1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
#
#
# The Nimrod Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the new evaluation engine for Nimrod code.
## An instruction is 1-2 int32s in memory, it is a register based VM.
import
strutils, ast, astalgo, msgs, vmdef, vmgen, nimsets, types, passes, unsigned,
parser, vmdeps, idents, trees, renderer
from semfold import leValueConv, ordinalValToString
type
PStackFrame* = ref TStackFrame
TStackFrame* = object
prc: PSym # current prc; proc that is evaluated
slots: TNodeSeq # parameters passed to the proc + locals;
# parameters come first
next: PStackFrame # for stacking
comesFrom: int
safePoints: seq[int] # used for exception handling
# XXX 'break' should perform cleanup actions
# What does the C backend do for it?
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int) =
if x != nil:
stackTraceAux(c, x.next, x.comesFrom)
var info = c.debug[pc]
# we now use the same format as in system/except.nim
var s = toFilename(info)
var line = toLineNumber(info)
if line > 0:
add(s, '(')
add(s, $line)
add(s, ')')
if x.prc != nil:
for k in 1..max(1, 25-s.len): add(s, ' ')
add(s, x.prc.name.s)
MsgWriteln(s)
proc stackTrace(c: PCtx, tos: PStackFrame, pc: int,
msg: TMsgKind, arg = "") =
MsgWriteln("stack trace: (most recent call last)")
stackTraceAux(c, tos, pc)
LocalError(c.debug[pc], msg, arg)
proc bailOut(c: PCtx; tos: PStackFrame) =
stackTrace(c, tos, c.exceptionInstr, errUnhandledExceptionX,
c.currentExceptionA.sons[2].strVal)
when not defined(nimComputedGoto):
{.pragma: computedGoto.}
template inc(pc: ptr TInstr, diff = 1) =
inc cast[TAddress](pc), TInstr.sizeof * diff
proc myreset(n: PNode) =
when defined(system.reset):
var oldInfo = n.info
reset(n[])
n.info = oldInfo
template ensureKind(k: expr) {.immediate, dirty.} =
if regs[ra].kind != k:
myreset(regs[ra])
regs[ra].kind = k
template decodeB(k: expr) {.immediate, dirty.} =
let rb = instr.regB
ensureKind(k)
template decodeBC(k: expr) {.immediate, dirty.} =
let rb = instr.regB
let rc = instr.regC
ensureKind(k)
template declBC() {.immediate, dirty.} =
let rb = instr.regB
let rc = instr.regC
template decodeBImm(k: expr) {.immediate, dirty.} =
let rb = instr.regB
let imm = instr.regC - byteExcess
ensureKind(k)
template decodeBx(k: expr) {.immediate, dirty.} =
let rbx = instr.regBx - wordExcess
ensureKind(k)
template move(a, b: expr) = system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler
when false:
proc asgnRef(x, y: PNode) =
myreset(x)
x.kind = y.kind
x.typ = y.typ
case x.kind
of nkCharLit..nkInt64Lit: x.intVal = y.intVal
of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
of nkStrLit..nkTripleStrLit: x.strVal = y.strVal
of nkIdent: x.ident = y.ident
of nkSym: x.sym = y.sym
else:
if x.kind notin {nkEmpty..nkNilLit}:
move(x.sons, y.sons)
else:
# this seems to be the best way to model the reference semantics
# of PNimrodNode:
template asgnRef(x, y: expr) = x = y
proc asgnComplex(x, y: PNode) =
myreset(x)
x.kind = y.kind
x.typ = y.typ
case x.kind
of nkCharLit..nkInt64Lit: x.intVal = y.intVal
of nkFloatLit..nkFloat64Lit: x.floatVal = y.floatVal
of nkStrLit..nkTripleStrLit: x.strVal = y.strVal
of nkIdent: x.ident = y.ident
of nkSym: x.sym = y.sym
else:
if x.kind notin {nkEmpty..nkNilLit}:
let y = y.copyTree
for i in countup(0, sonsLen(y) - 1): addSon(x, y.sons[i])
template getstr(a: expr): expr =
(if a.kind == nkStrLit: a.strVal else: $chr(int(a.intVal)))
proc pushSafePoint(f: PStackFrame; pc: int) =
if f.safePoints.isNil: f.safePoints = @[]
f.safePoints.add(pc)
proc popSafePoint(f: PStackFrame) = discard f.safePoints.pop()
proc cleanUpOnException(c: PCtx; tos: PStackFrame; regs: TNodeSeq): int =
let raisedType = c.currentExceptionA.typ.skipTypes(abstractPtrs)
var f = tos
while true:
while f.safePoints.isNil or f.safePoints.len == 0:
f = f.next
if f.isNil: return -1
var pc2 = f.safePoints[f.safePoints.high]
var nextExceptOrFinally = -1
if c.code[pc2].opcode == opcExcept:
nextExceptOrFinally = pc2 + c.code[pc2].regBx - wordExcess
inc pc2
while c.code[pc2].opcode == opcExcept:
let exceptType = c.types[c.code[pc2].regBx-wordExcess].skipTypes(
abstractPtrs)
if inheritanceDiff(exceptType, raisedType) <= 0:
# mark exception as handled but keep it in B for
# the getCurrentException() builtin:
c.currentExceptionB = c.currentExceptionA
c.currentExceptionA = nil
# execute the corresponding handler:
return pc2
inc pc2
if nextExceptOrFinally >= 0:
pc2 = nextExceptOrFinally
if c.code[pc2].opcode == opcFinally:
# execute the corresponding handler, but don't quit walking the stack:
return pc2
# not the right one:
discard f.safePoints.pop
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
if f.safePoints.isNil: return -1
for s in f.safePoints:
var pc = s
while c.code[pc].opcode == opcExcept:
pc = pc + c.code[pc].regBx - wordExcess
if c.code[pc].opcode == opcFinally:
return pc
return -1
proc opConv*(dest, src: PNode, typ: PType): bool =
if typ.kind == tyString:
if dest.kind != nkStrLit:
myreset(dest)
dest.kind = nkStrLit
case src.typ.skipTypes(abstractRange).kind
of tyEnum:
dest.strVal = ordinalValToString(src)
of tyInt..tyInt64, tyUInt..tyUInt64:
dest.strVal = $src.intVal
of tyBool:
dest.strVal = if src.intVal == 0: "false" else: "true"
of tyFloat..tyFloat128:
dest.strVal = $src.floatVal
of tyString, tyCString:
dest.strVal = src.strVal
of tyChar:
dest.strVal = $chr(src.intVal)
else:
internalError("cannot convert to string " & typ.typeToString)
else:
case skipTypes(typ, abstractRange).kind
of tyInt..tyInt64:
if dest.kind != nkIntLit:
myreset(dest); dest.kind = nkIntLit
case skipTypes(src.typ, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = system.toInt(src.floatVal)
else:
dest.intVal = src.intVal
if dest.intVal < firstOrd(typ) or dest.intVal > lastOrd(typ):
return true
of tyUInt..tyUInt64:
if dest.kind != nkIntLit:
myreset(dest); dest.kind = nkIntLit
case skipTypes(src.typ, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = system.toInt(src.floatVal)
else:
dest.intVal = src.intVal and ((1 shl typ.size)-1)
of tyFloat..tyFloat64:
if dest.kind != nkFloatLit:
myreset(dest); dest.kind = nkFloatLit
case skipTypes(src.typ, abstractRange).kind
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
dest.floatVal = toFloat(src.intVal.int)
else:
dest.floatVal = src.floatVal
else:
asgnComplex(dest, src)
proc compile(c: PCtx, s: PSym): int =
result = vmgen.genProc(c, s)
#c.echoCode
proc regsContents(regs: TNodeSeq) =
for i in 0.. <regs.len:
echo "Register ", i
#debug regs[i]
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): PNode =
var pc = start
var tos = tos
var regs: TNodeSeq # alias to tos.slots for performance
move(regs, tos.slots)
#echo "NEW RUN ------------------------"
while true:
#{.computedGoto.}
let instr = c.code[pc]
let ra = instr.regA
#echo "PC ", pc, " ", c.code[pc].opcode, " ra ", ra
case instr.opcode
of opcEof: return regs[ra]
of opcRet:
# XXX perform any cleanup actions
pc = tos.comesFrom
tos = tos.next
let retVal = regs[0]
if tos.isNil:
#echo "RET ", retVal.rendertree
return retVal
move(regs, tos.slots)
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
if c.code[pc].opcode == opcIndCallAsgn:
regs[c.code[pc].regA] = retVal
#echo "RET2 ", retVal.rendertree, " ", c.code[pc].regA
of opcYldYoid: assert false
of opcYldVal: assert false
of opcAsgnInt:
decodeB(nkIntLit)
regs[ra].intVal = regs[rb].intVal
of opcAsgnStr:
decodeB(nkStrLit)
regs[ra].strVal = regs[rb].strVal
of opcAsgnFloat:
decodeB(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal
of opcAsgnComplex:
asgnComplex(regs[ra], regs[instr.regB])
of opcAsgnRef:
asgnRef(regs[ra], regs[instr.regB])
of opcWrGlobalRef:
asgnRef(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
of opcWrGlobal:
asgnComplex(c.globals.sons[instr.regBx-wordExcess-1], regs[ra])
of opcLdArr:
# a = b[c]
let rb = instr.regB
let rc = instr.regC
let idx = regs[rc].intVal
# XXX what if the array is not 0-based? -> codegen should insert a sub
regs[ra] = regs[rb].sons[idx.int]
of opcLdStrIdx:
decodeBC(nkIntLit)
let idx = regs[rc].intVal
regs[ra].intVal = regs[rb].strVal[idx.int].ord
of opcWrArr:
# a[b] = c
let rb = instr.regB
let rc = instr.regC
let idx = regs[rb].intVal
asgnComplex(regs[ra].sons[idx.int], regs[rc])
of opcWrArrRef:
let rb = instr.regB
let rc = instr.regC
let idx = regs[rb].intVal
asgnRef(regs[ra].sons[idx.int], regs[rc])
of opcLdObj:
# a = b.c
let rb = instr.regB
let rc = instr.regC
# XXX this creates a wrong alias
#Message(c.debug[pc], warnUser, $regs[rb].len & " " & $rc)
asgnComplex(regs[ra], regs[rb].sons[rc])
of opcWrObj:
# a.b = c
let rb = instr.regB
let rc = instr.regC
asgnComplex(regs[ra].sons[rb], regs[rc])
of opcWrObjRef:
let rb = instr.regB
let rc = instr.regC
asgnRef(regs[ra].sons[rb], regs[rc])
of opcWrStrIdx:
decodeBC(nkStrLit)
let idx = regs[rb].intVal.int
regs[ra].strVal[idx] = chr(regs[rc].intVal)
of opcAddr:
decodeB(nkRefTy)
if regs[ra].len == 0: regs[ra].add regs[rb]
else: regs[ra].sons[0] = regs[rb]
of opcDeref:
# a = b[]
let rb = instr.regB
if regs[rb].kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
assert regs[rb].kind == nkRefTy
regs[ra] = regs[rb].sons[0]
of opcAddInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal + regs[rc].intVal
of opcAddImmInt:
decodeBImm(nkIntLit)
regs[ra].intVal = regs[rb].intVal + imm
of opcSubInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal - regs[rc].intVal
of opcSubImmInt:
decodeBImm(nkIntLit)
regs[ra].intVal = regs[rb].intVal - imm
of opcLenSeq:
decodeBImm(nkIntLit)
#assert regs[rb].kind == nkBracket
# also used by mNLen
regs[ra].intVal = regs[rb].len - imm
of opcLenStr:
decodeBImm(nkIntLit)
assert regs[rb].kind == nkStrLit
regs[ra].intVal = regs[rb].strVal.len - imm
of opcIncl:
decodeB(nkCurly)
if not inSet(regs[ra], regs[rb]): addSon(regs[ra], copyTree(regs[rb]))
of opcExcl:
decodeB(nkCurly)
var b = newNodeIT(nkCurly, regs[rb].info, regs[rb].typ)
addSon(b, regs[rb])
var r = diffSets(regs[ra], b)
discardSons(regs[ra])
for i in countup(0, sonsLen(r) - 1): addSon(regs[ra], r.sons[i])
of opcCard:
decodeB(nkIntLit)
regs[ra].intVal = nimsets.cardSet(regs[rb])
of opcMulInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal * regs[rc].intVal
of opcDivInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
of opcModInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
of opcAddFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
of opcSubFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
of opcMulFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
of opcDivFloat:
decodeBC(nkFloatLit)
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
of opcShrInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal
of opcShlInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
of opcBitandInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
of opcBitorInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
of opcBitxorInt:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
of opcAddu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
of opcSubu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
of opcMulu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
of opcDivu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
of opcModu:
decodeBC(nkIntLit)
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
of opcEqInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
of opcLeInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
of opcLtInt:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
of opcEqFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
of opcLeFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
of opcLtFloat:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
of opcLeu:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
of opcLtu:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
of opcEqRef:
decodeBC(nkIntLit)
regs[ra].intVal = ord((regs[rb].kind == nkNilLit and
regs[rc].kind == nkNilLit) or
regs[rb].sons == regs[rc].sons)
of opcXor:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
of opcNot:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = 1 - regs[rb].intVal
of opcUnaryMinusInt:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = -regs[rb].intVal
of opcUnaryMinusFloat:
decodeB(nkFloatLit)
assert regs[rb].kind == nkFloatLit
regs[ra].floatVal = -regs[rb].floatVal
of opcBitnotInt:
decodeB(nkIntLit)
assert regs[rb].kind == nkIntLit
regs[ra].intVal = not regs[rb].intVal
of opcEqStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal == regs[rc].strVal)
of opcLeStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal <= regs[rc].strVal)
of opcLtStr:
decodeBC(nkIntLit)
regs[ra].intVal = ord(regs[rb].strVal < regs[rc].strVal)
of opcLeSet:
decodeBC(nkIntLit)
regs[ra].intVal = ord(containsSets(regs[rb], regs[rc]))
of opcEqSet:
decodeBC(nkIntLit)
regs[ra].intVal = ord(equalSets(regs[rb], regs[rc]))
of opcLtSet:
decodeBC(nkIntLit)
let a = regs[rb]
let b = regs[rc]
regs[ra].intVal = ord(containsSets(a, b) and not equalSets(a, b))
of opcMulSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.intersectSets(regs[rb], regs[rc]).sons)
of opcPlusSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.unionSets(regs[rb], regs[rc]).sons)
of opcMinusSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.diffSets(regs[rb], regs[rc]).sons)
of opcSymDiffSet:
decodeBC(nkCurly)
move(regs[ra].sons, nimsets.symdiffSets(regs[rb], regs[rc]).sons)
of opcConcatStr:
decodeBC(nkStrLit)
regs[ra].strVal = getstr(regs[rb])
for i in rb+1..rb+rc-1:
regs[ra].strVal.add getstr(regs[i])
of opcAddStrCh:
decodeB(nkStrLit)
regs[ra].strVal.add(regs[rb].intVal.chr)
of opcAddStrStr:
decodeB(nkStrLit)
regs[ra].strVal.add(regs[rb].strVal)
of opcAddSeqElem:
decodeB(nkBracket)
regs[ra].add(copyTree(regs[rb]))
of opcEcho:
let rb = instr.regB
for i in ra..ra+rb-1:
#if regs[i].kind != nkStrLit: debug regs[i]
write(stdout, regs[i].strVal)
writeln(stdout, "")
of opcContainsSet:
decodeBC(nkIntLit)
regs[ra].intVal = Ord(inSet(regs[rb], regs[rc]))
of opcSubStr:
decodeBC(nkStrLit)
inc pc
assert c.code[pc].opcode == opcSubStr
let rd = c.code[pc].regA
regs[ra].strVal = substr(regs[rb].strVal, regs[rc].intVal.int,
regs[rd].intVal.int)
of opcRangeChck:
let rb = instr.regB
let rc = instr.regC
if not (leValueConv(regs[rb], regs[ra]) and
leValueConv(regs[ra], regs[rc])):
stackTrace(c, tos, pc, errGenerated,
msgKindToString(errIllegalConvFromXtoY) % [
"unknown type" , "unknown type"])
of opcIndCall, opcIndCallAsgn:
# dest = call regStart, n; where regStart = fn, arg1, ...
let rb = instr.regB
let rc = instr.regC
let prc = regs[rb].sym
let newPc = compile(c, prc)
#echo "new pc ", newPc, " calling: ", prc.name.s
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
newSeq(newFrame.slots, prc.position)
if not isEmptyType(prc.typ.sons[0]):
newFrame.slots[0] = getNullValue(prc.typ.sons[0], prc.info)
# pass every parameter by var (the language definition allows this):
for i in 1 .. rc-1:
newFrame.slots[i] = regs[rb+i]
# allocate the temporaries:
for i in rc .. <prc.position:
newFrame.slots[i] = newNode(nkEmpty)
tos = newFrame
move(regs, newFrame.slots)
# -1 for the following 'inc pc'
pc = newPc-1
of opcTJmp:
# jump Bx if A != 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal != 0:
inc pc, rbx
of opcFJmp:
# jump Bx if A == 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal == 0:
inc pc, rbx
of opcJmp:
# jump Bx
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcBranch:
# we know the next instruction is a 'jmp':
let branch = c.constants[instr.regBx-wordExcess]
var cond = false
for j in countup(0, sonsLen(branch) - 2):
if overlap(regs[ra], branch.sons[j]):
cond = true
break
assert c.code[pc+1].opcode == opcJmp
inc pc
# we skip this instruction so that the final 'inc(pc)' skips
# the following jump
if cond:
let instr2 = c.code[pc]
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcTry:
let rbx = instr.regBx - wordExcess
tos.pushSafePoint(pc + rbx)
of opcExcept:
# just skip it; it's followed by a jump;
# we'll execute in the 'raise' handler
discard
of opcFinally:
# just skip it; it's followed by the code we need to execute anyway
tos.popSafePoint()
of opcFinallyEnd:
if c.currentExceptionA != nil:
# we are in a cleanup run:
pc = cleanupOnException(c, tos, regs)-1
if pc < 0:
bailOut(c, tos)
return
of opcRaise:
let raised = regs[ra]
c.currentExceptionA = raised
c.exceptionInstr = pc
# -1 because of the following 'inc'
pc = cleanupOnException(c, tos, regs) - 1
if pc < 0:
bailOut(c, tos)
return
of opcNew:
let typ = c.types[instr.regBx - wordExcess]
regs[ra] = getNullValue(typ, regs[ra].info)
of opcNewSeq:
let typ = c.types[instr.regBx - wordExcess]
inc pc
ensureKind(nkBracket)
let instr2 = c.code[pc]
let rb = instr2.regA
regs[ra].typ = typ
newSeq(regs[ra].sons, rb)
for i in 0 .. <rb:
regs[ra].sons[i] = getNullValue(typ, regs[ra].info)
of opcNewStr:
decodeB(nkStrLit)
regs[ra].strVal = newString(regs[rb].intVal.int)
of opcLdImmInt:
# dest = immediate value
decodeBx(nkIntLit)
regs[ra].intVal = rbx
of opcLdNull:
let typ = c.types[instr.regBx - wordExcess]
regs[ra] = getNullValue(typ, c.debug[pc])
of opcLdConst:
regs[ra] = c.constants.sons[instr.regBx - wordExcess]
of opcAsgnConst:
let rb = instr.regBx - wordExcess
if regs[ra].isNil:
regs[ra] = copyTree(c.constants.sons[rb])
else:
asgnComplex(regs[ra], c.constants.sons[rb])
of opcLdGlobal:
let rb = instr.regBx - wordExcess
if regs[ra].isNil:
regs[ra] = copyTree(c.globals.sons[rb])
else:
asgnComplex(regs[ra], c.globals.sons[rb])
of opcRepr:
decodeB(nkStrLit)
regs[ra].strVal = renderTree(regs[rb], {renderNoComments})
of opcQuit:
if c.mode in {emRepl, emStatic}:
Message(c.debug[pc], hintQuitCalled)
quit(int(getOrdValue(regs[ra])))
else:
return nil
of opcSetLenStr:
decodeB(nkStrLit)
regs[ra].strVal.setLen(regs[rb].getOrdValue.int)
of opcSetLenSeq,
opcSwap, opcIsNil, opcOf,
opcCast, opcReset:
internalError(c.debug[pc], "too implement")
of opcNBindSym:
# trivial implementation:
let rb = instr.regB
regs[ra] = regs[rb].sons[1]
of opcNChild:
let rb = instr.regB
let rc = instr.regC
regs[ra] = regs[rb].sons[regs[rc].intVal.int]
of opcNSetChild:
let rb = instr.regB
let rc = instr.regC
regs[ra].sons[regs[rb].intVal.int] = regs[rc]
of opcNAdd:
declBC()
regs[rb].add(regs[rc])
regs[ra] = regs[rb]
of opcNAddMultiple:
declBC()
let x = regs[rc]
# XXX can be optimized:
for i in 0.. <x.len: regs[rb].add(x.sons[i])
regs[ra] = regs[rb]
of opcNKind:
decodeB(nkIntLit)
regs[ra].intVal = ord(regs[rb].kind)
of opcNIntVal:
decodeB(nkIntLit)
let a = regs[rb]
case a.kind
of nkCharLit..nkInt64Lit: regs[ra].intVal = a.intVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
of opcNFloatVal:
decodeB(nkFloatLit)
let a = regs[rb]
case a.kind
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
of opcNSymbol:
let rb = instr.regB
if regs[rb].kind != nkSym:
stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
regs[ra] = regs[rb]
of opcNIdent:
let rb = instr.regB
if regs[rb].kind != nkIdent:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
regs[ra] = regs[rb]
of opcNGetType:
InternalError(c.debug[pc], "unknown opcode " & $instr.opcode)
of opcNStrVal:
decodeB(nkStrLit)
let a = regs[rb]
case a.kind
of nkStrLit..nkTripleStrLit: regs[ra].strVal = a.strVal
else: stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
of opcSlurp:
decodeB(nkStrLit)
regs[ra].strVal = opSlurp(regs[rb].strVal, c.debug[pc], c.module)
of opcGorge:
decodeBC(nkStrLit)
regs[ra].strVal = opGorge(regs[rb].strVal, regs[rc].strVal)
of opcNError:
stackTrace(c, tos, pc, errUser, regs[ra].strVal)
of opcNWarning:
Message(c.debug[pc], warnUser, regs[ra].strVal)
of opcNHint:
Message(c.debug[pc], hintUser, regs[ra].strVal)
of opcParseExprToAst:
let rb = instr.regB
# c.debug[pc].line.int - countLines(regs[rb].strVal) ?
let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
c.debug[pc].line.int)
if sonsLen(ast) != 1:
GlobalError(c.debug[pc], errExprExpected, "multiple statements")
regs[ra] = ast.sons[0]
of opcParseStmtToAst:
let rb = instr.regB
let ast = parseString(regs[rb].strVal, c.debug[pc].toFilename,
c.debug[pc].line.int)
regs[ra] = ast
of opcCallSite:
if c.callsite != nil: regs[ra] = c.callsite
else: stackTrace(c, tos, pc, errFieldXNotFound, "callsite")
of opcNLineInfo:
let rb = instr.regB
let n = regs[rb]
regs[ra] = newStrNode(nkStrLit, n.info.toFileLineCol)
regs[ra].info = c.debug[pc]
of opcEqIdent:
decodeBC(nkIntLit)
if regs[rb].kind == nkIdent and regs[rc].kind == nkIdent:
regs[ra].intVal = ord(regs[rb].ident.id == regs[rc].ident.id)
else:
regs[ra].intVal = 0
of opcStrToIdent:
let rb = instr.regB
if regs[rb].kind notin {nkStrLit..nkTripleStrLit}:
stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
else:
regs[ra] = newNodeI(nkIdent, c.debug[pc])
regs[ra].ident = getIdent(regs[rb].strVal)
of opcIdentToStr:
let rb = instr.regB
let a = regs[rb]
regs[ra] = newNodeI(nkStrLit, c.debug[pc])
if a.kind == nkSym:
regs[ra].strVal = a.sym.name.s
elif a.kind == nkIdent:
regs[ra].strVal = a.ident.s
else:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
of opcSetType:
regs[ra].typ = c.types[instr.regBx - wordExcess]
of opcConv:
let rb = instr.regB
inc pc
let typ = c.types[c.code[pc].regBx - wordExcess]
if opConv(regs[ra], regs[rb], typ):
stackTrace(c, tos, pc, errGenerated,
msgKindToString(errIllegalConvFromXtoY) % [
"unknown type" , "unknown type"])
of opcNSetIntVal:
let rb = instr.regB
if regs[ra].kind in {nkCharLit..nkInt64Lit} and
regs[rb].kind in {nkCharLit..nkInt64Lit}:
regs[ra].intVal = regs[rb].intVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "intVal")
of opcNSetFloatVal:
let rb = instr.regB
if regs[ra].kind in {nkFloatLit..nkFloat64Lit} and
regs[rb].kind in {nkFloatLit..nkFloat64Lit}:
regs[ra].floatVal = regs[rb].floatVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "floatVal")
of opcNSetSymbol:
let rb = instr.regB
if regs[ra].kind == nkSym and regs[rb].kind == nkSym:
regs[ra].sym = regs[rb].sym
else:
stackTrace(c, tos, pc, errFieldXNotFound, "symbol")
of opcNSetIdent:
let rb = instr.regB
if regs[ra].kind == nkIdent and regs[rb].kind == nkIdent:
regs[ra].ident = regs[rb].ident
else:
stackTrace(c, tos, pc, errFieldXNotFound, "ident")
of opcNSetType:
let b = regs[instr.regB]
InternalAssert b.kind == nkSym and b.sym.kind == skType
regs[ra].typ = b.sym.typ
of opcNSetStrVal:
let rb = instr.regB
if regs[ra].kind in {nkStrLit..nkTripleStrLit} and
regs[rb].kind in {nkStrLit..nkTripleStrLit}:
regs[ra].strVal = regs[rb].strVal
else:
stackTrace(c, tos, pc, errFieldXNotFound, "strVal")
of opcNNewNimNode:
let rb = instr.regB
let rc = instr.regC
var k = regs[rb].intVal
if k < 0 or k > ord(high(TNodeKind)):
internalError(c.debug[pc],
"request to create a NimNode with invalid kind")
regs[ra] = newNodeI(TNodeKind(int(k)),
if regs[rc].kind == nkNilLit: c.debug[pc] else: regs[rc].info)
of opcNCopyNimNode:
let rb = instr.regB
regs[ra] = copyNode(regs[rb])
of opcNCopyNimTree:
let rb = instr.regB
regs[ra] = copyTree(regs[rb])
of opcNDel:
let rb = instr.regB
let rc = instr.regC
for i in countup(0, regs[rc].intVal.int-1):
delSon(regs[ra], regs[rb].intVal.int)
of opcGenSym:
let k = regs[instr.regB].intVal
let b = regs[instr.regC]
let name = if b.strVal.len == 0: ":tmp" else: b.strVal
if k < 0 or k > ord(high(TSymKind)):
internalError(c.debug[pc], "request to create symbol of invalid kind")
regs[ra] = newSymNode(newSym(k.TSymKind, name.getIdent, c.module,
c.debug[pc]))
incl(regs[ra].sym.flags, sfGenSym)
of opcTypeTrait:
# XXX only supports 'name' for now; we can use regC to encode the
# type trait operation
decodeB(nkStrLit)
let typ = regs[rb].sym.typ.skipTypes({tyTypeDesc})
regs[ra].strVal = typ.typeToString(preferExported)
inc pc
proc execute(c: PCtx, start: int): PNode =
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
proc evalStmt*(c: PCtx, n: PNode) =
let start = genStmt(c, n)
# execute new instructions; this redundant opcEof check saves us lots
# of allocations in 'execute':
if c.code[start].opcode != opcEof:
discard execute(c, start)
proc evalExpr*(c: PCtx, n: PNode): PNode =
let start = genExpr(c, n)
assert c.code[start].opcode != opcEof
result = execute(c, start)
# for now we share the 'globals' environment. XXX Coming soon: An API for
# storing&loading the 'globals' environment to get what a component system
# requires.
var
globalCtx: PCtx
proc setupGlobalCtx(module: PSym) =
if globalCtx.isNil: globalCtx = newCtx(module)
else: refresh(globalCtx, module)
proc myOpen(module: PSym): PPassContext =
#var c = newEvalContext(module, emRepl)
#c.features = {allowCast, allowFFI, allowInfiniteLoops}
#pushStackFrame(c, newStackFrame())
# XXX produce a new 'globals' environment here:
setupGlobalCtx(module)
result = globalCtx
var oldErrorCount: int
proc myProcess(c: PPassContext, n: PNode): PNode =
# don't eval errornous code:
if oldErrorCount == msgs.gErrorCounter:
evalStmt(PCtx(c), n)
result = emptyNode
else:
result = n
oldErrorCount = msgs.gErrorCounter
const evalPass* = makePass(myOpen, nil, myProcess, myProcess)
proc evalConstExprAux(module, prc: PSym, n: PNode, mode: TEvalMode): PNode =
setupGlobalCtx(module)
var c = globalCtx
c.mode = mode
let start = genExpr(c, n)
assert c.code[start].opcode != opcEof
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.maxSlots)
for i in 0 .. <c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
proc evalConstExpr*(module: PSym, e: PNode): PNode =
result = evalConstExprAux(module, nil, e, emConst)
proc evalStaticExpr*(module: PSym, e: PNode, prc: PSym): PNode =
result = evalConstExprAux(module, prc, e, emStatic)
proc setupMacroParam(x: PNode): PNode =
result = x
if result.kind in {nkHiddenSubConv, nkHiddenStdConv}: result = result.sons[1]
var evalMacroCounter: int
proc evalMacroCall*(module: PSym, n, nOrig: PNode, sym: PSym): PNode =
# XXX GlobalError() is ugly here, but I don't know a better solution for now
inc(evalMacroCounter)
if evalMacroCounter > 100:
GlobalError(n.info, errTemplateInstantiationTooNested)
setupGlobalCtx(module)
var c = globalCtx
c.callsite = nOrig
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.position
newSeq(tos.slots, maxSlots)
# setup arguments:
var L = n.safeLen
if L == 0: L = 1
InternalAssert tos.slots.len >= L
# return value:
tos.slots[0] = newNodeIT(nkNilLit, n.info, sym.typ.sons[0])
# setup parameters:
for i in 1 .. < L: tos.slots[i] = setupMacroParam(n.sons[i])
# temporary storage:
for i in L .. <maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos)
if cyclicTree(result): GlobalError(n.info, errCyclicTree)
dec(evalMacroCounter)
c.callsite = nil
|