1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import ast, types, msgs, os, options, idents, lineinfos
proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string =
try:
var filename = parentDir(toFullPath(conf, info)) / file
if not fileExists(filename):
filename = findFile(conf, file).string
result = readFile(filename)
# we produce a fake include statement for every slurped filename, so that
# the module dependencies are accurate:
appendToModule(module, newNode(nkIncludeStmt, info, @[
newStrNode(nkStrLit, filename)]))
except IOError:
localError(conf, info, "cannot open file: " & file)
result = ""
proc atomicTypeX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo): PNode =
let sym = newSym(skType, getIdent(cache, name), t.owner, info)
sym.magic = m
sym.typ = t
result = newSymNode(sym)
result.typ = t
proc atomicTypeX(s: PSym; info: TLineInfo): PNode =
result = newSymNode(s)
result.info = info
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo;
inst=false; allowRecursionX=false): PNode
proc mapTypeToBracketX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo;
inst=false): PNode =
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicTypeX(cache, name, m, t, info)
for i in 0 ..< t.len:
if t.sons[i] == nil:
let void = atomicTypeX(cache, "void", mVoid, t, info)
void.typ = newType(tyVoid, t.owner)
result.add void
else:
result.add mapTypeToAstX(cache, t.sons[i], info, inst)
proc objectNode(cache: IdentCache; n: PNode): PNode =
if n.kind == nkSym:
result = newNodeI(nkIdentDefs, n.info)
result.add n # name
result.add mapTypeToAstX(cache, n.sym.typ, n.info, true, false) # type
result.add newNodeI(nkEmpty, n.info) # no assigned value
else:
result = copyNode(n)
for i in 0 ..< n.safeLen:
result.add objectNode(cache, n[i])
proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo;
inst=false; allowRecursionX=false): PNode =
var allowRecursion = allowRecursionX
template atomicType(name, m): untyped = atomicTypeX(cache, name, m, t, info)
template atomicType(s): untyped = atomicTypeX(s, info)
template mapTypeToAst(t,info): untyped = mapTypeToAstX(cache, t, info, inst)
template mapTypeToAstR(t,info): untyped = mapTypeToAstX(cache, t, info, inst, true)
template mapTypeToAst(t,i,info): untyped =
if i<t.len and t.sons[i]!=nil: mapTypeToAstX(cache, t.sons[i], info, inst)
else: newNodeI(nkEmpty, info)
template mapTypeToBracket(name, m, t, info): untyped =
mapTypeToBracketX(cache, name, m, t, info, inst)
template newNodeX(kind): untyped =
newNodeIT(kind, if t.n.isNil: info else: t.n.info, t)
template newIdentDefs(n,t): untyped =
var id = newNodeX(nkIdentDefs)
id.add n # name
id.add mapTypeToAst(t, info) # type
id.add newNodeI(nkEmpty, info) # no assigned value
id
template newIdentDefs(s): untyped = newIdentDefs(s, s.typ)
if inst and not allowRecursion and t.sym != nil:
# getTypeInst behavior: return symbol
return atomicType(t.sym)
case t.kind
of tyNone: result = atomicType("none", mNone)
of tyBool: result = atomicType("bool", mBool)
of tyChar: result = atomicType("char", mChar)
of tyNil: result = atomicType("nil", mNil)
of tyUntyped: result = atomicType("expr", mExpr)
of tyTyped: result = atomicType("stmt", mStmt)
of tyVoid: result = atomicType("void", mVoid)
of tyEmpty: result = atomicType("empty", mNone)
of tyUncheckedArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("UncheckedArray", mUncheckedArray)
result.add mapTypeToAst(t.sons[0], info)
of tyArray:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("array", mArray)
if inst and t.sons[0].kind == tyRange:
var rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t.sons[0].n.sons[0].copyTree
rng.add t.sons[0].n.sons[1].copyTree
result.add rng
else:
result.add mapTypeToAst(t.sons[0], info)
result.add mapTypeToAst(t.sons[1], info)
of tyTypeDesc:
if t.base != nil:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("typeDesc", mTypeDesc)
result.add mapTypeToAst(t.base, info)
else:
result = atomicType("typeDesc", mTypeDesc)
of tyGenericInvocation:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
for i in 0 ..< t.len:
result.add mapTypeToAst(t.sons[i], info)
of tyGenericInst:
if inst:
if allowRecursion:
result = mapTypeToAstR(t.lastSon, info)
else:
result = newNodeX(nkBracketExpr)
#result.add mapTypeToAst(t.lastSon, info)
result.add mapTypeToAst(t[0], info)
for i in 1 ..< t.len-1:
result.add mapTypeToAst(t.sons[i], info)
else:
result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion)
of tyGenericBody:
if inst:
result = mapTypeToAstR(t.lastSon, info)
else:
result = mapTypeToAst(t.lastSon, info)
of tyAlias:
result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion)
of tyOrdinal:
result = mapTypeToAst(t.lastSon, info)
of tyDistinct:
if inst:
result = newNodeX(nkDistinctTy)
result.add mapTypeToAst(t.sons[0], info)
else:
if allowRecursion or t.sym == nil:
result = mapTypeToBracket("distinct", mDistinct, t, info)
else:
result = atomicType(t.sym)
of tyGenericParam, tyForward:
result = atomicType(t.sym)
of tyObject:
if inst:
result = newNodeX(nkObjectTy)
if t.sym.ast != nil:
result.add t.sym.ast[2][0].copyTree # copy object pragmas
else:
result.add newNodeI(nkEmpty, info)
if t.sons[0] == nil:
result.add newNodeI(nkEmpty, info)
else: # handle parent object
var nn = newNodeX(nkOfInherit)
nn.add mapTypeToAst(t.sons[0], info)
result.add nn
if t.n.len > 0:
result.add objectNode(cache, t.n)
else:
result.add newNodeI(nkEmpty, info)
else:
if allowRecursion or t.sym == nil:
result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info)
if t.sons[0] == nil:
result.add newNodeI(nkEmpty, info)
else:
result.add mapTypeToAst(t.sons[0], info)
result.add copyTree(t.n)
else:
result = atomicType(t.sym)
of tyEnum:
result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t)
result.add newNodeI(nkEmpty, info) # pragma node, currently always empty for enum
for c in t.n.sons:
result.add copyTree(c)
of tyTuple:
if inst:
# only named tuples have a node, unnamed tuples don't
if t.n.isNil:
result = newNodeX(nkTupleConstr)
for subType in t.sons:
result.add mapTypeToAst(subType, info)
else:
result = newNodeX(nkTupleTy)
for s in t.n.sons:
result.add newIdentDefs(s)
else:
result = mapTypeToBracket("tuple", mTuple, t, info)
of tySet: result = mapTypeToBracket("set", mSet, t, info)
of tyPtr:
if inst:
result = newNodeX(nkPtrTy)
result.add mapTypeToAst(t.sons[0], info)
else:
result = mapTypeToBracket("ptr", mPtr, t, info)
of tyRef:
if inst:
result = newNodeX(nkRefTy)
result.add mapTypeToAst(t.sons[0], info)
else:
result = mapTypeToBracket("ref", mRef, t, info)
of tyVar:
if inst:
result = newNodeX(nkVarTy)
result.add mapTypeToAst(t.sons[0], info)
else:
result = mapTypeToBracket("var", mVar, t, info)
of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info)
of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info)
of tySequence: result = mapTypeToBracket("seq", mSeq, t, info)
of tyOpt: result = mapTypeToBracket("opt", mOpt, t, info)
of tyProc:
if inst:
result = newNodeX(nkProcTy)
var fp = newNodeX(nkFormalParams)
if t.sons[0] == nil:
fp.add newNodeI(nkEmpty, info)
else:
fp.add mapTypeToAst(t.sons[0], t.n[0].info)
for i in 1..<t.sons.len:
fp.add newIdentDefs(t.n[i], t.sons[i])
result.add fp
result.add if t.n[0].len > 0: t.n[0][pragmasEffects].copyTree
else: newNodeI(nkEmpty, info)
else:
result = mapTypeToBracket("proc", mNone, t, info)
of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info)
of tyRange:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("range", mRange)
if inst:
let rng = newNodeX(nkInfix)
rng.add newIdentNode(getIdent(cache, ".."), info)
rng.add t.n.sons[0].copyTree
rng.add t.n.sons[1].copyTree
result.add rng
else:
result.add t.n.sons[0].copyTree
result.add t.n.sons[1].copyTree
of tyPointer: result = atomicType("pointer", mPointer)
of tyString: result = atomicType("string", mString)
of tyCString: result = atomicType("cstring", mCstring)
of tyInt: result = atomicType("int", mInt)
of tyInt8: result = atomicType("int8", mInt8)
of tyInt16: result = atomicType("int16", mInt16)
of tyInt32: result = atomicType("int32", mInt32)
of tyInt64: result = atomicType("int64", mInt64)
of tyFloat: result = atomicType("float", mFloat)
of tyFloat32: result = atomicType("float32", mFloat32)
of tyFloat64: result = atomicType("float64", mFloat64)
of tyFloat128: result = atomicType("float128", mFloat128)
of tyUInt: result = atomicType("uint", mUInt)
of tyUInt8: result = atomicType("uint8", mUInt8)
of tyUInt16: result = atomicType("uint16", mUInt16)
of tyUInt32: result = atomicType("uint32", mUInt32)
of tyUInt64: result = atomicType("uint64", mUInt64)
of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info)
of tyProxy: result = atomicType("error", mNone)
of tyBuiltInTypeClass:
result = mapTypeToBracket("builtinTypeClass", mNone, t, info)
of tyUserTypeClass, tyUserTypeClassInst:
if t.isResolvedUserTypeClass:
result = mapTypeToAst(t.lastSon, info)
else:
result = mapTypeToBracket("concept", mNone, t, info)
result.add t.n.copyTree
of tyCompositeTypeClass:
result = mapTypeToBracket("compositeTypeClass", mNone, t, info)
of tyAnd: result = mapTypeToBracket("and", mAnd, t, info)
of tyOr: result = mapTypeToBracket("or", mOr, t, info)
of tyNot: result = mapTypeToBracket("not", mNot, t, info)
of tyAnything: result = atomicType("anything", mNone)
of tyInferred: assert false
of tyStatic, tyFromExpr:
if inst:
if t.n != nil: result = t.n.copyTree
else: result = atomicType("void", mVoid)
else:
result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t)
result.add atomicType("static", mNone)
if t.n != nil:
result.add t.n.copyTree
of tyOwned: result = mapTypeToBracket("owned", mBuiltinType, t, info)
proc opMapTypeToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=false, allowRecursionX=true)
# the "Inst" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type declaration
proc opMapTypeInstToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=true, allowRecursionX=false)
# the "Impl" version includes generic parameters in the resulting type tree
# and also tries to look like the corresponding Nim type implementation
proc opMapTypeImplToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode =
result = mapTypeToAstX(cache, t, info, inst=true, allowRecursionX=true)
|