summary refs log tree commit diff stats
path: root/compiler/vmdeps.nim
blob: 2c92348a6b10b183196984d765c041fbdbe2dabd (plain) (blame)
1
2
3
4
5
6
# The RTL.dll needs to be compiled with these options!

--app:lib
--define:createNimRtl
='n190' href='#n190'>190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

import ast, types, msgs, os, streams, options, idents

proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string =
  try:
    var filename = parentDir(info.toFullPath) / file
    if not fileExists(filename):
      filename = findFile(conf, file)
    result = readFile(filename)
    # we produce a fake include statement for every slurped filename, so that
    # the module dependencies are accurate:
    appendToModule(module, newNode(nkIncludeStmt, info, @[
      newStrNode(nkStrLit, filename)]))
  except IOError:
    localError(conf, info, "cannot open file: " & file)
    result = ""

proc atomicTypeX(name: string; m: TMagic; t: PType; info: TLineInfo): PNode =
  let sym = newSym(skType, getIdent(name), t.owner, info)
  sym.magic = m
  sym.typ = t
  result = newSymNode(sym)
  result.typ = t

proc atomicTypeX(s: PSym; info: TLineInfo): PNode =
  result = newSymNode(s)
  result.info = info

proc mapTypeToAstX(t: PType; info: TLineInfo;
                   inst=false; allowRecursionX=false): PNode

proc mapTypeToBracketX(name: string; m: TMagic; t: PType; info: TLineInfo;
                       inst=false): PNode =
  result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
  result.add atomicTypeX(name, m, t, info)
  for i in 0 ..< t.len:
    if t.sons[i] == nil:
      let void = atomicTypeX("void", mVoid, t, info)
      void.typ = newType(tyVoid, t.owner)
      result.add void
    else:
      result.add mapTypeToAstX(t.sons[i], info, inst)

proc objectNode(n: PNode): PNode =
  if n.kind == nkSym:
    result = newNodeI(nkIdentDefs, n.info)
    result.add n  # name
    result.add mapTypeToAstX(n.sym.typ, n.info, true, false)  # type
    result.add ast.emptyNode  # no assigned value
  else:
    result = copyNode(n)
    for i in 0 ..< n.safeLen:
      result.add objectNode(n[i])

proc mapTypeToAstX(t: PType; info: TLineInfo;
                   inst=false; allowRecursionX=false): PNode =
  var allowRecursion = allowRecursionX
  template atomicType(name, m): untyped = atomicTypeX(name, m, t, info)
  template atomicType(s): untyped = atomicTypeX(s, info)
  template mapTypeToAst(t,info): untyped = mapTypeToAstX(t, info, inst)
  template mapTypeToAstR(t,info): untyped = mapTypeToAstX(t, info, inst, true)
  template mapTypeToAst(t,i,info): untyped =
    if i<t.len and t.sons[i]!=nil: mapTypeToAstX(t.sons[i], info, inst)
    else: ast.emptyNode
  template mapTypeToBracket(name, m, t, info): untyped =
    mapTypeToBracketX(name, m, t, info, inst)
  template newNodeX(kind): untyped =
    newNodeIT(kind, if t.n.isNil: info else: t.n.info, t)
  template newIdentDefs(n,t): untyped =
    var id = newNodeX(nkIdentDefs)
    id.add n  # name
    id.add mapTypeToAst(t, info)  # type
    id.add ast.emptyNode  # no assigned value
    id
  template newIdentDefs(s): untyped = newIdentDefs(s, s.typ)

  if inst:
    if t.sym != nil:  # if this node has a symbol
      if not allowRecursion:  # getTypeInst behavior: return symbol
        return atomicType(t.sym)
      #else:  # getTypeImpl behavior: turn off recursion
      #  allowRecursion = false

  case t.kind
  of tyNone: result = atomicType("none", mNone)
  of tyBool: result = atomicType("bool", mBool)
  of tyChar: result = atomicType("char", mChar)
  of tyNil: result = atomicType("nil", mNil)
  of tyExpr: result = atomicType("expr", mExpr)
  of tyStmt: result = atomicType("stmt", mStmt)
  of tyVoid: result = atomicType("void", mVoid)
  of tyEmpty: result = atomicType("empty", mNone)
  of tyArray:
    result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
    result.add atomicType("array", mArray)
    if inst and t.sons[0].kind == tyRange:
      var rng = newNodeX(nkInfix)
      rng.add newIdentNode(getIdent(".."), info)
      rng.add t.sons[0].n.sons[0].copyTree
      rng.add t.sons[0].n.sons[1].copyTree
      result.add rng
    else:
      result.add mapTypeToAst(t.sons[0], info)
    result.add mapTypeToAst(t.sons[1], info)
  of tyTypeDesc:
    if t.base != nil:
      result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
      result.add atomicType("typeDesc", mTypeDesc)
      result.add mapTypeToAst(t.base, info)
    else:
      result = atomicType("typeDesc", mTypeDesc)
  of tyGenericInvocation:
    result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
    for i in 0 ..< t.len:
      result.add mapTypeToAst(t.sons[i], info)
  of tyGenericInst:
    if inst:
      if allowRecursion:
        result = mapTypeToAstR(t.lastSon, info)
      else:
        result = newNodeX(nkBracketExpr)
        #result.add mapTypeToAst(t.lastSon, info)
        result.add mapTypeToAst(t[0], info)
        for i in 1 ..< t.len-1:
          result.add mapTypeToAst(t.sons[i], info)
    else:
      result = mapTypeToAstX(t.lastSon, info, inst, allowRecursion)
  of tyGenericBody:
    if inst:
      result = mapTypeToAstR(t.lastSon, info)
    else:
      result = mapTypeToAst(t.lastSon, info)
  of tyAlias:
    result = mapTypeToAstX(t.lastSon, info, inst, allowRecursion)
  of tyOrdinal:
    result = mapTypeToAst(t.lastSon, info)
  of tyDistinct:
    if inst:
      result = newNodeX(nkDistinctTy)
      result.add mapTypeToAst(t.sons[0], info)
    else:
      if allowRecursion or t.sym == nil:
        result = mapTypeToBracket("distinct", mDistinct, t, info)
      else:
        result = atomicType(t.sym)
  of tyGenericParam, tyForward:
    result = atomicType(t.sym)
  of tyObject:
    if inst:
      result = newNodeX(nkObjectTy)
      result.add ast.emptyNode  # pragmas not reconstructed yet
      if t.sons[0] == nil: result.add ast.emptyNode  # handle parent object
      else:
        var nn = newNodeX(nkOfInherit)
        nn.add mapTypeToAst(t.sons[0], info)
        result.add nn
      if t.n.len > 0:
        result.add objectNode(t.n)
      else:
        result.add ast.emptyNode
    else:
      if allowRecursion or t.sym == nil:
        result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t)
        result.add ast.emptyNode
        if t.sons[0] == nil:
          result.add ast.emptyNode
        else:
          result.add mapTypeToAst(t.sons[0], info)
        result.add copyTree(t.n)
      else:
        result = atomicType(t.sym)
  of tyEnum:
    result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t)
    result.add ast.emptyNode  # pragma node, currently always empty for enum
    for c in t.n.sons:
      result.add copyTree(c)
  of tyTuple:
    if inst:
      # only named tuples have a node, unnamed tuples don't
      if t.n.isNil:
        result = newNodeX(nkTupleConstr)
        for subType in t.sons:
          result.add mapTypeToAst(subType, info)
      else:
        result = newNodeX(nkTupleTy)
        for s in t.n.sons:
          result.add newIdentDefs(s)
    else:
      result = mapTypeToBracket("tuple", mTuple, t, info)
  of tySet: result = mapTypeToBracket("set", mSet, t, info)
  of tyPtr:
    if inst:
      result = newNodeX(nkPtrTy)
      result.add mapTypeToAst(t.sons[0], info)
    else:
      result = mapTypeToBracket("ptr", mPtr, t, info)
  of tyRef:
    if inst:
      result = newNodeX(nkRefTy)
      result.add mapTypeToAst(t.sons[0], info)
    else:
      result = mapTypeToBracket("ref", mRef, t, info)
  of tyVar:
    if inst:
      result = newNodeX(nkVarTy)
      result.add mapTypeToAst(t.sons[0], info)
    else:
      result = mapTypeToBracket("var", mVar, t, info)
  of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info)
  of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info)
  of tySequence: result = mapTypeToBracket("seq", mSeq, t, info)
  of tyOpt: result = mapTypeToBracket("opt", mOpt, t, info)
  of tyProc:
    if inst:
      result = newNodeX(nkProcTy)
      var fp = newNodeX(nkFormalParams)
      if t.sons[0] == nil:
        fp.add ast.emptyNode
      else:
        fp.add mapTypeToAst(t.sons[0], t.n[0].info)
      for i in 1..<t.sons.len:
        fp.add newIdentDefs(t.n[i], t.sons[i])
      result.add fp
      result.add ast.emptyNode  # pragmas aren't reconstructed yet
    else:
      result = mapTypeToBracket("proc", mNone, t, info)
  of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info)
  of tyRange:
    result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
    result.add atomicType("range", mRange)
    result.add t.n.sons[0].copyTree
    result.add t.n.sons[1].copyTree
  of tyPointer: result = atomicType("pointer", mPointer)
  of tyString: result = atomicType("string", mString)
  of tyCString: result = atomicType("cstring", mCString)
  of tyInt: result = atomicType("int", mInt)
  of tyInt8: result = atomicType("int8", mInt8)
  of tyInt16: result = atomicType("int16", mInt16)
  of tyInt32: result = atomicType("int32", mInt32)
  of tyInt64: result = atomicType("int64", mInt64)
  of tyFloat: result = atomicType("float", mFloat)
  of tyFloat32: result = atomicType("float32", mFloat32)
  of tyFloat64: result = atomicType("float64", mFloat64)
  of tyFloat128: result = atomicType("float128", mFloat128)
  of tyUInt: result = atomicType("uint", mUint)
  of tyUInt8: result = atomicType("uint8", mUint8)
  of tyUInt16: result = atomicType("uint16", mUint16)
  of tyUInt32: result = atomicType("uint32", mUint32)
  of tyUInt64: result = atomicType("uint64", mUint64)
  of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info)
  of tyProxy: result = atomicType("error", mNone)
  of tyBuiltInTypeClass:
    result = mapTypeToBracket("builtinTypeClass", mNone, t, info)
  of tyUserTypeClass, tyUserTypeClassInst:
    if t.isResolvedUserTypeClass:
      result = mapTypeToAst(t.lastSon, info)
    else:
      result = mapTypeToBracket("concept", mNone, t, info)
      result.add t.n.copyTree
  of tyCompositeTypeClass:
    result = mapTypeToBracket("compositeTypeClass", mNone, t, info)
  of tyAnd: result = mapTypeToBracket("and", mAnd, t, info)
  of tyOr: result = mapTypeToBracket("or", mOr, t, info)
  of tyNot: result = mapTypeToBracket("not", mNot, t, info)
  of tyAnything: result = atomicType("anything", mNone)
  of tyInferred: assert false
  of tyStatic, tyFromExpr:
    if inst:
      if t.n != nil: result = t.n.copyTree
      else: result = atomicType("void", mVoid)
    else:
      result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
      result.add atomicType("static", mNone)
      if t.n != nil:
        result.add t.n.copyTree
  of tyUnused, tyOptAsRef: assert(false, "mapTypeToAstX")

proc opMapTypeToAst*(t: PType; info: TLineInfo): PNode =
  result = mapTypeToAstX(t, info, false, true)

# the "Inst" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type declaration
proc opMapTypeInstToAst*(t: PType; info: TLineInfo): PNode =
  result = mapTypeToAstX(t, info, true, false)

# the "Impl" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type implementation
proc opMapTypeImplToAst*(t: PType; info: TLineInfo): PNode =
  result = mapTypeToAstX(t, info, true, true)