summary refs log tree commit diff stats
path: root/compiler/vm.nim
blob: b2c8482875a65134b1582962d817265e54705a6f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
#
#
#           The Nimrod Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This file implements the new evaluation engine for Nimrod code.
## An instruction is 1-2 int32s in memory, it is a register based VM.

import
  strutils, ast, astalgo, msgs, vmdef, vmgen, nimsets, types, passes, unsigned,
  parser, vmdeps, idents, trees, renderer

from semfold import leValueConv, ordinalValToString

type
  PStackFrame* = ref TStackFrame
  TStackFrame* = object
    prc: PSym                 # current prc; proc that is evaluated
    slots: TNodeSeq           # parameters passed to the proc + locals;
                              # parameters come first
    next: PStackFrame         # for stacking
    comesFrom: int
    safePoints: seq[int]      # used for exception handling
                              # XXX 'break' should perform cleanup actions
                              # What does the C backend do for it?

proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int) =
  if x != nil:
    stackTraceAux(c, x.next, x.comesFrom)
    var info = c.debug[pc]
    # we now use the same format as in system/except.nim
    var s = toFilename(info)
    var line = toLineNumber(info)
    if line > 0:
      add(s, '(')
      add(s, $line)
      add(s, ')')
    if x.prc != nil:
      for k in 1..max(1, 25-s.len): add(s, ' ')
      add(s, x.prc.name.s)
    MsgWriteln(s)

proc stackTrace(c: PCtx, tos: PStackFrame, pc: int,
                msg: TMsgKind, arg = "") =
  MsgWriteln("stack trace: (most recent call last)")
  stackTraceAux(c, tos, pc)
  LocalError(c.debug[pc], msg, arg)

proc bailOut(c: PCtx; tos: PStackFrame) =
  stackTrace(c, tos, c.exceptionInstr, errUnhandledExceptionX,
             c.currentExceptionA.sons[2].strVal)

when not defined(nimComputedGoto):
  {.pragma: computedGoto.}

template inc(pc: ptr TInstr, diff = 1) =
  inc cast[TAddress](pc), TInstr.sizeof * diff

proc myreset(n: PNode) =
  when defined(system.reset): 
    var oldInfo = n.info
    reset(n[])
    n.info = oldInfo

template ensureKind(k: expr) {.immediate, dirty.} =
  if regs[ra].kind != k:
    myreset(regs[ra])
    regs[ra].kind = k

template decodeB(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  ensureKind(k)

template decodeBC(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  let rc = instr.regC
  ensureKind(k)

template declBC() {.immediate, dirty.} =
  let rb = instr.regB
  let rc = instr.regC

template decodeBImm(k: expr) {.immediate, dirty.} =
  let rb = instr.regB
  let imm = instr.regC - byteExcess
  ensureKind(k)

template decodeBx(k: expr) {.immediate, dirty.} =
  let rbx = instr.regBx - wordExcess
  ensureKind(k)

template move(a, b: expr) = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler

when false:
  proc asgnRef(x, y: PNode) =
    myreset(x)
    x.kind = y.kind
    x.typ = y.typ
    case x.kind
    of nkCharLit..nkInt64Lit: x.intVal = y.intVal
    of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
    of nkStrLit..nkTripleStrLit: x.strVal = y.strVal
    of nkIdent: x.ident = y.ident
    of nkSym: x.sym = y.sym
    else:
      if x.kind notin {nkEmpty..nkNilLit}:
        move(x.sons, y.sons)
else:
  # this seems to be the best way to model the reference semantics
  # of PNimrodNode:
  template asgnRef(x, y: expr) = x = y

proc asgnComplex(x, y: PNode) =
  myreset(x)
  x.kind = y.kind
  x.typ = y.typ
  case x.kind
  of nkCharLit..nkInt64Lit: x.intVal = y.intVal
  of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
  of nkStrLit..nkTripleStrLit: x.strVal = y.strVal
  of nkIdent: x.ident = y.ident
  of nkSym: x.sym = y.sym
  else:
    if x.kind notin {nkEmpty..nkNilLit}:
      let y = y.copyTree
      for i in countup(0, sonsLen(y) - 1): addSon(x, y.sons[i])

template getstr(a: expr): expr =
  (if a.kind == nkStrLit: a.strVal else: $chr(int(a.intVal)))

proc pushSafePoint(f: PStackFrame; pc: int) =
  if f.safePoints.isNil: f.safePoints = @[]
  f.safePoints.add(pc)

proc popSafePoint(f: PStackFrame) = discard f.safePoints.pop()

proc cleanUpOnException(c: PCtx; tos: PStackFrame; regs: TNodeSeq): int =
  let raisedType = c.currentExceptionA.typ.skipTypes(abstractPtrs)
  var f = tos
  while true:
    while f.safePoints.isNil or f.safePoints.len == 0:
      f = f.next
      if f.isNil: return -1
    var pc2 = f.safePoints[f.safePoints.high]

    var nextExceptOrFinally = -1
    if c.code[pc2].opcode == opcExcept:
      nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
      inc pc2
    while c.code[pc2].opcode == opcExcept:
      let exceptType = c.types[c.code[pc2].regBx-wordExcess].skipTypes(
                          abstractPtrs)
      if inheritanceDiff(exceptType, raisedType) <= 0:
        # mark exception as handled but keep it in B for 
        # the getCurrentException() builtin:
        c.currentExceptionB = c.currentExceptionA
        c.currentExceptionA = nil
        # execute the corresponding handler:
        return pc2
      inc pc2
    if nextExceptOrFinally >= 0:
      pc2 = nextExceptOrFinally
    if c.code[pc2].opcode == opcFinally:
      # execute the corresponding handler, but don't quit walking the stack:
      return pc2
    # not the right one:
    discard f.safePoints.pop

proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
  if f.safePoints.isNil: return -1
  for s in f.safePoints:
    var pc = s
    while c.code[pc].opcode == opcExcept:
      pc = pc + c.code[pc].regBx - wordExcess
    if c.code[pc].opcode == opcFinally:
      return pc
  return -1

proc opConv*(dest, src: PNode, typ: PType): bool =
  if typ.kind == tyString:
    if dest.kind != nkStrLit:
      myreset(dest)
      dest.kind = nkStrLit
    case src.typ.skipTypes(abstractRange).kind
    of tyEnum: 
      dest.strVal = ordinalValToString(src)
    of tyInt..tyInt64, tyUInt..tyUInt64:
      dest.strVal = $src.intVal
    of tyBool:
      dest.strVal = if src.intVal == 0: "false" else: "true"
    of tyFloat..tyFloat128:
      dest.strVal = $src.floatVal
    of tyString, tyCString:
      dest.strVal = src.strVal
    of tyChar:
      dest.strVal = $chr(src.intVal)
    else:
      internalError("cannot convert to string " & typ.typeToString)
  else:
    case skipTypes(typ, abstractRange).kind
    of tyInt..tyInt64:
      if dest.kind != nkIntLit:
        myreset(dest); dest.kind = nkIntLit
      case skipTypes(src.typ, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = system.toInt(src.floatVal)
      else:
        dest.intVal = src.intVal
      if dest.intVal < firstOrd(typ) or dest.intVal > lastOrd(typ):
        return true
    of tyUInt..tyUInt64:
      if dest.kind != nkIntLit:
        myreset(dest); dest.kind = nkIntLit
      case skipTypes(src.typ, abstractRange).kind
      of tyFloat..tyFloat64:
        dest.intVal = system.toInt(src.floatVal)
      else:
        dest.intVal = src.intVal and ((1 shl typ.size)-1)
    of tyFloat..tyFloat64:
      if dest.kind != nkFloatLit:
        myreset(dest); dest.kind = nkFloatLit
      case skipTypes(src.typ, abstractRange).kind
      of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar: 
        dest.floatVal = toFloat(src.intVal.int)
      else:
        dest.floatVal = src.floatVal
    else:
      asgnComplex(dest, src)

proc compile(c: PCtx, s: PSym): int = 
  result = vmgen.genProc(c, s)
  #c.echoCode

proc regsContents(regs: TNodeSeq) =
  for i in 0.. <regs.len:
    echo "Register ", i
    #debug regs[i]

proc rawExecute(c: PCtx, start: int, tos: PStackFrame): PNode =
  var pc = start
  var tos = tos
  var regs: TNodeSeq # alias to tos.slots for performance
  move(regs, tos.slots)
  #echo "NEW RUN ------------------------"
  while true:
    #{.computedGoto.}
    let instr = c.code[pc]
    let ra = instr.regA
    #echo "PC ", pc, " ", c.code[pc].opcode, " ra ", ra
    case instr.opcode
    of opcEof: return regs[ra]
    of opcRet:
      # XXX perform any cleanup actions
      pc = tos.comesFrom
      tos = tos.next
      let retVal = regs[0]
      if tos.isNil: 
        #echo "RET ", retVal.rendertree
        return retVal
      
      move(regs, tos.slots)
      assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
      if c.code[pc].opcode == opcIndCallAsgn:
        regs[c.code[pc].regA] = retVal
        #echo "RET2 ", retVal.rendertree, " ", c.code[pc].regA
    of opcYldYoid: assert false
    of opcYldVal: assert false
    of opcAsgnInt:
      decodeB(nkIntLit)
      regs[ra].intVal = regs[rb].intVal
    of opcAsgnStr:
      decodeB(nkStrLit)
      regs[ra].strVal = regs[rb].strVal
    of opcAsgnFloat:
      decodeB(nkFloatLit)
      regs[ra].floatVal = regs[rb].floatVal
    of opcAsgnComplex:
      asgnComplex(regs[ra], regs[instr.regB])
    of opcAsgnRef:
      asgnRef(regs[ra], regs[instr.regB])
    of opcWrGlobalRef:
      asgnRef(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
    of opcWrGlobal:
      asgnComplex(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
    of opcLdArr:
      # a = b[c]
      let rb = instr.regB
      let rc = instr.regC
      let idx = regs[rc].intVal
      # XXX what if the array is not 0-based? -> codegen should insert a sub
      regs[ra] = regs[rb].sons[idx.int]
    of opcLdStrIdx:
      decodeBC(nkIntLit)
      let idx = regs[rc].intVal
      regs[ra].intVal = regs[rb].strVal[idx.int].ord
    of opcWrArr:
      # a[b] = c
      let rb = instr.regB
      let rc = instr.regC
      let idx = regs[rb].intVal
      asgnComplex(regs[ra].sons[idx.int], regs[rc])
    of opcWrArrRef:
      let rb = instr.regB
      let rc = instr.regC
      let idx = regs[rb].intVal
      asgnRef(regs[ra].sons[idx.int], regs[rc])
    of opcLdObj:
      # a = b.c
      let rb = instr.regB
      let rc = instr.regC
      # XXX this creates a wrong alias
      #Message(c.debug[pc], warnUser, $regs[rb].len & " " & $rc)
      asgnComplex(regs[ra], regs[rb].sons[rc])
    of opcWrObj:
      # a.b = c
      let rb = instr.regB
      let rc = instr.regC
      asgnComplex(regs[ra].sons[rb], regs[rc])
    of opcWrObjRef:
      let rb = instr.regB
      let rc = instr.regC
      asgnRef(regs[ra].sons[rb], regs[rc])
    of opcWrStrIdx:
      decodeBC(nkStrLit)
      let idx = regs[rb].intVal.int
      regs[ra].strVal[idx] = chr(regs[rc].intVal)
    of opcAddr:
      decodeB(nkRefTy)
      if regs[ra].len == 0: regs[ra].add regs[rb]
      else: regs[ra].sons[0] = regs[rb]
    of opcDeref:
      # a = b[]
      let rb = instr.regB
      if regs[rb].kind == nkNilLit:
        stackTrace(c, tos, pc, errNilAccess)
      assert regs[rb].kind == nkRefTy
      regs[ra] = regs[rb].sons[0]
    of opcAddInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal + regs[rc].intVal
    of opcAddImmInt:
      decodeBImm(nkIntLit)
      regs[ra].intVal = regs[rb].intVal + imm
    of opcSubInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal - regs[rc].intVal
    of opcSubImmInt:
      decodeBImm(nkIntLit)
      regs[ra].intVal = regs[rb].intVal - imm
    of opcLenSeq:
      decodeBImm(nkIntLit)
      #assert regs[rb].kind == nkBracket
      # also used by mNLen
      regs[ra].intVal = regs[rb].len - imm
    of opcLenStr:
      decodeBImm(nkIntLit)
      assert regs[rb].kind == nkStrLit
      regs[ra].intVal = regs[rb].strVal.len - imm
    of opcIncl:
      decodeB(nkCurly)
      if not inSet(regs[ra], regs[rb]): addSon(regs[ra], copyTree(regs[rb]))
    of opcExcl:
      decodeB(nkCurly)
      var b = newNodeIT(nkCurly, regs[rb].info, regs[rb].typ)
      addSon(b, regs[rb])
      var r = diffSets(regs[ra], b)
      discardSons(regs[ra])
      for i in countup(0, sonsLen(r) - 1): addSon(regs[ra], r.sons[i])
    of opcCard:
      decodeB(nkIntLit)
      regs[ra].intVal = nimsets.cardSet(regs[rb])
    of opcMulInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal * regs[rc].intVal
    of opcDivInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
    of opcModInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
    of opcAddFloat:
      decodeBC(nkFloatLit)
      regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
    of opcSubFloat:
      decodeBC(nkFloatLit)
      regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
    of opcMulFloat:
      decodeBC(nkFloatLit)
      regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
    of opcDivFloat:
      decodeBC(nkFloatLit)
      regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
    of opcShrInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
    of opcShlInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
    of opcBitandInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
    of opcBitorInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
    of opcBitxorInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
    of opcAddu:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
    of opcSubu:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
    of opcMulu: 
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
    of opcDivu:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
    of opcModu:
      decodeBC(nkIntLit)
      regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
    of opcEqInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
    of opcLeInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
    of opcLtInt:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
    of opcEqFloat:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
    of opcLeFloat:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
    of opcLtFloat:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
    of opcLeu:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
    of opcLtu:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
    of opcEqRef:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord((regs[rb].kind == nkNilLit and
                             regs[rc].kind == nkNilLit) or
                             regs[rb].sons == regs[rc].sons)
    of opcXor:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
    of opcNot:
      decodeB(nkIntLit)
      assert regs[rb].kind == nkIntLit
      regs[ra].intVal = 1 - regs[rb].intVal
    of opcUnaryMinusInt:
      decodeB(nkIntLit)
      assert regs[rb].kind == nkIntLit
      regs[ra].intVal = -regs[rb].intVal
    of opcUnaryMinusFloat:
      decodeB(nkFloatLit)
      assert regs[rb].kind == nkFloatLit
      regs[ra].floatVal = -regs[rb].floatVal
    of opcBitnotInt:
      decodeB(nkIntLit)
      assert regs[rb].kind == nkIntLit
      regs[ra].intVal = not regs[rb].intVal
    of opcEqStr:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].strVal == regs[rc].strVal)
    of opcLeStr:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].strVal <= regs[rc].strVal)
    of opcLtStr:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(regs[rb].strVal < regs[rc].strVal)
    of opcLeSet:
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(containsSets(regs[rb], regs[rc]))
    of opcEqSet: 
      decodeBC(nkIntLit)
      regs[ra].intVal = ord(equalSets(regs[rb], regs[rc]))
    of opcLtSet:
      decodeBC(nkIntLit)
      let a = regs[rb]
      let b = regs[rc]
      regs[ra].intVal = ord(containsSets(a, b) and not equalSets(a, b))
    of opcMulSet:
      decodeBC(nkCurly)
      move(regs[ra].sons, nimsets.intersectSets(regs[rb], regs[rc]).sons)
    of opcPlusSet: 
      decodeBC(nkCurly)
      move(regs[ra].sons, nimsets.unionSets(regs[rb], regs[rc]).sons)
    of opcMinusSet:
      decodeBC(nkCurly)
      move(regs[ra].sons, nimsets.diffSets(regs[rb], regs[rc]).sons)
    of opcSymDiffSet:
      decodeBC(nkCurly)
      move(regs[ra].sons, nimsets.symdiffSets(regs[rb], regs[rc]).sons)    
    of opcConcatStr:
      decodeBC(nkStrLit)
      regs[ra].strVal = getstr(regs[rb])
      for i in rb+1..rb+rc-1:
        regs[ra].strVal.add getstr(regs[i])
    of opcAddStrCh:
      decodeB(nkStrLit)
      regs[ra].strVal.add(regs[rb].intVal.chr)
    of opcAddStrStr:
      decodeB(nkStrLit)
      regs[ra].strVal.add(regs[rb].strVal)
    of opcAddSeqElem:
      decodeB(nkBracket)
      regs[ra].add(copyTree(regs[rb]))
    of opcEcho:
      let rb = instr.regB
      for i in ra..ra+rb-1:
        #if regs[i].kind != nkStrLit: debug regs[i]
        write(stdout, regs[i].strVal)
      writeln(stdout, "")
    of opcContainsSet:
      decodeBC(nkIntLit)
      regs[ra].intVal = Ord(inSet(regs[rb], regs[rc]))
    of opcSubStr:
      decodeBC(nkStrLit)
      inc pc
      assert c.code[pc].opcode == opcSubStr
      let rd = c.code[pc].regA
      regs[ra].strVal = substr(regs[rb].strVal, regs[rc].intVal.int, 
                               regs[rd].intVal.int)
    of opcRangeChck:
      let rb = instr.regB
      let rc = instr.regC
      if not (leValueConv(regs[rb], regs[ra]) and
              leValueConv(regs[ra], regs[rc])):
        stackTrace(c, tos, pc, errGenerated,
          msgKindToString(errIllegalConvFromXtoY) % [
          "unknown type" , "unknown type"])
    of opcIndCall, opcIndCallAsgn:
      # dest = call regStart, n; where regStart = fn, arg1, ...
      let rb = instr.regB
      let rc = instr.regC
      let prc = regs[rb].sym
      let newPc = compile(c, prc)
      #echo "new pc ", newPc, " calling: ", prc.name.s
      var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
      newSeq(newFrame.slots, prc.position)
      if not isEmptyType(prc.typ.sons[0]):
        newFrame.slots[0] = getNullValue(prc.typ.sons[0], prc.info)
      # pass every parameter by var (the language definition allows this):
      for i in 1 .. rc-1:
        newFrame.slots[i] = regs[rb+i]
      # allocate the temporaries:
      for i in rc .. <prc.position:
        newFrame.slots[i] = newNode(nkEmpty)
      tos = newFrame
      move(regs, newFrame.slots)
      # -1 for the following 'inc pc'
      pc = newPc-1
    of opcTJmp:
      # jump Bx if A != 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal != 0:
        inc pc, rbx
    of opcFJmp:
      # jump Bx if A == 0
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      if regs[ra].intVal == 0:
        inc pc, rbx
    of opcJmp:
      # jump Bx
      let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
      inc pc, rbx
    of opcBranch:
      # we know the next instruction is a 'jmp':
      let branch = c.constants[instr.regBx-wordExcess]
      var cond = false
      for j in countup(0, sonsLen(branch) - 2): 
        if overlap(regs[ra], branch.sons[j]): 
          cond = true
          break
      assert c.code[pc+1].opcode == opcJmp
      inc pc 
      # we skip this instruction so that the final 'inc(pc)' skips
      # the following jump
      if cond:
        let instr2 = c.code[pc]
        let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
        inc pc, rbx
    of opcTry:
      let rbx = instr.regBx - wordExcess
      tos.pushSafePoint(pc + rbx)
    of opcExcept:
      # just skip it; it's followed by a jump;
      # we'll execute in the 'raise' handler
      discard
    of opcFinally:
      # just skip it; it's followed by the code we need to execute anyway
      tos.popSafePoint()
    of opcFinallyEnd:
      if c.currentExceptionA != nil:
        # we are in a cleanup run:
        pc = cleanupOnException(c, tos, regs)-1
        if pc < 0: 
          bailOut(c, tos)
          return
    of opcRaise:
      let raised = regs[ra]
      c.currentExceptionA = raised
      c.exceptionInstr = pc
      # -1 because of the following 'inc'
      pc = cleanupOnException(c, tos, regs) - 1
      if pc < 0:
        bailOut(c, tos)
        return
    of opcNew:
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra] = getNullValue(typ, regs[ra].info)
    of opcNewSeq:
      let typ = c.types[instr.regBx - wordExcess]
      inc pc
      ensureKind(nkBracket)
      let instr2 = c.code[pc]
      let rb = instr2.regA
      regs[ra].typ = typ
      newSeq(regs[ra].sons, rb)
      for i in 0 .. <rb:
        regs[ra].sons[i] = getNullValue(typ, regs[ra].info)
    of opcNewStr:
      decodeB(nkStrLit)
      regs[ra].strVal = newString(regs[rb].intVal.int)
    of opcLdImmInt:
      # dest = immediate value
      decodeBx(nkIntLit)
      regs[ra].intVal = rbx
    of opcLdNull:
      let typ = c.types[instr.regBx - wordExcess]
      regs[ra] = getNullValue(typ, c.debug[pc])
    of opcLdConst:
      regs[ra] = c.constants.sons[instr.regBx - wordExcess]
    of opcAsgnConst:
      let rb = instr.regBx - wordExcess
      if regs[ra].isNil:
        regs[ra] = copyTree(c.constants.sons[rb])
      else:
        asgnComplex(regs[ra], c.constants.sons[rb])
    of opcLdGlobal:
      let rb = instr.regBx - wordExcess
      if regs[ra].isNil:
        regs[ra] = copyTree(c.globals.sons[rb])
      else:
        asgnComplex(regs[ra], c.globals.sons[rb])
    of opcRepr:
      decodeB(nkStrLit)
      regs[ra].strVal = renderTree(regs[rb], {renderNoComments})
    of opcQuit:
      if c.mode in {emRepl, emStatic}:
        Message(c.debug[pc], hintQuitCalled)
        quit(int(getOrdValue(regs[ra])))
      else:
        return nil
    of opcSetLenStr:
      decodeB(nkStrLit)
      regs[ra].strVal.setLen(regs[rb].getOrdValue.int)
    of opcSetLenSeq,
        opcSwap, opcIsNil, opcOf,
        opcCast, opcReset:
      internalError(c.debug[pc], "too implement")
    of opcNBindSym:
      # trivial implementation:
      let rb = instr.regB
      regs[ra] = regs[rb].sons[1]
    of opcNChild:
      let rb = instr.regB
      let rc = instr.regC
      regs[ra] = regs[rb].sons[regs[rc].intVal.int]
    of opcNSetChild:
      let rb = instr.regB
      let rc = instr.regC
      regs[ra].sons[regs[rb].intVal.int] = regs[rc]
    of opcNAdd:
      declBC()
      regs[rb].add(regs[rc])
      regs[ra] = regs[rb]
    of opcNAddMultiple:
      declBC()
      let x = regs[rc]
      # XXX can be optimized:
      for i in 0.. <x.len: regs[rb].add(x.sons[i])
      regs[ra] = regs[rb]
    of opcNKind:
      decodeB(nkIntLit)
      regs[ra].intVal = ord(regs[rb].kind)
    of opcNIntVal:
      decodeB(nkIntLit)
      let a = regs[rb]
      case a.kind
      of nkCharLit..nkInt64Lit: regs[ra].intVal = a.intVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
    of opcNFloatVal:
      decodeB(nkFloatLit)
      let a = regs[rb]
      case a.kind
      of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
    of opcNSymbol:
      let rb = instr.regB
      if regs[rb].kind != nkSym: 
        stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
      regs[ra] = regs[rb]
    of opcNIdent:
      let rb = instr.regB
      if regs[rb].kind != nkIdent: 
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
      regs[ra] = regs[rb]
    of opcNGetType:
      InternalError(c.debug[pc], "unknown opcode " & $instr.opcode)      
    of opcNStrVal:
      decodeB(nkStrLit)
      let a = regs[rb]
      case a.kind
      of nkStrLit..nkTripleStrLit: regs[ra].strVal = a.strVal
      else: stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
    of opcSlurp:
      decodeB(nkStrLit)
      regs[ra].strVal = opSlurp(regs[rb].strVal, c.debug[pc], c.module)
    of opcGorge:
      decodeBC(nkStrLit)
      regs[ra].strVal = opGorge(regs[rb].strVal, regs[rc].strVal)
    of opcNError:
      stackTrace(c, tos, pc, errUser, regs[ra].strVal)
    of opcNWarning:
      Message(c.debug[pc], warnUser, regs[ra].strVal)
    of opcNHint:
      Message(c.debug[pc], hintUser, regs[ra].strVal)
    of opcParseExprToAst:
      let rb = instr.regB
      # c.debug[pc].line.int - countLines(regs[rb].strVal) ?
      let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
                            c.debug[pc].line.int)
      if sonsLen(ast) != 1:
        GlobalError(c.debug[pc], errExprExpected, "multiple statements")
      regs[ra] = ast.sons[0]
    of opcParseStmtToAst:
      let rb = instr.regB
      let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
                            c.debug[pc].line.int)
      regs[ra] = ast
    of opcCallSite:
      if c.callsite != nil: regs[ra] = c.callsite
      else: stackTrace(c, tos, pc, errFieldXNotFound, "callsite")
    of opcNLineInfo:
      let rb = instr.regB
      let n = regs[rb]
      regs[ra] = newStrNode(nkStrLit, n.info.toFileLineCol)
      regs[ra].info = c.debug[pc]
    of opcEqIdent:
      decodeBC(nkIntLit)
      if regs[rb].kind == nkIdent and regs[rc].kind == nkIdent:
        regs[ra].intVal = ord(regs[rb].ident.id == regs[rc].ident.id)
      else:
        regs[ra].intVal = 0
    of opcStrToIdent:
      let rb = instr.regB
      if regs[rb].kind notin {nkStrLit..nkTripleStrLit}:
        stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
      else:
        regs[ra] = newNodeI(nkIdent, c.debug[pc])
        regs[ra].ident = getIdent(regs[rb].strVal)
    of opcIdentToStr:
      let rb = instr.regB
      let a = regs[rb]
      regs[ra] = newNodeI(nkStrLit, c.debug[pc])
      if a.kind == nkSym:
        regs[ra].strVal = a.sym.name.s
      elif a.kind == nkIdent:
        regs[ra].strVal = a.ident.s
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
    of opcSetType:
      regs[ra].typ = c.types[instr.regBx - wordExcess]
    of opcConv:
      let rb = instr.regB
      inc pc
      let typ = c.types[c.code[pc].regBx - wordExcess]
      if opConv(regs[ra], regs[rb], typ):
        stackTrace(c, tos, pc, errGenerated,
          msgKindToString(errIllegalConvFromXtoY) % [
          "unknown type" , "unknown type"])
    of opcNSetIntVal:
      let rb = instr.regB
      if regs[ra].kind in {nkCharLit..nkInt64Lit} and 
         regs[rb].kind in {nkCharLit..nkInt64Lit}:
        regs[ra].intVal = regs[rb].intVal
      else: 
        stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
    of opcNSetFloatVal:
      let rb = instr.regB
      if regs[ra].kind in {nkFloatLit..nkFloat64Lit} and 
         regs[rb].kind in {nkFloatLit..nkFloat64Lit}:
        regs[ra].floatVal = regs[rb].floatVal
      else: 
        stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
    of opcNSetSymbol:
      let rb = instr.regB
      if regs[ra].kind == nkSym and regs[rb].kind == nkSym:
        regs[ra].sym = regs[rb].sym
      else: 
        stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
    of opcNSetIdent:
      let rb = instr.regB
      if regs[ra].kind == nkIdent and regs[rb].kind == nkIdent:
        regs[ra].ident = regs[rb].ident
      else: 
        stackTrace(c, tos, pc, errFieldXNotFound, "ident")
    of opcNSetType:
      let b = regs[instr.regB]
      InternalAssert b.kind == nkSym and b.sym.kind == skType
      regs[ra].typ = b.sym.typ
    of opcNSetStrVal:
      let rb = instr.regB
      if regs[ra].kind in {nkStrLit..nkTripleStrLit} and 
         regs[rb].kind in {nkStrLit..nkTripleStrLit}:
        regs[ra].strVal = regs[rb].strVal
      else:
        stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
    of opcNNewNimNode:
      let rb = instr.regB
      let rc = instr.regC
      var k = regs[rb].intVal
      if k < 0 or k > ord(high(TNodeKind)): 
        internalError(c.debug[pc],
          "request to create a NimNode with invalid kind")
      regs[ra] = newNodeI(TNodeKind(int(k)), 
        if regs[rc].kind == nkNilLit: c.debug[pc] else: regs[rc].info)
    of opcNCopyNimNode:
      let rb = instr.regB
      regs[ra] = copyNode(regs[rb])
    of opcNCopyNimTree:
      let rb = instr.regB
      regs[ra] = copyTree(regs[rb])
    of opcNDel:
      let rb = instr.regB
      let rc = instr.regC
      for i in countup(0, regs[rc].intVal.int-1):
        delSon(regs[ra], regs[rb].intVal.int)
    of opcGenSym:
      let k = regs[instr.regB].intVal
      let b = regs[instr.regC]
      let name = if b.strVal.len == 0: ":tmp" else: b.strVal
      if k < 0 or k > ord(high(TSymKind)):
        internalError(c.debug[pc], "request to create symbol of invalid kind")
      regs[ra] = newSymNode(newSym(k.TSymKind, name.getIdent, c.module,
                            c.debug[pc]))
      incl(regs[ra].sym.flags, sfGenSym)
    of opcTypeTrait:
      # XXX only supports 'name' for now; we can use regC to encode the
      # type trait operation
      decodeB(nkStrLit)
      let typ = regs[rb].sym.typ.skipTypes({tyTypeDesc})
      regs[ra].strVal = typ.typeToString(preferExported)
    inc pc

proc execute(c: PCtx, start: int): PNode =
  var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos)

proc evalStmt*(c: PCtx, n: PNode) =
  let start = genStmt(c, n)
  # execute new instructions; this redundant opcEof check saves us lots
  # of allocations in 'execute':
  if c.code[start].opcode != opcEof:
    discard execute(c, start)

proc evalExpr*(c: PCtx, n: PNode): PNode =
  let start = genExpr(c, n)
  assert c.code[start].opcode != opcEof
  result = execute(c, start)

# for now we share the 'globals' environment. XXX Coming soon: An API for
# storing&loading the 'globals' environment to get what a component system
# requires.
var
  globalCtx: PCtx

proc setupGlobalCtx(module: PSym) =
  if globalCtx.isNil: globalCtx = newCtx(module)
  else: refresh(globalCtx, module)

proc myOpen(module: PSym): PPassContext =
  #var c = newEvalContext(module, emRepl)
  #c.features = {allowCast, allowFFI, allowInfiniteLoops}
  #pushStackFrame(c, newStackFrame())

  # XXX produce a new 'globals' environment here:
  setupGlobalCtx(module)
  result = globalCtx

var oldErrorCount: int

proc myProcess(c: PPassContext, n: PNode): PNode =
  # don't eval errornous code:
  if oldErrorCount == msgs.gErrorCounter:
    evalStmt(PCtx(c), n)
    result = emptyNode
  else:
    result = n
  oldErrorCount = msgs.gErrorCounter

const evalPass* = makePass(myOpen, nil, myProcess, myProcess)

proc evalConstExprAux(module, prc: PSym, n: PNode, mode: TEvalMode): PNode =
  setupGlobalCtx(module)
  var c = globalCtx
  c.mode = mode
  let start = genExpr(c, n)
  assert c.code[start].opcode != opcEof
  var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
  newSeq(tos.slots, c.prc.maxSlots)
  for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos)

proc evalConstExpr*(module: PSym, e: PNode): PNode = 
  result = evalConstExprAux(module, nil, e, emConst)

proc evalStaticExpr*(module: PSym, e: PNode, prc: PSym): PNode = 
  result = evalConstExprAux(module, prc, e, emStatic)

proc setupMacroParam(x: PNode): PNode =
  result = x
  if result.kind in {nkHiddenSubConv, nkHiddenStdConv}: result = result.sons[1]

var evalMacroCounter: int

proc evalMacroCall*(module: PSym, n, nOrig: PNode, sym: PSym): PNode =
  # XXX GlobalError() is ugly here, but I don't know a better solution for now
  inc(evalMacroCounter)
  if evalMacroCounter > 100:
    GlobalError(n.info, errTemplateInstantiationTooNested)
  setupGlobalCtx(module)
  var c = globalCtx

  c.callsite = nOrig
  let start = genProc(c, sym)

  var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
  let maxSlots = sym.position
  newSeq(tos.slots, maxSlots)
  # setup arguments:
  var L = n.safeLen
  if L == 0: L = 1
  InternalAssert tos.slots.len >= L
  # return value:
  tos.slots[0] = newNodeIT(nkNilLit, n.info, sym.typ.sons[0])
  # setup parameters:
  for i in 1 .. < L: tos.slots[i] = setupMacroParam(n.sons[i])
  # temporary storage:
  for i in L .. <maxSlots: tos.slots[i] = newNode(nkEmpty)
  result = rawExecute(c, start, tos)
  if cyclicTree(result): GlobalError(n.info, errCyclicTree)
  dec(evalMacroCounter)
  c.callsite = nil