handled but keep it in B for
        # the getCurrentException() builtin:
        c.currentExceptionB = c.currentExceptionA
        c.currentExceptionA = nil
        # execute the corresponding handler:
        while c.code[pc2].opcode == opcExcept: inc pc2
        return (pc2, f)
      inc pc2
      if c.code[pc2].opcode != opcExcept and nextExceptOrFinally >= 0:
        # we're at the end of the *except list*, but maybe there is another
        # *except branch*?
        pc2 = nextExceptOrFinally+1
        if c.code[pc2].opcode == opcExcept:
          nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess

    if nextExceptOrFinally >= 0:
      pc2 = nextExceptOrFinally
    if c.code[pc2].opcode == opcFinally:
      # execute the corresponding handler, but don't quit walking the stack:
      return (pc2, f)
    # not the right one:
    discard f.safePoints.pop

proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
  if f.safePoints.isNil: return -1
  for s in f.safePoints:
    var pc = s
    while c.code[pc].opcode == opcExcept:
      pc = pc + c.code[pc].regBx - wordExcess
    if c.code[pc].opcode == opcFinally:
      return pc
  return -1

proc opConv*(dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
  if desttyp.kind == tyString:
    if dest.kind != rkNode:
      myreset(dest)
      dest.kind = rkNode
    dest.node = newNode(nkStrLit)
    let styp = srctyp.skipTypes(abstractRange)
    case styp.kind
    of tyEnum:
      let n = styp.n
      let x = src.intVal.int
      if x <% n.len and (let f = n.sons[x].sym; f.position == x):
        dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
      else:
        for i in 0.. <n.len:
          if n.sons[i].kind != nkSym: internalError("opConv for enum")
          let f = n.sons[i].sym
          if f.position == x:
            dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
            return
        internalError("opConv for enum")
    of tyInt..tyInt64:
      dest.node.strVal = $src.intVal
    of tyUInt..tyUInt64:
      dest.node.strVal = $uint64(src.intVal)
    of tyBool:
      dest.node.strVal = if src.intVal == 0: "false" else: "true"
    of tyFloat..tyFloat128:
      dest.node.strVal = $src.floatVal
    of tyString, tyCString:
      dest.node.strVal = src.node.strVal
    of tyChar:
      dest.node.strVal = $chr(src.intVal)
    else:
      internalError("cannot convert to string " & desttyp.typeToString)
  else:
    case skipTypes(desttyp, abstractRange).kind
    of tyInt..tyInt64:
      if dest.kind != rkInt:
        myreset(dest); dest.kind = rkInt
      case skipTypes(srctyp, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = int(src.floatVal)
      else:
        dest.intVal = src.intVal
      if dest.intVal < firstOrd(desttyp) or dest.intVal > lastOrd(desttyp):
        return true
    of tyUInt..tyUInt64:
      if dest.kind != rkInt:
        myreset(dest); dest.kind = rkInt
      case skipTypes(srctyp, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = int(src.floatVal)
      else:
        dest.intVal = src.intVal and ((1 shl (desttyp.size*8))-1)
    of tyFloat..tyFloat64:
      if dest.kind != rkFloat:
        myreset(dest); dest.kind = rkFloat
      case skipTypes(srctyp, abstractRange).kind
      of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
        dest.floatVal = toFloat(src.intVal.int)
      else:
        dest.floatVal = src.floatVal
    else:
      asgnComplex(dest, src)

proc compile(c: PCtx, s: PSym): int =
  result = vmgen.genProc(c, s)
  when debugEchoCode: c.echoCode result
  #c.echoCode

template handleJmpBack() {.dirty.} =
  if c.loopIterations <= 0:
    if allowInfiniteLoops in c.features:
      c.loopIterations = MaxLoopIterations
    else:
      msgWriteln("stack trace: (most recent call last)")
      stackTraceAux(c, tos, pc)
      globalError(c.debug[pc], errTooManyIterations)
  dec(c.loopIterations)

proc skipColon(n: PNode): PNode =
  result = n
  if n.kind == nkExprColonExpr:
    result = n.sons[1]

proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
  var pc = start
  var tos = tos
  var regs: seq[TFullReg] # alias to tos.slots for performance
  move(regs, tos.slots)
  #echo "NEW RUN ------------------------"
  while true:
    #{.computedGoto.}
    let instr = c.code[pc]
    let ra = instr.regA
    #if c.traceActive:
    #  echo "PC ", pc, " ", c.code[pc].opcode, " ra ", ra
    #  message(c.debug[pc], warnUser, "Trace")
    case instr.opcode
    of opcEof: return regs[ra]
    of opcRet:
      # XXX perform any cleanup actions
      pc = tos.comesFrom
      tos = tos.next
      let retVal = regs[0]
      if tos.isNil:
        #echo "RET ", retVal.rendertree
        return retVal

      move(regs, tos.slots)
      assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
      if c.code[pc].opcode == opcIndCallAsgn:
        regs[c.code[pc].regA] = retVal
        #echo "RET2 ", retVal.rendertree, " ", c.code[pc].regA
    of opcYldYoid: assert false
    of opcYldVal: assert false
    of opcAsgnInt:
      decodeB(rkInt)
      regs[ra].intVal = regs[rb].intVal
    of opcAsgnStr:
      decodeB(rkNode)
      createStrKeepNode regs[ra]
      regs[ra].node.strVal = regs[rb].node.strVal
    of opcAsgnFloat:
      decodeB(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal
    of opcAsgnComplex:
      asgnComplex(regs[ra], regs[instr.regB])
    of opcAsgnRef:
      asgnRef(regs[ra], regs[instr.regB])
    of opcRegToNode:
      decodeB(rkNode)
      putIntoNode(regs[ra].node, regs[rb])
    of opcNodeToReg:
      let ra = instr.regA
      let rb = instr.regB
      # opcDeref might already have loaded it into a register. XXX Let's hope
      # this is still correct this way:
      if regs[rb].kind != rkNode:
        regs[ra] = regs[rb]
      else:
        assert regs[rb].kind == rkNode
        let nb = regs[rb].node
        case nb.kind
        of nkCharLit..nkInt64Lit:
          ensureKind(rkInt)
          regs[ra].intVal = nb.intVal
        of nkFloatLit..nkFloat64Lit:
          ensureKind(rkFloat)
          regs[ra].floatVal = nb.floatVal
        else:
          ensureKind(rkNode)
          regs[ra].node = nb
    of opcLdArr:
      # a = b[c]
      decodeBC(rkNode)
      if regs[rc].intVal > high(int):
        stackTrace(c, tos, pc, errIndexOutOfBounds)
      let idx = regs[rc].intVal.int
      let src = regs[rb].node
      if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
        regs[ra].node = src.sons[idx]
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcLdStrIdx:
      decodeBC(rkInt)
      let idx = regs[rc].intVal.int
      let s = regs[rb].node.strVal
      if s.isNil:
        stackTrace(c, tos, pc, errNilAccess)
      elif idx <=% s.len:
        regs[ra].intVal = s[idx].ord
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcWrArr:
      # a[b] = c
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      if idx <% regs[ra].node.len:
        putIntoNode(regs[ra].node.sons[idx], regs[rc])
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcLdObj:
      # a = b.c
      decodeBC(rkNode)
      let src = regs[rb].node
      if src.kind notin {nkEmpty..nkNilLit}:
        let n = src.sons[rc].skipColon
        regs[ra].node = n
      else:
        stackTrace(c, tos, pc, errNilAccess)
    of opcWrObj:
      # a.b = c
      decodeBC(rkNode)
      putIntoNode(regs[ra].node.sons[rb], regs[rc])
    of opcWrStrIdx:
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      if idx <% regs[ra].node.strVal.len:
        regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcAddrReg:
      decodeB(rkRegisterAddr)
      regs[ra].regAddr = addr(regs[rb])
    of opcAddrNode:
      decodeB(rkNodeAddr)
      regs[ra].nodeAddr = addr(regs[rb].node)
    of opcLdDeref:
      # a = b[]
      let ra = instr.regA
      let rb = instr.regB
      case regs[rb].kind
      of rkNodeAddr:
        ensureKind(rkNode)
        regs[ra].node = regs[rb].nodeAddr[]
      of rkRegisterAddr:
        ensureKind(regs[rb].regAddr.kind)
        regs[ra] = regs[rb].regAddr[]
      of rkNode:
        if regs[rb].node.kind == nkNilLit:
          stackTrace(c, tos, pc, errNilAccess)
        assert regs[rb].node.kind == nkRefTy
        regs[ra].node = regs[rb].node.sons[0]
      else:
        stackTrace(c, tos, pc, errNilAccess)
    of opcWrDeref:
      # a[] = c; b unused
      let ra = instr.regA
      let rc = instr.regC
      case regs[ra].kind
      of rkNodeAddr: putIntoNode(regs[ra].nodeAddr[], regs[rc])
      of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
      of rkNode: putIntoNode(regs[ra].node, regs[rc])
      else: stackTrace(c, tos, pc, errNilAccess)
    of opcAddInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        sum = bVal +% cVal
      if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
        regs[ra].intVal = sum
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcAddImmInt:
      decodeBImm(rkInt)
      #message(c.debug[pc], warnUser, "came here")
      #debug regs[rb].node
      let
        bVal = regs[rb].intVal
        cVal = imm
        sum = bVal +% cVal
      if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
        regs[ra].intVal = sum
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcSubInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        diff = bVal -% cVal
      if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
        regs[ra].intVal = diff
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcSubImmInt:
      decodeBImm(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = imm
        diff = bVal -% cVal
      if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
        regs[ra].intVal = diff
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcLenSeq:
      decodeBImm(rkInt)
      #assert regs[rb].kind == nkBracket
      # also used by mNLen:
      regs[ra].intVal = regs[rb].node.safeLen - imm
    of opcLenStr:
      decodeBImm(rkInt)
      assert regs[rb].kind == rkNode
      regs[ra].intVal = regs[rb].node.strVal.len - imm
    of opcIncl:
      decodeB(rkNode)
      let b = regs[rb].regToNode
      if not inSet(regs[ra].node, b):
        addSon(regs[ra].node, copyTree(b))
    of opcInclRange:
      decodeBC(rkNode)
      var r = newNode(nkRange)
      r.add regs[rb].regToNode
      r.add regs[rc].regToNode
      addSon(regs[ra].node, r.copyTree)
    of opcExcl:
      decodeB(rkNode)
      var b = newNodeIT(nkCurly, regs[rb].node.info, regs[rb].node.typ)
      addSon(b, regs[rb].regToNode)
      var r = diffSets(regs[ra].node, b)
      discardSons(regs[ra].node)
      for i in countup(0, sonsLen(r) - 1): addSon(regs[ra].node, r.sons[i])
    of opcCard:
      decodeB(rkInt)
      regs[ra].intVal = nimsets.cardSet(regs[rb].node)
    of opcMulInt:
      decodeBC(rkInt)
      let
        bVal = regs[rb].intVal
        cVal = regs[rc].intVal
        product = bVal *% cVal
        floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
        resAsFloat = toBiggestFloat(product)
      if resAsFloat == floatProd:
        regs[ra].intVal = product
      elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
        regs[ra].intVal = product
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcDivInt:
      decodeBC(rkInt)
      if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
      else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
    of opcModInt:
      decodeBC(rkInt)
      if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
      else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
    of opcAddFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
    of opcSubFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
    of opcMulFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
    of opcDivFloat:
      decodeBC(rkFloat)
      regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
    of opcShrInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
    of opcShlInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
    of opcBitandInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
    of opcBitorInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
    of opcBitxorInt:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
    of opcAddu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
    of opcSubu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
    of opcMulu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
    of opcDivu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
    of opcModu:
      decodeBC(rkInt)
      regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
    of opcEqInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
    of opcLeInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
    of opcLtInt:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
    of opcEqFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
    of opcLeFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
    of opcLtFloat:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
    of opcLeu:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
    of opcLtu:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
    of opcEqRef, opcEqNimrodNode:
      decodeBC(rkInt)
      regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and
                             regs[rc].node.kind == nkNilLit) or
                             regs[rb].node == regs[rc].node)
    of opcXor:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
    of opcNot:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      regs[ra].intVal = 1 - regs[rb].intVal
    of opcUnaryMinusInt:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      let val = regs[rb].intVal
      if val != int64.low:
        regs[ra].intVal = -val
      else:
        stackTrace(c, tos, pc, errOverOrUnderflow)
    of opcUnaryMinusFloat:
      decodeB(rkFloat)
      assert regs[rb].kind == rkFloat
      regs[ra].floatVal = -regs[rb].floatVal
    of opcBitnotInt:
      decodeB(rkInt)
      assert regs[rb].kind == rkInt
      regs[ra].intVal = not regs[rb].intVal
    of opcEqStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
    of opcLeStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
    of opcLtStr:
      decodeBC(rkInt)
      regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
    of opcLeSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(containsSets(regs[rb].node, regs[rc].node))
    of opcEqSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(equalSets(regs[rb].node, regs[rc].node))
    of opcLtSet:
      decodeBC(rkInt)
      let a = regs[rb].node
      let b = regs[rc].node
      regs[ra].intVal = ord(containsSets(a, b) and not equalSets(a, b))
    of opcMulSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
            nimsets.intersectSets(regs[rb].node, regs[rc].node).sons)
    of opcPlusSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.unionSets(regs[rb].node, regs[rc].node).sons)
    of opcMinusSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.diffSets(regs[rb].node, regs[rc].node).sons)
    of opcSymdiffSet:
      decodeBC(rkNode)
      createSet(regs[ra])
      move(regs[ra].node.sons,
           nimsets.symdiffSets(regs[rb].node, regs[rc].node).sons)
    of opcConcatStr:
      decodeBC(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = getstr(regs[rb])
      for i in rb+1..rb+rc-1:
        regs[ra].node.strVal.add getstr(regs[i])
    of opcAddStrCh:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.add(regs[rb].intVal.chr)
    of opcAddStrStr:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.add(regs[rb].node.strVal)
    of opcAddSeqElem:
      decodeB(rkNode)
      if regs[ra].node.kind == nkBracket:
        regs[ra].node.add(copyTree(regs[rb].regToNode))
      else:
        stackTrace(c, tos, pc, errNilAccess)
    of opcEcho:
      let rb = instr.regB
      if rb == 1:
        msgWriteln(regs[ra].node.strVal)
      else:
        var outp = ""
        for i in ra..ra+rb-1:
          #if regs[i].kind != rkNode: debug regs[i]
          outp.add(regs[i].node.strVal)
        msgWriteln(outp)
    of opcContainsSet:
      decodeBC(rkInt)
      regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
    of opcSubStr:
      decodeBC(rkNode)
      inc pc
      assert c.code[pc].opcode == opcSubStr
      let rd = c.code[pc].regA
      createStr regs[ra]
      regs[ra].node.strVal = substr(regs[rb].node.strVal,
                                    regs[rc].intVal.int, regs[rd].intVal.int)
    of opcParseFloat:
      decodeBC(rkInt)
      inc pc
      assert c.code[pc].opcode == opcParseFloat
      let rd = c.code[pc].regA
      var rcAddr = addr(regs[rc])
      if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
      elif regs[rc].kind != rkFloat:
        myreset(regs[rc])
        regs[rc].kind = rkFloat
      regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
                                          rcAddr.floatVal, regs[rd].intVal.int)
    of opcRangeChck:
      let rb = instr.regB
      let rc = instr.regC
      if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
              leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
        stackTrace(c, tos, pc, errGenerated,
          msgKindToString(errIllegalConvFromXtoY) % [
          $regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
    of opcIndCall, opcIndCallAsgn:
      # dest = call regStart, n; where regStart = fn, arg1, ...
      let rb = instr.regB
      let rc = instr.regC
      let bb = regs[rb].node
      let isClosure = bb.kind == nkPar
      let prc = if not isClosure: bb.sym else: bb.sons[0].sym
      if prc.offset < -1:
        # it's a callback:
        c.callbacks[-prc.offset-2].value(
          VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs),
                 currentException: c.currentExceptionB))
      elif sfImportc in prc.flags:
        if allowFFI notin c.features:
          globalError(c.debug[pc], errGenerated, "VM not allowed to do FFI")
        # we pass 'tos.slots' instead of 'regs' so that the compiler can keep
        # 'regs' in a register:
        when hasFFI:
          let prcValue = c.globals.sons[prc.position-1]
          if prcValue.kind == nkEmpty:
            globalError(c.debug[pc], errGenerated, "canot run " & prc.name.s)
          let newValue = callForeignFunction(prcValue, prc.typ, tos.slots,
                                             rb+1, rc-1, c.debug[pc])
          if newValue.kind != nkEmpty:
            assert instr.opcode == opcIndCallAsgn
            putIntoReg(regs[ra], newValue)
        else:
          globalError(c.debug[pc], errGenerated, "VM not built with FFI support")
      elif prc.kind != skTemplate:
        let newPc = compile(c, prc)
        # tricky: a recursion is also a jump back, so we use the same
        # logic as for loops:
        if newPc < pc: handleJmpBack()
        #echo "new pc ", newPc, " calling: ", prc.name.s
        var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
        newSeq(newFrame.slots, prc.offset)
        if not isEmptyType(prc.typ.sons[0]) or prc.kind == skMacro:
          putIntoReg(newFrame.slots[0], getNullValue(prc.typ.sons[0], prc.info))
        for i in 1 .. rc-1:
          newFrame.slots[i] = regs[rb+i]
        if isClosure:
          newFrame.slots[rc].kind = rkNode
          newFrame.slots[rc].node = regs[rb].node.sons[1]
        tos = newFrame
        move(regs, newFrame.slots)
        # -1 for the following 'inc pc'
        pc = newPc-1
      else:
        # for 'getAst' support we need to support template expansion here:
        let genSymOwner = if tos.next != nil and tos.next.prc != nil:
                            tos.next.prc
                          else:
                            c.module
        var macroCall = newNodeI(nkCall, c.debug[pc])
        macroCall.add(newSymNode(prc))
        for i in 1 .. rc-1: macroCall.add(regs[rb+i].regToNode)
        let a = evalTemplate(macroCall, prc, genSymOwner)
        ensureKind(rkNode)
        regs[ra].node = a
    of opcTJmp:
      # jump Bx if A != 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal != 0:
        inc pc, rbx
    of opcFJmp:
      # jump Bx if A == 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal == 0:
        inc pc, rbx
    of opcJmp:
      # jump Bx
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
    of opcJmpBack:
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
      handleJmpBack()
    of opcBranch:
      # we know the next instruction is a 'fjmp':
      let branch = c.constants[instr.regBx-wordExcess]
      var cond = false
      for j in countup(0, sonsLen(branch) - 2):
        if overlap(regs[ra].regToNode, branch.sons[j]):
          cond = true
          break
      assert c.code[pc+1].opcode == opcFJmp
      inc pc
      # we skip this instruction so that the final 'inc(pc)' skips
      # the following jump
      if not cond:
        let instr2 = c.code[pc]
        let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
        inc pc, rbx
    of opcTry:
      let rbx = instr.regBx - wordExcess
      tos.pushSafePoint(pc + rbx)
      assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
    of opcExcept:
      # just skip it; it's followed by a jump;
      # we'll execute in the 'raise' handler
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
      assert c.code[pc+1].opcode in {opcExcept, opcFinally}
    of opcFinally:
      # just skip it; it's followed by the code we need to execute anyway
      tos.popSafePoint()
    of opcFinallyEnd:
      if c.currentExceptionA != nil:
        # we are in a cleanup run:
        let (newPc, newTos) = cleanUpOnException(c, tos)
        if newPc-1 < 0:
          bailOut(c, tos)
          return
        pc = newPc-1
        if tos != newTos:
          tos = newTos
          move(regs, tos.slots)
    of opcRaise:
      let raised = regs[ra].node
      c.currentExceptionA = raised
      c.exceptionInstr = pc
      let (newPc, newTos) = cleanUpOnException(c, tos)
      # -1 because of the following 'inc'
      if newPc-1 < 0:
        bailOut(c, tos)
        return
      pc = newPc-1
      if tos != newTos:
        tos = newTos
        move(regs, tos.slots)
    of opcNew:
      ensureKind(rkNode)
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra].node = getNullValue(typ, c.debug[pc])
      regs[ra].node.flags.incl nfIsRef
    of opcNewSeq:
      let typ = c.types[instr.regBx - wordExcess]
      inc pc
      ensureKind(rkNode)
      let instr2 = c.code[pc]
      let count = regs[instr2.regA].intVal.int
      regs[ra].node = newNodeI(nkBracket, c.debug[pc])
      regs[ra].node.typ = typ
      newSeq(regs[ra].node.sons, count)
      for i in 0 .. <count:
        regs[ra].node.sons[i] = getNullValue(typ.sons[0], c.debug[pc])
    of opcNewStr:
      decodeB(rkNode)
      regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
      regs[ra].node.strVal = newString(regs[rb].intVal.int)
    of opcLdImmInt:
      # dest = immediate value
      decodeBx(rkInt)
      regs[ra].intVal = rbx
    of opcLdNull:
      ensureKind(rkNode)
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra].node = getNullValue(typ, c.debug[pc])
      # opcLdNull really is the gist of the VM's problems: should it load
      # a fresh null to  regs[ra].node  or to regs[ra].node[]? This really
      # depends on whether regs[ra] represents the variable itself or wether
      # it holds the indirection! Due to the way registers are re-used we cannot
      # say for sure here! --> The codegen has to deal with it
      # via 'genAsgnPatch'.
    of opcLdNullReg:
      let typ = c.types[instr.regBx - wordExcess]
      if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
          tyFloat..tyFloat128}:
        ensureKind(rkFloat)
        regs[ra].floatVal = 0.0
      else:
        ensureKind(rkInt)
        regs[ra].intVal = 0
    of opcLdConst:
      let rb = instr.regBx - wordExcess
      let cnst = c.constants.sons[rb]
      if fitsRegister(cnst.typ):
        myreset(regs[ra])
        putIntoReg(regs[ra], cnst)
      else:
        ensureKind(rkNode)
        regs[ra].node = cnst
    of opcAsgnConst:
      let rb = instr.regBx - wordExcess
      let cnst = c.constants.sons[rb]
      if fitsRegister(cnst.typ):
        putIntoReg(regs[ra], cnst)
      else:
        ensureKind(rkNode)
        regs[ra].node = cnst.copyTree
    of opcLdGlobal:
      let rb = instr.regBx - wordExcess - 1
      ensureKind(rkNode)
      regs[ra].node = c.globals.sons[rb]
    of opcLdGlobalAddr:
      let rb = instr.regBx - wordExcess - 1
      ensureKind(rkNodeAddr)
      regs[ra].nodeAddr = addr(c.globals.sons[rb])
    of opcRepr:
      decodeB(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments})
    of opcQuit:
      if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
        message(c.debug[pc], hintQuitCalled)
        msgQuit(int8(getOrdValue(regs[ra].regToNode)))
      else:
        return TFullReg(kind: rkNone)
    of opcSetLenStr:
      decodeB(rkNode)
      #createStrKeepNode regs[ra]
      regs[ra].node.strVal.setLen(regs[rb].intVal.int)
    of opcOf:
      decodeBC(rkInt)
      let typ = c.types[regs[rc].intVal.int]
      regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) >= 0)
    of opcIs:
      decodeBC(rkInt)
      let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
      let t2 = c.types[regs[rc].intVal.int]
      # XXX: This should use the standard isOpImpl
      let match = if t2.kind == tyUserTypeClass: true
                  else: sameType(t1, t2)
      regs[ra].intVal = ord(match)
    of opcSetLenSeq:
      decodeB(rkNode)
      let newLen = regs[rb].intVal.int
      if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
      else: setLen(regs[ra].node.sons, newLen)
    of opcSwap:
      let rb = instr.regB
      if regs[ra].kind == regs[rb].kind:
        case regs[ra].kind
        of rkNone: discard
        of rkInt: swap regs[ra].intVal, regs[rb].intVal
        of rkFloat: swap regs[ra].floatVal, regs[rb].floatVal
        of rkNode: swap regs[ra].node, regs[rb].node
        of rkRegisterAddr: swap regs[ra].regAddr, regs[rb].regAddr
        of rkNodeAddr: swap regs[ra].nodeAddr, regs[rb].nodeAddr
      else:
        internalError(c.debug[pc], "cannot swap operands")
    of opcReset:
      internalError(c.debug[pc], "too implement")
    of opcNarrowS:
      decodeB(rkInt)
      let min = -(1.BiggestInt shl (rb-1))
      let max = (1.BiggestInt shl (rb-1))-1
      if regs[ra].intVal < min or regs[ra].intVal > max:
        stackTrace(c, tos, pc, errGenerated,
          msgKindToString(errUnhandledExceptionX) % "value out of range")
    of opcNarrowU:
      decodeB(rkInt)
      regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
    of opcIsNil:
      decodeB(rkInt)
      let node = regs[rb].node
      regs[ra].intVal = ord(node.kind == nkNilLit or
        (node.kind in {nkStrLit..nkTripleStrLit} and node.strVal.isNil))
    of opcNBindSym:
      decodeBx(rkNode)
      regs[ra].node = copyTree(c.constants.sons[rbx])
    of opcNChild:
      decodeBC(rkNode)
      let idx = regs[rc].intVal.int
      let src = regs[rb].node
      if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len:
        regs[ra].node = src.sons[idx]
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcNSetChild:
      decodeBC(rkNode)
      let idx = regs[rb].intVal.int
      var dest = regs[ra].node
      if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len:
        dest.sons[idx] = regs[rc].node
      else:
        stackTrace(c, tos, pc, errIndexOutOfBounds)
    of opcNAdd:
      decodeBC(rkNode)
      var u = regs[rb].node
      if u.kind notin {nkEmpty..nkNilLit}:
        u.add(regs[rc].node)
      else:
        stackTrace(c, tos, pc, errGenerated, "cannot add to node kind: " & $u.kind)
      regs[ra].node = u
    of opcNAddMultiple:
      decodeBC(rkNode)
      let x = regs[rc].node
      var u = regs[rb].node
      if u.kind notin {nkEmpty..nkNilLit}:
        # XXX can be optimized:
        for i in 0.. <x.len: u.add(x.sons[i])
      else:
        stackTrace(c, tos, pc, errGenerated, "cannot add to node kind: " & $u.kind)
      regs[ra].node = u
    of opcNKind:
      decodeB(rkInt)
      regs[ra].intVal = ord(regs[rb].node.kind)
      c.comesFromHeuristic = regs[rb].node.info
    of opcNIntVal:
      decodeB(rkInt)
      let a = regs[rb].node
      case a.kind
      of nkCharLit..nkInt64Lit: regs[ra].intVal = a.intVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
    of opcNFloatVal:
      decodeB(rkFloat)
      let a = regs[rb].node
      case a.kind
      of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
    of opcNSymbol:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkSym:
        regs[ra].node = copyNode(a)
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
    of opcNIdent:
      decodeB(rkNode)
      let a = regs[rb].node
      if a.kind == nkIdent:
        regs[ra].node = copyNode(a)
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
    of opcNGetType:
      let rb = instr.regB
      let rc = instr.regC
      if rc == 0:
        ensureKind(rkNode)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].node = opMapTypeToAst(regs[rb].node.typ, c.debug[pc])
        else:
          stackTrace(c, tos, pc, errGenerated, "node has no type")
      else:
        # typeKind opcode:
        ensureKind(rkInt)
        if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
          regs[ra].intVal = ord(regs[rb].node.typ.kind)
        #else:
        #  stackTrace(c, tos, pc, errGenerated, "node has no type")
    of opcNStrVal:
      decodeB(rkNode)
      createStr regs[ra]
      let a = regs[rb].node
      if a.kind in {nkStrLit..nkTripleStrLit}: regs[ra].node.strVal = a.strVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
    of opcSlurp:
      decodeB(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
                                     c.module)
    of opcGorge:
      decodeBC(rkNode)
      createStr regs[ra]
      regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
                                     regs[rc].node.strVal)
    of opcNError:
      stackTrace(c, tos, pc, errUser, regs[ra].node.strVal)
    of opcNWarning:
      message(c.debug[pc], warnUser, regs[ra].node.strVal)
    of opcNHint:
      message(c.debug[pc], hintUser, regs[ra].node.strVal)
    of opcParseExprToAst:
      decodeB(rkNode)
      # c.debug[pc].line.int - countLines(regs[rb].strVal) ?
      var error: string
      let ast = parseString(regs[rb].node.strVal, c.debug[pc].toFullPath,
                            c.debug[pc].line.int,
                            proc (info: TLineInfo; msg: TMsgKind; arg: string) =
                              if error.isNil and msg <= msgs.errMax:
                                error = formatMsg(info, msg, arg))
      if not error.isNil:
        c.errorFlag = error
      elif sonsLen(ast) != 1:
        c.errorFlag = formatMsg(c.debug[pc], errExprExpected, "multiple statements")
      else:
        regs[ra].node = ast.sons[0]
    of opcParseStmtToAst:
      decodeB(rkNode)
      var error: string
      let ast = parseString(regs[rb].node.strVal, c.debug[pc].toFullPath,
                            c.debug[pc].line.int,
                            proc (info: TLineInfo; msg: TMsgKind; arg: string) =
                              if error.isNil and msg <= msgs.errMax:
                                error = formatMsg(info, msg, arg))
      if not error.isNil:
        c.errorFlag = error
      else:
        regs[ra].node = ast
    of opcQueryErrorFlag:
      createStr regs[ra]
      regs[ra].node.strVal = c.errorFlag
      c.errorFlag.setLen 0
    of opcCallSite:
      ensureKind(rkNode)
      if c.callsite != nil: regs[ra].node = c.callsite
      else: stackTrace(c, tos, pc, errFieldXNotFound, "callsite")
    of opcNLineInfo:
      decodeB(rkNode)
      let n = regs[rb].node
      createStr regs[ra]
      regs[ra].node.strVal = n.info.toFileLineCol
      regs[ra].node.info = c.debug[pc]
    of opcEqIdent:
      decodeBC(rkInt)
      if regs[rb].node.kind == nkIdent and regs[rc].node.kind == nkIdent:
        regs[ra].intVal = ord(regs[rb].node.ident.id == regs[rc].node.ident.id)
      else:
        regs[ra].intVal = 0
    of opcStrToIdent:
      decodeB(rkNode)
      if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
        stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
      else:
        regs[ra].node = newNodeI(nkIdent, c.debug[pc])
        regs[ra].node.ident = getIdent(regs[rb].node.strVal)
    of opcIdentToStr:
      decodeB(rkNode)
      let a = regs[rb].node
      createStr regs[ra]
      regs[ra].node.info = c.debug[pc]
      if a.kind == nkSym:
        regs[ra].node.strVal = a.sym.name.s
      elif a.kind == nkIdent:
        regs[ra].node.strVal = a.ident.s
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
    of opcSetType:
      if regs[ra].kind != rkNode:
        internalError(c.debug[pc], "cannot set type")
      regs[ra].node.typ = c.types[instr.regBx - wordExcess]
    of opcConv:
      let rb = instr.regB
      inc pc
      let desttyp = c.types[c.code[pc].regBx - wordExcess]
      inc pc
      let srctyp = c.types[c.code[pc].regBx - wordExcess]

      if opConv(regs[ra], regs[rb], desttyp, srctyp):
        stackTrace(c, tos, pc, errGenerated,
          msgKindToString(errIllegalConvFromXtoY) % [
          typeToString(srctyp), typeToString(desttyp)])
    of opcCast:
      let rb = instr.regB
      inc pc
      let desttyp = c.types[c.code[pc].regBx - wordExcess]
      inc pc
      let srctyp = c.types[c.code[pc].regBx - wordExcess]

      when hasFFI:
        let dest = fficast(regs[rb], desttyp)
        asgnRef(regs[ra], dest)
      else:
        globalError(c.debug[pc], "cannot evaluate cast")
    of opcNSetIntVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkCharLit..nkInt64Lit} and
         regs[rb].kind in {rkInt}:
        dest.intVal = regs[rb].intVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
    of opcNSetFloatVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkFloatLit..nkFloat64Lit} and
         regs[rb].kind in {rkFloat}:
        dest.floatVal = regs[rb].floatVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
    of opcNSetSymbol:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind == nkSym and regs[rb].node.kind == nkSym:
        dest.sym = regs[rb].node.sym
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
    of opcNSetIdent:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
        dest.ident = regs[rb].node.ident
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
    of opcNSetType:
      decodeB(rkNode)
      let b = regs[rb].node
      internalAssert b.kind == nkSym and b.sym.kind == skType
      internalAssert regs[ra].node != nil
      regs[ra].node.typ = b.sym.typ
    of opcNSetStrVal:
      decodeB(rkNode)
      var dest = regs[ra].node
      if dest.kind in {nkStrLit..nkTripleStrLit} and
         regs[rb].kind in {rkNode}:
        dest.strVal = regs[rb].node.strVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
    of opcNNewNimNode:
      decodeBC(rkNode)
      var k = regs[rb].intVal
      if k < 0 or k > ord(high(TNodeKind)):
        internalError(c.debug[pc],
          "request to create a NimNode of invalid kind")
      let cc = regs[rc].node

      regs[ra].node = newNodeI(TNodeKind(int(k)),
        if cc.kind != nkNilLit:
          cc.info
        elif c.comesFromHeuristic.line > -1:
          c.comesFromHeuristic
        elif c.callsite != nil and c.callsite.safeLen > 1:
          c.callsite[1].info
        else:
          c.debug[pc])
      regs[ra].node.flags.incl nfIsRef
    of opcNCopyNimNode:
      decodeB(rkNode)
      regs[ra].node = copyNode(regs[rb].node)
    of opcNCopyNimTree:
      decodeB(rkNode)
      regs[ra].node = copyTree(regs[rb].node)
    of opcNDel:
      decodeBC(rkNode)
      let bb = regs[rb].intVal.int
      for i in countup(0, regs[rc].intVal.int-1):
        delSon(regs[ra].node, bb)
    of opcGenSym:
      decodeBC(rkNode)
      let k = regs[rb].intVal
      let name = if regs[rc].node.strVal.len == 0: ":tmp"
                 else: regs[rc].node.strVal
      if k < 0 or k > ord(high(TSymKind)):
        internalError(c.debug[pc], "request to create symbol of invalid kind")
      var sym = newSym(k.TSymKind, name.getIdent, c.module, c.debug[pc])
      incl(sym.flags, sfGenSym)
      regs[ra].node = newSymNode(sym)
    of opcTypeTrait:
      # XXX only supports 'name' for now; we can use regC to encode the
      # type trait operation
      decodeB(rkNode)
      var typ = regs[rb].node.typ
      internalAssert typ != nil
      while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0]
      createStr regs[ra]
      regs[ra].node.strVal = typ.typeToString(preferExported)
    inc pc

proc execute(c: PCtx, start: int): PNode =
  var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  result = rawExecute(c, start, tos).regToNode

proc evalStmt*(c: PCtx, n: PNode) =
  let n = transformExpr(c.module, n)
  let start = genStmt(c, n)
  # execute new instructions; this redundant opcEof check saves us lots
  # of allocations in 'execute':
  if c.code[start].opcode != opcEof:
    discard execute(c, start)

proc evalExpr*(c: PCtx, n: PNode): PNode =
  let n = transformExpr(c.module, n)
  let start = genExpr(c, n)
  assert c.code[start].opcode != opcEof
  result = execute(c, start)

include vmops

# for now we share the 'globals' environment. XXX Coming soon: An API for
# storing&loading the 'globals' environment to get what a component system
# requires.
var
  globalCtx: PCtx

proc setupGlobalCtx(module: PSym) =
  if globalCtx.isNil:
    globalCtx = newCtx(module)
    registerAdditionalOps(globalCtx)
  else:
    refresh(globalCtx, module)

proc myOpen(module: PSym): PPassContext =
  #var c = newEvalContext(module, emRepl)
  #c.features = {allowCast, allowFFI, allowInfiniteLoops}
  #pushStackFrame(c, newStackFrame())

  # XXX produce a new 'globals' environment here:
  setupGlobalCtx(module)
  result = globalCtx
  when hasFFI:
    globalCtx.features = {allowFFI, allowCast}

var oldErrorCount: int

proc myProcess(c: PPassContext, n: PNode): PNode =
  # don't eval errornous code:
  if oldErrorCount == msgs.gErrorCounter:
    evalStmt(PCtx(c), n)
    result = emptyNode
  else:
    result = n
  oldErrorCount = msgs.gErrorCounter

const evalPass* = makePass(myOpen, nil, myProcess, myProcess)

proc evalConstExprAux(module, prc: PSym, n: PNode, mode: TEvalMode): PNode =
  let n = transformExpr(module, n)
  setupGlobalCtx(module)
  var c = globalCtx
  c.mode = mode
  let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
  if c.code[start].opcode == opcEof: return emptyNode
  assert c.code[start].opcode != opcEof
  when debugEchoCode: c.echoCode start
  var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  #for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos).regToNode
  if result.info.line < 0: result.info = n.info

proc evalConstExpr*(module: PSym, e: PNode): PNode =
  result = evalConstExprAux(module, nil, e, emConst)

proc evalStaticExpr*(module: PSym, e: PNode, prc: PSym): PNode =
  result = evalConstExprAux(module, prc, e, emStaticExpr)

proc evalStaticStmt*(module: PSym, e: PNode, prc: PSym) =
  discard evalConstExprAux(module, prc, e, emStaticStmt)

proc setupCompileTimeVar*(module: PSym, n: PNode) =
  discard evalConstExprAux(module, nil, n, emStaticStmt)

proc setupMacroParam(x: PNode): PNode =
  result = x
  if result.kind in {nkHiddenSubConv, nkHiddenStdConv}: result = result.sons[1]
  result = canonValue(result)
  result.flags.incl nfIsRef
  result.typ = x.typ

var evalMacroCounter: int

proc evalMacroCall*(module: PSym, n, nOrig: PNode, sym: PSym): PNode =
  # XXX GlobalError() is ugly here, but I don't know a better solution for now
  inc(evalMacroCounter)
  if evalMacroCounter > 100:
    globalError(n.info, errTemplateInstantiationTooNested)

  # immediate macros can bypass any type and arity checking so we check the
  # arity here too:
  if sym.typ.len > n.safeLen and sym.typ.len > 1:
    globalError(n.info, "in call '$#' got $#, but expected $# argument(s)" % [
        n.renderTree,
        $ <n.safeLen, $ <sym.typ.len])

  setupGlobalCtx(module)
  var c = globalCtx

  c.callsite = nOrig
  let start = genProc(c, sym)

  var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
  let maxSlots = sym.offset
  newSeq(tos.slots, maxSlots)
  # setup arguments:
  var L = n.safeLen
  if L == 0: L = 1
  # This is wrong for tests/reject/tind1.nim where the passed 'else' part
  # doesn't end up in the parameter:
  #InternalAssert tos.slots.len >= L

  # return value:
  tos.slots[0].kind = rkNode
  tos.slots[0].node = newNodeIT(nkEmpty, n.info, sym.typ.sons[0])
  # setup parameters:
  for i in 1 .. < min(tos.slots.len, L):
    tos.slots[i].kind = rkNode
    tos.slots[i].node = setupMacroParam(n.sons[i])
  # temporary storage:
  #for i in L .. <maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos).regToNode
  if result.info.line < 0: result.info = n.info
  if cyclicTree(result): globalError(n.info, errCyclicTree)
  dec(evalMacroCounter)
  c.callsite = nil
  #debug result