summary refs log tree commit diff stats
path: root/compiler/vmgen.nim
blob: 6790276a9932fd8808b0589d76be48db09c16355 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#
#
#           The Nim Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# Built-in types and compilerprocs are registered here.

import
  ast, astalgo, hashes, msgs, platform, nversion, times, idents, rodread

var systemModule*: PSym

var
  gSysTypes: array[TTypeKind, PType]
  compilerprocs: TStrTable
  exposed: TStrTable

proc nilOrSysInt*: PType = gSysTypes[tyInt]

proc registerSysType*(t: PType) =
  if gSysTypes[t.kind] == nil: gSysTypes[t.kind] = t

proc newSysType(kind: TTypeKind, size: int): PType =
  result = newType(kind, systemModule)
  result.size = size
  result.align = size.int16

proc getSysSym*(name: string): PSym =
  result = strTableGet(systemModule.tab, getIdent(name))
  if result == nil:
    rawMessage(errSystemNeeds, name)
    result = newSym(skError, getIdent(name), systemModule, systemModule.info)
    result.typ = newType(tyError, systemModule)
  if result.kind == skStub: loadStub(result)
  if result.kind == skAlias: result = result.owner

proc createMagic*(name: string, m: TMagic): PSym =
  result = newSym(skProc, getIdent(name), nil, unknownLineInfo())
  result.magic = m

let
  opNot* = createMagic("not", mNot)
  opContains* = createMagic("contains", mInSet)

proc getSysMagic*(name: string, m: TMagic): PSym =
  var ti: TIdentIter
  let id = getIdent(name)
  var r = initIdentIter(ti, systemModule.tab, id)
  while r != nil:
    if r.kind == skStub: loadStub(r)
    if r.magic == m:
      # prefer the tyInt variant:
      if r.typ.sons[0] != nil and r.typ.sons[0].kind == tyInt: return r
      result = r
    r = nextIdentIter(ti, systemModule.tab)
  if result != nil: return result
  rawMessage(errSystemNeeds, name)
  result = newSym(skError, id, systemModule, systemModule.info)
  result.typ = newType(tyError, systemModule)

proc sysTypeFromName*(name: string): PType =
  result = getSysSym(name).typ

proc getSysType*(kind: TTypeKind): PType =
  result = gSysTypes[kind]
  if result == nil:
    case kind
    of tyInt: result = sysTypeFromName("int")
    of tyInt8: result = sysTypeFromName("int8")
    of tyInt16: result = sysTypeFromName("int16")
    of tyInt32: result = sysTypeFromName("int32")
    of tyInt64: result = sysTypeFromName("int64")
    of tyUInt: result = sysTypeFromName("uint")
    of tyUInt8: result = sysTypeFromName("uint8")
    of tyUInt16: result = sysTypeFromName("uint16")
    of tyUInt32: result = sysTypeFromName("uint32")
    of tyUInt64: result = sysTypeFromName("uint64")
    of tyFloat: result = sysTypeFromName("float")
    of tyFloat32: result = sysTypeFromName("float32")
    of tyFloat64: return sysTypeFromName("float64")
    of tyFloat128: result = sysTypeFromName("float128")
    of tyBool: result = sysTypeFromName("bool")
    of tyChar: result = sysTypeFromName("char")
    of tyString: result = sysTypeFromName("string")
    of tyCString: result = sysTypeFromName("cstring")
    of tyPointer: result = sysTypeFromName("pointer")
    of tyNil: result = newSysType(tyNil, ptrSize)
    else: internalError("request for typekind: " & $kind)
    gSysTypes[kind] = result
  if result.kind != kind:
    internalError("wanted: " & $kind & " got: " & $result.kind)
  if result == nil: internalError("type not found: " & $kind)

var
  intTypeCache: array[-5..64, PType]

proc resetSysTypes* =
  systemModule = nil
  initStrTable(compilerprocs)
  initStrTable(exposed)
  for i in low(gSysTypes)..high(gSysTypes):
    gSysTypes[i] = nil

  for i in low(intTypeCache)..high(intTypeCache):
    intTypeCache[i] = nil

proc getIntLitType*(literal: PNode): PType =
  # we cache some common integer literal types for performance:
  let value = literal.intVal
  if value >= low(intTypeCache) and value <= high(intTypeCache):
    result = intTypeCache[value.int]
    if result == nil:
      let ti = getSysType(tyInt)
      result = copyType(ti, ti.owner, false)
      result.n = literal
      intTypeCache[value.int] = result
  else:
    let ti = getSysType(tyInt)
    result = copyType(ti, ti.owner, false)
    result.n = literal

proc getFloatLitType*(literal: PNode): PType =
  # for now we do not cache these:
  result = newSysType(tyFloat, size=8)
  result.n = literal

proc skipIntLit*(t: PType): PType {.inline.} =
  if t.n != nil:
    if t.kind in {tyInt, tyFloat}:
      return getSysType(t.kind)
  result = t

proc addSonSkipIntLit*(father, son: PType) =
  if isNil(father.sons): father.sons = @[]
  let s = son.skipIntLit
  add(father.sons, s)
  propagateToOwner(father, s)

proc setIntLitType*(result: PNode) =
  let i = result.intVal
  case platform.intSize
  of 8: result.typ = getIntLitType(result)
  of 4:
    if i >= low(int32) and i <= high(int32):
      result.typ = getIntLitType(result)
    else:
      result.typ = getSysType(tyInt64)
  of 2:
    if i >= low(int16) and i <= high(int16):
      result.typ = getIntLitType(result)
    elif i >= low(int32) and i <= high(int32):
      result.typ = getSysType(tyInt32)
    else:
      result.typ = getSysType(tyInt64)
  of 1:
    # 8 bit CPUs are insane ...
    if i >= low(int8) and i <= high(int8):
      result.typ = getIntLitType(result)
    elif i >= low(int16) and i <= high(int16):
      result.typ = getSysType(tyInt16)
    elif i >= low(int32) and i <= high(int32):
      result.typ = getSysType(tyInt32)
    else:
      result.typ = getSysType(tyInt64)
  else: internalError(result.info, "invalid int size")

proc getCompilerProc*(name: string): PSym =
  let ident = getIdent(name)
  result = strTableGet(compilerprocs, ident)
  if result == nil:
    result = strTableGet(rodCompilerprocs, ident)
    if result != nil:
      strTableAdd(compilerprocs, result)
      if result.kind == skStub: loadStub(result)
      if result.kind == skAlias: result = result.owner

proc registerCompilerProc*(s: PSym) =
  strTableAdd(compilerprocs, s)

proc registerNimScriptSymbol*(s: PSym) =
  # Nimscript symbols must be al unique:
  let conflict = strTableGet(exposed, s.name)
  if conflict == nil:
    strTableAdd(exposed, s)
  else:
    localError(s.info, "symbol conflicts with other .exportNims symbol at: " &
      $conflict.info)

proc getNimScriptSymbol*(name: string): PSym =
  strTableGet(exposed, getIdent(name))

proc resetNimScriptSymbols*() = initStrTable(exposed)

initStrTable(compilerprocs)
initStrTable(exposed)
3' href='#n1803'>1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the code generator for the VM.

# Important things to remember:
# - The VM does not distinguish between definitions ('var x = y') and
#   assignments ('x = y'). For simple data types that fit into a register
#   this doesn't matter. However it matters for strings and other complex
#   types that use the 'node' field; the reason is that slots are
#   re-used in a register based VM. Example:
#
#.. code-block:: nim
#   let s = a & b  # no matter what, create fresh node
#   s = a & b  # no matter what, keep the node
#
# Also *stores* into non-temporary memory need to perform deep copies:
# a.b = x.y
# We used to generate opcAsgn for the *load* of 'x.y' but this is clearly
# wrong! We need to produce opcAsgn (the copy) for the *store*. This also
# solves the opcLdConst vs opcAsgnConst issue. Of course whether we need
# this copy depends on the involved types.

import
  strutils, ast, types, msgs, renderer, vmdef,
  intsets, magicsys, options, lowerings, lineinfos, transf

from modulegraphs import getBody

const
  debugEchoCode* = defined(nimVMDebug)

when debugEchoCode:
  import std/private/asciitables
when hasFFI:
  import evalffi

type
  TGenFlag = enum
    gfNode # Affects how variables are loaded - always loads as rkNode
    gfNodeAddr # Affects how variables are loaded - always loads as rkNodeAddr
    gfIsParam # do not deepcopy parameters, they are immutable
  TGenFlags = set[TGenFlag]

proc debugInfo(c: PCtx; info: TLineInfo): string =
  result = toFileLineCol(c.config, info)

proc codeListing(c: PCtx, result: var string, start=0; last = -1) =
  ## for debugging purposes
  # first iteration: compute all necessary labels:
  var jumpTargets = initIntSet()
  let last = if last < 0: c.code.len-1 else: min(last, c.code.len-1)
  for i in start..last:
    let x = c.code[i]
    if x.opcode in relativeJumps:
      jumpTargets.incl(i+x.regBx-wordExcess)

  template toStr(opc: TOpcode): string = ($opc).substr(3)

  result.add "code listing:\n"
  var i = start
  while i <= last:
    if i in jumpTargets: result.addf("L$1:\n", i)
    let x = c.code[i]

    result.add($i)
    let opc = opcode(x)
    if opc in {opcIndCall, opcIndCallAsgn}:
      result.addf("\t$#\tr$#, r$#, nargs:$#", opc.toStr, x.regA,
                  x.regB, x.regC)
    elif opc in {opcConv, opcCast}:
      let y = c.code[i+1]
      let z = c.code[i+2]
      result.addf("\t$#\tr$#, r$#, $#, $#", opc.toStr, x.regA, x.regB,
        c.types[y.regBx-wordExcess].typeToString,
        c.types[z.regBx-wordExcess].typeToString)
      inc i, 2
    elif opc < firstABxInstr:
      result.addf("\t$#\tr$#, r$#, r$#", opc.toStr, x.regA,
                  x.regB, x.regC)
    elif opc in relativeJumps + {opcTry}:
      result.addf("\t$#\tr$#, L$#", opc.toStr, x.regA,
                  i+x.regBx-wordExcess)
    elif opc in {opcExcept}:
      let idx = x.regBx-wordExcess
      result.addf("\t$#\t$#, $#", opc.toStr, x.regA, $idx)
    elif opc in {opcLdConst, opcAsgnConst}:
      let idx = x.regBx-wordExcess
      result.addf("\t$#\tr$#, $# ($#)", opc.toStr, x.regA,
        c.constants[idx].renderTree, $idx)
    elif opc in {opcMarshalLoad, opcMarshalStore}:
      let y = c.code[i+1]
      result.addf("\t$#\tr$#, r$#, $#", opc.toStr, x.regA, x.regB,
        c.types[y.regBx-wordExcess].typeToString)
      inc i
    else:
      result.addf("\t$#\tr$#, $#", opc.toStr, x.regA, x.regBx-wordExcess)
    result.add("\t# ")
    result.add(debugInfo(c, c.debug[i]))
    result.add("\n")
    inc i
  when debugEchoCode:
    result = result.alignTable

proc echoCode*(c: PCtx; start=0; last = -1) {.deprecated.} =
  var buf = ""
  codeListing(c, buf, start, last)
  echo buf

proc gABC(ctx: PCtx; n: PNode; opc: TOpcode; a, b, c: TRegister = 0) =
  ## Takes the registers `b` and `c`, applies the operation `opc` to them, and
  ## stores the result into register `a`
  ## The node is needed for debug information
  assert opc.ord < 255
  let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
                           (b.TInstrType shl regBShift) or
                           (c.TInstrType shl regCShift)).TInstr
  when false:
    if ctx.code.len == 43:
      writeStackTrace()
      echo "generating ", opc
  ctx.code.add(ins)
  ctx.debug.add(n.info)

proc gABI(c: PCtx; n: PNode; opc: TOpcode; a, b: TRegister; imm: BiggestInt) =
  # Takes the `b` register and the immediate `imm`, applies the operation `opc`,
  # and stores the output value into `a`.
  # `imm` is signed and must be within [-128, 127]
  if imm >= -128 and imm <= 127:
    let ins = (opc.TInstrType or (a.TInstrType shl regAShift) or
                             (b.TInstrType shl regBShift) or
                             (imm+byteExcess).TInstrType shl regCShift).TInstr
    c.code.add(ins)
    c.debug.add(n.info)
  else:
    localError(c.config, n.info,
      "VM: immediate value does not fit into an int8")

proc gABx(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0; bx: int) =
  # Applies `opc` to `bx` and stores it into register `a`
  # `bx` must be signed and in the range [regBxMin, regBxMax]
  when false:
    if c.code.len == 43:
      writeStackTrace()
      echo "generating ", opc

  if bx >= regBxMin-1 and bx <= regBxMax:
    let ins = (opc.TInstrType or a.TInstrType shl regAShift or
              (bx+wordExcess).TInstrType shl regBxShift).TInstr
    c.code.add(ins)
    c.debug.add(n.info)
  else:
    localError(c.config, n.info,
      "VM: immediate value does not fit into regBx")

proc xjmp(c: PCtx; n: PNode; opc: TOpcode; a: TRegister = 0): TPosition =
  #assert opc in {opcJmp, opcFJmp, opcTJmp}
  result = TPosition(c.code.len)
  gABx(c, n, opc, a, 0)

proc genLabel(c: PCtx): TPosition =
  result = TPosition(c.code.len)
  #c.jumpTargets.incl(c.code.len)

proc jmpBack(c: PCtx, n: PNode, p = TPosition(0)) =
  let dist = p.int - c.code.len
  internalAssert(c.config, regBxMin < dist and dist < regBxMax)
  gABx(c, n, opcJmpBack, 0, dist)

proc patch(c: PCtx, p: TPosition) =
  # patch with current index
  let p = p.int
  let diff = c.code.len - p
  #c.jumpTargets.incl(c.code.len)
  internalAssert(c.config, regBxMin < diff and diff < regBxMax)
  let oldInstr = c.code[p]
  # opcode and regA stay the same:
  c.code[p] = ((oldInstr.TInstrType and regBxMask).TInstrType or
               TInstrType(diff+wordExcess) shl regBxShift).TInstr

proc getSlotKind(t: PType): TSlotKind =
  case t.skipTypes(abstractRange-{tyTypeDesc}).kind
  of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
    slotTempInt
  of tyString, tyCString:
    slotTempStr
  of tyFloat..tyFloat128:
    slotTempFloat
  else:
    slotTempComplex

const
  HighRegisterPressure = 40

proc bestEffort(c: PCtx): TLineInfo =
  if c.prc != nil and c.prc.sym != nil:
    c.prc.sym.info
  else:
    c.module.info

proc getFreeRegister(cc: PCtx; k: TSlotKind; start: int): TRegister =
  let c = cc.prc
  # we prefer the same slot kind here for efficiency. Unfortunately for
  # discardable return types we may not know the desired type. This can happen
  # for e.g. mNAdd[Multiple]:
  for i in start..c.maxSlots-1:
    if c.slots[i].kind == k and not c.slots[i].inUse:
      c.slots[i].inUse = true
      return TRegister(i)

  # if register pressure is high, we re-use more aggressively:
  if c.maxSlots >= high(TRegister):
    for i in start..c.maxSlots-1:
      if not c.slots[i].inUse:
        c.slots[i] = (inUse: true, kind: k)
        return TRegister(i)
  if c.maxSlots >= high(TRegister):
    globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
  result = TRegister(max(c.maxSlots, start))
  c.slots[result] = (inUse: true, kind: k)
  c.maxSlots = result + 1

proc getTemp(cc: PCtx; tt: PType): TRegister =
  let typ = tt.skipTypesOrNil({tyStatic})
  # we prefer the same slot kind here for efficiency. Unfortunately for
  # discardable return types we may not know the desired type. This can happen
  # for e.g. mNAdd[Multiple]:
  let k = if typ.isNil: slotTempComplex else: typ.getSlotKind
  result = getFreeRegister(cc, k, start = 0)
  when false:
    # enable this to find "register" leaks:
    if result == 4:
      echo "begin ---------------"
      writeStackTrace()
      echo "end ----------------"

proc freeTemp(c: PCtx; r: TRegister) =
  let c = c.prc
  if c.slots[r].kind in {slotSomeTemp..slotTempComplex}:
    # this seems to cause https://github.com/nim-lang/Nim/issues/10647
    c.slots[r].inUse = false

proc getTempRange(cc: PCtx; n: int; kind: TSlotKind): TRegister =
  # if register pressure is high, we re-use more aggressively:
  let c = cc.prc
  # we could also customize via the following (with proper caching in ConfigRef):
  # let highRegisterPressure = cc.config.getConfigVar("vm.highRegisterPressure", "40").parseInt
  if c.maxSlots >= HighRegisterPressure or c.maxSlots+n >= high(TRegister):
    for i in 0..c.maxSlots-n:
      if not c.slots[i].inUse:
        block search:
          for j in i+1..i+n-1:
            if c.slots[j].inUse: break search
          result = TRegister(i)
          for k in result..result+n-1: c.slots[k] = (inUse: true, kind: kind)
          return
  if c.maxSlots+n >= high(TRegister):
    globalError(cc.config, cc.bestEffort, "VM problem: too many registers required")
  result = TRegister(c.maxSlots)
  inc c.maxSlots, n
  for k in result..result+n-1: c.slots[k] = (inUse: true, kind: kind)

proc freeTempRange(c: PCtx; start: TRegister, n: int) =
  for i in start..start+n-1: c.freeTemp(TRegister(i))

template withTemp(tmp, typ, body: untyped) {.dirty.} =
  var tmp = getTemp(c, typ)
  body
  c.freeTemp(tmp)

proc popBlock(c: PCtx; oldLen: int) =
  for f in c.prc.blocks[oldLen].fixups:
    c.patch(f)
  c.prc.blocks.setLen(oldLen)

template withBlock(labl: PSym; body: untyped) {.dirty.} =
  var oldLen {.gensym.} = c.prc.blocks.len
  c.prc.blocks.add TBlock(label: labl, fixups: @[])
  body
  popBlock(c, oldLen)

proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {})
proc gen(c: PCtx; n: PNode; dest: TRegister; flags: TGenFlags = {}) =
  var d: TDest = dest
  gen(c, n, d, flags)
  #internalAssert c.config, d == dest # issue #7407

proc gen(c: PCtx; n: PNode; flags: TGenFlags = {}) =
  var tmp: TDest = -1
  gen(c, n, tmp, flags)
  if tmp >= 0:
    freeTemp(c, tmp)
  #if n.typ.isEmptyType: internalAssert tmp < 0

proc genx(c: PCtx; n: PNode; flags: TGenFlags = {}): TRegister =
  var tmp: TDest = -1
  gen(c, n, tmp, flags)
  #internalAssert c.config, tmp >= 0 # 'nim check' does not like this internalAssert.
  if tmp >= 0:
    result = TRegister(tmp)

proc clearDest(c: PCtx; n: PNode; dest: var TDest) {.inline.} =
  # stmt is different from 'void' in meta programming contexts.
  # So we only set dest to -1 if 'void':
  if dest >= 0 and (n.typ.isNil or n.typ.kind == tyVoid):
    c.freeTemp(dest)
    dest = -1

proc isNotOpr(n: PNode): bool =
  n.kind in nkCallKinds and n[0].kind == nkSym and
    n[0].sym.magic == mNot

proc isTrue(n: PNode): bool =
  n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
    n.kind == nkIntLit and n.intVal != 0

proc genWhile(c: PCtx; n: PNode) =
  # lab1:
  #   cond, tmp
  #   fjmp tmp, lab2
  #   body
  #   jmp lab1
  # lab2:
  let lab1 = c.genLabel
  withBlock(nil):
    if isTrue(n[0]):
      c.gen(n[1])
      c.jmpBack(n, lab1)
    elif isNotOpr(n[0]):
      var tmp = c.genx(n[0][1])
      let lab2 = c.xjmp(n, opcTJmp, tmp)
      c.freeTemp(tmp)
      c.gen(n[1])
      c.jmpBack(n, lab1)
      c.patch(lab2)
    else:
      var tmp = c.genx(n[0])
      let lab2 = c.xjmp(n, opcFJmp, tmp)
      c.freeTemp(tmp)
      c.gen(n[1])
      c.jmpBack(n, lab1)
      c.patch(lab2)

proc genBlock(c: PCtx; n: PNode; dest: var TDest) =
  let oldRegisterCount = c.prc.maxSlots
  withBlock(n[0].sym):
    c.gen(n[1], dest)

  for i in oldRegisterCount..<c.prc.maxSlots:
    #if c.prc.slots[i].kind in {slotFixedVar, slotFixedLet}:
    if i != dest:
      when not defined(release):
        if c.prc.slots[i].inUse and c.prc.slots[i].kind in {slotTempUnknown,
                                  slotTempInt,
                                  slotTempFloat,
                                  slotTempStr,
                                  slotTempComplex}:
          doAssert false, "leaking temporary " & $i & " " & $c.prc.slots[i].kind
      c.prc.slots[i] = (inUse: false, kind: slotEmpty)

  c.clearDest(n, dest)

proc genBreak(c: PCtx; n: PNode) =
  let lab1 = c.xjmp(n, opcJmp)
  if n[0].kind == nkSym:
    #echo cast[int](n[0].sym)
    for i in countdown(c.prc.blocks.len-1, 0):
      if c.prc.blocks[i].label == n[0].sym:
        c.prc.blocks[i].fixups.add lab1
        return
    globalError(c.config, n.info, "VM problem: cannot find 'break' target")
  else:
    c.prc.blocks[c.prc.blocks.high].fixups.add lab1

proc genIf(c: PCtx, n: PNode; dest: var TDest) =
  #  if (!expr1) goto lab1;
  #    thenPart
  #    goto LEnd
  #  lab1:
  #  if (!expr2) goto lab2;
  #    thenPart2
  #    goto LEnd
  #  lab2:
  #    elsePart
  #  Lend:
  if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  var endings: seq[TPosition] = @[]
  for i in 0..<n.len:
    var it = n[i]
    if it.len == 2:
      withTemp(tmp, it[0].typ):
        var elsePos: TPosition
        if isNotOpr(it[0]):
          c.gen(it[0][1], tmp)
          elsePos = c.xjmp(it[0][1], opcTJmp, tmp) # if true
        else:
          c.gen(it[0], tmp)
          elsePos = c.xjmp(it[0], opcFJmp, tmp) # if false
      c.clearDest(n, dest)
      c.gen(it[1], dest) # then part
      if i < n.len-1:
        endings.add(c.xjmp(it[1], opcJmp, 0))
      c.patch(elsePos)
    else:
      c.clearDest(n, dest)
      c.gen(it[0], dest)
  for endPos in endings: c.patch(endPos)
  c.clearDest(n, dest)

proc isTemp(c: PCtx; dest: TDest): bool =
  result = dest >= 0 and c.prc.slots[dest].kind >= slotTempUnknown

proc genAndOr(c: PCtx; n: PNode; opc: TOpcode; dest: var TDest) =
  #   asgn dest, a
  #   tjmp|fjmp lab1
  #   asgn dest, b
  # lab1:
  let copyBack = dest < 0 or not isTemp(c, dest)
  let tmp = if copyBack:
              getTemp(c, n.typ)
            else:
              TRegister dest
  c.gen(n[1], tmp)
  let lab1 = c.xjmp(n, opc, tmp)
  c.gen(n[2], tmp)
  c.patch(lab1)
  if dest < 0:
    dest = tmp
  elif copyBack:
    c.gABC(n, opcAsgnInt, dest, tmp)
    freeTemp(c, tmp)

proc canonValue*(n: PNode): PNode =
  result = n

proc rawGenLiteral(c: PCtx; n: PNode): int =
  result = c.constants.len
  #assert(n.kind != nkCall)
  n.flags.incl nfAllConst
  c.constants.add n.canonValue
  internalAssert c.config, result < regBxMax

proc sameConstant*(a, b: PNode): bool =
  result = false
  if a == b:
    result = true
  elif a != nil and b != nil and a.kind == b.kind:
    case a.kind
    of nkSym: result = a.sym == b.sym
    of nkIdent: result = a.ident.id == b.ident.id
    of nkCharLit..nkUInt64Lit: result = a.intVal == b.intVal
    of nkFloatLit..nkFloat64Lit:
      result = cast[uint64](a.floatVal) == cast[uint64](b.floatVal)
      # refs bug #16469
      # if we wanted to only distinguish 0.0 vs -0.0:
      # if a.floatVal == 0.0: result = cast[uint64](a.floatVal) == cast[uint64](b.floatVal)
      # else: result = a.floatVal == b.floatVal
    of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
    of nkType, nkNilLit: result = a.typ == b.typ
    of nkEmpty: result = true
    else:
      if a.len == b.len:
        for i in 0..<a.len:
          if not sameConstant(a[i], b[i]): return
        result = true

proc genLiteral(c: PCtx; n: PNode): int =
  # types do not matter here:
  for i in 0..<c.constants.len:
    if sameConstant(c.constants[i], n): return i
  result = rawGenLiteral(c, n)

proc unused(c: PCtx; n: PNode; x: TDest) {.inline.} =
  if x >= 0:
    #debug(n)
    globalError(c.config, n.info, "not unused")

proc genCase(c: PCtx; n: PNode; dest: var TDest) =
  #  if (!expr1) goto lab1;
  #    thenPart
  #    goto LEnd
  #  lab1:
  #  if (!expr2) goto lab2;
  #    thenPart2
  #    goto LEnd
  #  lab2:
  #    elsePart
  #  Lend:
  if not isEmptyType(n.typ):
    if dest < 0: dest = getTemp(c, n.typ)
  else:
    unused(c, n, dest)
  var endings: seq[TPosition] = @[]
  withTemp(tmp, n[0].typ):
    c.gen(n[0], tmp)
    # branch tmp, codeIdx
    # fjmp   elseLabel
    for i in 1..<n.len:
      let it = n[i]
      if it.len == 1:
        # else stmt:
        c.gen(it[0], dest)
      else:
        let b = rawGenLiteral(c, it)
        c.gABx(it, opcBranch, tmp, b)
        let elsePos = c.xjmp(it.lastSon, opcFJmp, tmp)
        c.gen(it.lastSon, dest)
        if i < n.len-1:
          endings.add(c.xjmp(it.lastSon, opcJmp, 0))
        c.patch(elsePos)
      c.clearDest(n, dest)
  for endPos in endings: c.patch(endPos)

proc genType(c: PCtx; typ: PType): int =
  for i, t in c.types:
    if sameType(t, typ): return i
  result = c.types.len
  c.types.add(typ)
  internalAssert(c.config, result <= regBxMax)

proc genTry(c: PCtx; n: PNode; dest: var TDest) =
  if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  var endings: seq[TPosition] = @[]
  let ehPos = c.xjmp(n, opcTry, 0)
  c.gen(n[0], dest)
  c.clearDest(n, dest)
  # Add a jump past the exception handling code
  let jumpToFinally = c.xjmp(n, opcJmp, 0)
  # This signals where the body ends and where the exception handling begins
  c.patch(ehPos)
  for i in 1..<n.len:
    let it = n[i]
    if it.kind != nkFinally:
      # first opcExcept contains the end label of the 'except' block:
      let endExcept = c.xjmp(it, opcExcept, 0)
      for j in 0..<it.len - 1:
        assert(it[j].kind == nkType)
        let typ = it[j].typ.skipTypes(abstractPtrs-{tyTypeDesc})
        c.gABx(it, opcExcept, 0, c.genType(typ))
      if it.len == 1:
        # general except section:
        c.gABx(it, opcExcept, 0, 0)
      c.gen(it.lastSon, dest)
      c.clearDest(n, dest)
      if i < n.len:
        endings.add(c.xjmp(it, opcJmp, 0))
      c.patch(endExcept)
  let fin = lastSon(n)
  # we always generate an 'opcFinally' as that pops the safepoint
  # from the stack if no exception is raised in the body.
  c.patch(jumpToFinally)
  c.gABx(fin, opcFinally, 0, 0)
  for endPos in endings: c.patch(endPos)
  if fin.kind == nkFinally:
    c.gen(fin[0])
    c.clearDest(n, dest)
  c.gABx(fin, opcFinallyEnd, 0, 0)

proc genRaise(c: PCtx; n: PNode) =
  let dest = genx(c, n[0])
  c.gABC(n, opcRaise, dest)
  c.freeTemp(dest)

proc genReturn(c: PCtx; n: PNode) =
  if n[0].kind != nkEmpty:
    gen(c, n[0])
  c.gABC(n, opcRet)


proc genLit(c: PCtx; n: PNode; dest: var TDest) =
  # opcLdConst is now always valid. We produce the necessary copy in the
  # assignments now:
  #var opc = opcLdConst
  if dest < 0: dest = c.getTemp(n.typ)
  #elif c.prc.slots[dest].kind == slotFixedVar: opc = opcAsgnConst
  let lit = genLiteral(c, n)
  c.gABx(n, opcLdConst, dest, lit)

proc genCall(c: PCtx; n: PNode; dest: var TDest) =
  # it can happen that due to inlining we have a 'n' that should be
  # treated as a constant (see issue #537).
  #if n.typ != nil and n.typ.sym != nil and n.typ.sym.magic == mPNimrodNode:
  #  genLit(c, n, dest)
  #  return
  # bug #10901: do not produce code for wrong call expressions:
  if n.len == 0 or n[0].typ.isNil: return
  if dest < 0 and not isEmptyType(n.typ): dest = getTemp(c, n.typ)
  let x = c.getTempRange(n.len, slotTempUnknown)
  # varargs need 'opcSetType' for the FFI support:
  let fntyp = skipTypes(n[0].typ, abstractInst)
  for i in 0..<n.len:
    var r: TRegister = x+i
    c.gen(n[i], r, {gfIsParam})
    if i >= fntyp.len:
      internalAssert c.config, tfVarargs in fntyp.flags
      c.gABx(n, opcSetType, r, c.genType(n[i].typ))
  if dest < 0:
    c.gABC(n, opcIndCall, 0, x, n.len)
  else:
    c.gABC(n, opcIndCallAsgn, dest, x, n.len)
  c.freeTempRange(x, n.len)

template isGlobal(s: PSym): bool = sfGlobal in s.flags and s.kind != skForVar
proc isGlobal(n: PNode): bool = n.kind == nkSym and isGlobal(n.sym)

proc needsAsgnPatch(n: PNode): bool =
  n.kind in {nkBracketExpr, nkDotExpr, nkCheckedFieldExpr,
             nkDerefExpr, nkHiddenDeref} or (n.kind == nkSym and n.sym.isGlobal)

proc genField(c: PCtx; n: PNode): TRegister =
  if n.kind != nkSym or n.sym.kind != skField:
    globalError(c.config, n.info, "no field symbol")
  let s = n.sym
  if s.position > high(typeof(result)):
    globalError(c.config, n.info,
        "too large offset! cannot generate code for: " & s.name.s)
  result = s.position

proc genIndex(c: PCtx; n: PNode; arr: PType): TRegister =
  if arr.skipTypes(abstractInst).kind == tyArray and (let x = firstOrd(c.config, arr);
      x != Zero):
    let tmp = c.genx(n)
    # freeing the temporary here means we can produce:  regA = regA - Imm
    c.freeTemp(tmp)
    result = c.getTemp(n.typ)
    c.gABI(n, opcSubImmInt, result, tmp, toInt(x))
  else:
    result = c.genx(n)

proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags)

proc genAsgnPatch(c: PCtx; le: PNode, value: TRegister) =
  case le.kind
  of nkBracketExpr:
    let dest = c.genx(le[0], {gfNode})
    let idx = c.genIndex(le[1], le[0].typ)
    c.gABC(le, opcWrArr, dest, idx, value)
    c.freeTemp(dest)
    c.freeTemp(idx)
  of nkCheckedFieldExpr:
    var objR: TDest = -1
    genCheckedObjAccessAux(c, le, objR, {gfNode})
    let idx = genField(c, le[0][1])
    c.gABC(le[0], opcWrObj, objR, idx, value)
    c.freeTemp(objR)
  of nkDotExpr:
    let dest = c.genx(le[0], {gfNode})
    let idx = genField(c, le[1])
    c.gABC(le, opcWrObj, dest, idx, value)
    c.freeTemp(dest)
  of nkDerefExpr, nkHiddenDeref:
    let dest = c.genx(le[0], {gfNode})
    c.gABC(le, opcWrDeref, dest, 0, value)
    c.freeTemp(dest)
  of nkSym:
    if le.sym.isGlobal:
      let dest = c.genx(le, {gfNodeAddr})
      c.gABC(le, opcWrDeref, dest, 0, value)
      c.freeTemp(dest)
  else:
    discard

proc genNew(c: PCtx; n: PNode) =
  let dest = if needsAsgnPatch(n[1]): c.getTemp(n[1].typ)
             else: c.genx(n[1])
  # we use the ref's base type here as the VM conflates 'ref object'
  # and 'object' since internally we already have a pointer.
  c.gABx(n, opcNew, dest,
         c.genType(n[1].typ.skipTypes(abstractVar-{tyTypeDesc})[0]))
  c.genAsgnPatch(n[1], dest)
  c.freeTemp(dest)

proc genNewSeq(c: PCtx; n: PNode) =
  let t = n[1].typ
  let dest = if needsAsgnPatch(n[1]): c.getTemp(t)
             else: c.genx(n[1])
  let tmp = c.genx(n[2])
  c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
                                                  abstractVar-{tyTypeDesc})))
  c.gABx(n, opcNewSeq, tmp, 0)
  c.freeTemp(tmp)
  c.genAsgnPatch(n[1], dest)
  c.freeTemp(dest)

proc genNewSeqOfCap(c: PCtx; n: PNode; dest: var TDest) =
  let t = n.typ
  if dest < 0:
    dest = c.getTemp(n.typ)
  let tmp = c.getTemp(n[1].typ)
  c.gABx(n, opcLdNull, dest, c.genType(t))
  c.gABx(n, opcLdImmInt, tmp, 0)
  c.gABx(n, opcNewSeq, dest, c.genType(t.skipTypes(
                                                  abstractVar-{tyTypeDesc})))
  c.gABx(n, opcNewSeq, tmp, 0)
  c.freeTemp(tmp)

proc genUnaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  let tmp = c.genx(n[1])
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABC(n, opc, dest, tmp)
  c.freeTemp(tmp)

proc genUnaryABI(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode; imm: BiggestInt=0) =
  let tmp = c.genx(n[1])
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABI(n, opc, dest, tmp, imm)
  c.freeTemp(tmp)


proc genBinaryABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  let
    tmp = c.genx(n[1])
    tmp2 = c.genx(n[2])
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABC(n, opc, dest, tmp, tmp2)
  c.freeTemp(tmp)
  c.freeTemp(tmp2)

proc genBinaryABCD(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  let
    tmp = c.genx(n[1])
    tmp2 = c.genx(n[2])
    tmp3 = c.genx(n[3])
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABC(n, opc, dest, tmp, tmp2)
  c.gABC(n, opc, tmp3)
  c.freeTemp(tmp)
  c.freeTemp(tmp2)
  c.freeTemp(tmp3)

template sizeOfLikeMsg(name): string =
  "'$1' requires '.importc' types to be '.completeStruct'" % [name]

proc genNarrow(c: PCtx; n: PNode; dest: TDest) =
  let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  # uint is uint64 in the VM, we we only need to mask the result for
  # other unsigned types:
  if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
    c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
  elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and t.size < 8):
    c.gABC(n, opcNarrowS, dest, TRegister(t.size*8))

proc genNarrowU(c: PCtx; n: PNode; dest: TDest) =
  let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
  # uint is uint64 in the VM, we we only need to mask the result for
  # other unsigned types:
  if t.kind in {tyUInt8..tyUInt32, tyInt8..tyInt32} or
    (t.kind in {tyUInt, tyInt} and t.size < 8):
    c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))

proc genBinaryABCnarrow(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  genBinaryABC(c, n, dest, opc)
  genNarrow(c, n, dest)

proc genBinaryABCnarrowU(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  genBinaryABC(c, n, dest, opc)
  genNarrowU(c, n, dest)

proc genSetType(c: PCtx; n: PNode; dest: TRegister) =
  let t = skipTypes(n.typ, abstractInst-{tyTypeDesc})
  if t.kind == tySet:
    c.gABx(n, opcSetType, dest, c.genType(t))

proc genBinarySet(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  let
    tmp = c.genx(n[1])
    tmp2 = c.genx(n[2])
  if dest < 0: dest = c.getTemp(n.typ)
  c.genSetType(n[1], tmp)
  c.genSetType(n[2], tmp2)
  c.gABC(n, opc, dest, tmp, tmp2)
  c.freeTemp(tmp)
  c.freeTemp(tmp2)

proc genBinaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
  let
    dest = c.genx(n[1])
    tmp = c.genx(n[2])
  c.gABC(n, opc, dest, tmp, 0)
  c.freeTemp(tmp)
  c.freeTemp(dest)

proc genBinaryStmtVar(c: PCtx; n: PNode; opc: TOpcode) =
  var x = n[1]
  if x.kind in {nkAddr, nkHiddenAddr}: x = x[0]
  let
    dest = c.genx(x)
    tmp = c.genx(n[2])
  c.gABC(n, opc, dest, tmp, 0)
  #c.genAsgnPatch(n[1], dest)
  c.freeTemp(tmp)
  c.freeTemp(dest)

proc genUnaryStmt(c: PCtx; n: PNode; opc: TOpcode) =
  let tmp = c.genx(n[1])
  c.gABC(n, opc, tmp, 0, 0)
  c.freeTemp(tmp)

proc genVarargsABC(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  if dest < 0: dest = getTemp(c, n.typ)
  var x = c.getTempRange(n.len-1, slotTempStr)
  for i in 1..<n.len:
    var r: TRegister = x+i-1
    c.gen(n[i], r)
  c.gABC(n, opc, dest, x, n.len-1)
  c.freeTempRange(x, n.len)

proc isInt8Lit(n: PNode): bool =
  if n.kind in {nkCharLit..nkUInt64Lit}:
    result = n.intVal >= low(int8) and n.intVal <= high(int8)

proc isInt16Lit(n: PNode): bool =
  if n.kind in {nkCharLit..nkUInt64Lit}:
    result = n.intVal >= low(int16) and n.intVal <= high(int16)

proc genAddSubInt(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode) =
  if n[2].isInt8Lit:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABI(n, succ(opc), dest, tmp, n[2].intVal)
    c.freeTemp(tmp)
  else:
    genBinaryABC(c, n, dest, opc)
  c.genNarrow(n, dest)

proc genConv(c: PCtx; n, arg: PNode; dest: var TDest; opc=opcConv) =
  if n.typ.kind == arg.typ.kind and arg.typ.kind == tyProc:
    # don't do anything for lambda lifting conversions:
    gen(c, arg, dest)
    return
  let tmp = c.genx(arg)
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABC(n, opc, dest, tmp)
  c.gABx(n, opc, 0, genType(c, n.typ.skipTypes({tyStatic})))
  c.gABx(n, opc, 0, genType(c, arg.typ.skipTypes({tyStatic})))
  c.freeTemp(tmp)

proc genCard(c: PCtx; n: PNode; dest: var TDest) =
  let tmp = c.genx(n[1])
  if dest < 0: dest = c.getTemp(n.typ)
  c.genSetType(n[1], tmp)
  c.gABC(n, opcCard, dest, tmp)
  c.freeTemp(tmp)

proc genCastIntFloat(c: PCtx; n: PNode; dest: var TDest) =
  const allowedIntegers = {tyInt..tyInt64, tyUInt..tyUInt64, tyChar}
  var signedIntegers = {tyInt..tyInt64}
  var unsignedIntegers = {tyUInt..tyUInt64, tyChar}
  let src = n[1].typ.skipTypes(abstractRange)#.kind
  let dst = n[0].typ.skipTypes(abstractRange)#.kind
  let srcSize = getSize(c.config, src)
  let dstSize = getSize(c.config, dst)
  if src.kind in allowedIntegers and dst.kind in allowedIntegers:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n[0].typ)
    c.gABC(n, opcAsgnInt, dest, tmp)
    if dstSize != sizeof(BiggestInt): # don't do anything on biggest int types
      if dst.kind in signedIntegers: # we need to do sign extensions
        if dstSize <= srcSize:
          # Sign extension can be omitted when the size increases.
          c.gABC(n, opcSignExtend, dest, TRegister(dstSize*8))
      elif dst.kind in unsignedIntegers:
        if src.kind in signedIntegers or dstSize < srcSize:
          # Cast from signed to unsigned always needs narrowing. Cast
          # from unsigned to unsigned only needs narrowing when target
          # is smaller than source.
          c.gABC(n, opcNarrowU, dest, TRegister(dstSize*8))
    c.freeTemp(tmp)
  elif srcSize == dstSize and src.kind in allowedIntegers and
                           dst.kind in {tyFloat, tyFloat32, tyFloat64}:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n[0].typ)
    if dst.kind == tyFloat32:
      c.gABC(n, opcCastIntToFloat32, dest, tmp)
    else:
      c.gABC(n, opcCastIntToFloat64, dest, tmp)
    c.freeTemp(tmp)

  elif srcSize == dstSize and src.kind in {tyFloat, tyFloat32, tyFloat64} and
                           dst.kind in allowedIntegers:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n[0].typ)
    if src.kind == tyFloat32:
      c.gABC(n, opcCastFloatToInt32, dest, tmp)
      if dst.kind in unsignedIntegers:
        # integers are sign extended by default.
        # since there is no opcCastFloatToUInt32, narrowing should do the trick.
        c.gABC(n, opcNarrowU, dest, TRegister(32))
    else:
      c.gABC(n, opcCastFloatToInt64, dest, tmp)
      # narrowing for 64 bits not needed (no extended sign bits available).
    c.freeTemp(tmp)
  elif src.kind in PtrLikeKinds + {tyRef} and dst.kind == tyInt:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n[0].typ)
    var imm: BiggestInt = if src.kind in PtrLikeKinds: 1 else: 2
    c.gABI(n, opcCastPtrToInt, dest, tmp, imm)
    c.freeTemp(tmp)
  elif src.kind in PtrLikeKinds + {tyInt} and dst.kind in PtrLikeKinds:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n[0].typ)
    c.gABx(n, opcSetType, dest, c.genType(dst))
    c.gABC(n, opcCastIntToPtr, dest, tmp)
    c.freeTemp(tmp)
  elif src.kind == tyNil and dst.kind in NilableTypes:
    # supports casting nil literals to NilableTypes in VM
    # see #16024
    if dest < 0: dest = c.getTemp(n[0].typ)
    genLit(c, n[1], dest)
  else:
    # todo: support cast from tyInt to tyRef
    globalError(c.config, n.info, "VM does not support 'cast' from " & $src.kind & " to " & $dst.kind)

proc genVoidABC(c: PCtx, n: PNode, dest: TDest, opcode: TOpcode) =
  unused(c, n, dest)
  var
    tmp1 = c.genx(n[1])
    tmp2 = c.genx(n[2])
    tmp3 = c.genx(n[3])
  c.gABC(n, opcode, tmp1, tmp2, tmp3)
  c.freeTemp(tmp1)
  c.freeTemp(tmp2)
  c.freeTemp(tmp3)

proc genBindSym(c: PCtx; n: PNode; dest: var TDest) =
  # nah, cannot use c.config.features because sempass context
  # can have local experimental switch
  # if dynamicBindSym notin c.config.features:
  if n.len == 2: # hmm, reliable?
    # bindSym with static input
    if n[1].kind in {nkClosedSymChoice, nkOpenSymChoice, nkSym}:
      let idx = c.genLiteral(n[1])
      if dest < 0: dest = c.getTemp(n.typ)
      c.gABx(n, opcNBindSym, dest, idx)
    else:
      localError(c.config, n.info, "invalid bindSym usage")
  else:
    # experimental bindSym
    if dest < 0: dest = c.getTemp(n.typ)
    let x = c.getTempRange(n.len, slotTempUnknown)

    # callee symbol
    var tmp0 = TDest(x)
    c.genLit(n[0], tmp0)

    # original parameters
    for i in 1..<n.len-2:
      var r = TRegister(x+i)
      c.gen(n[i], r)

    # info node
    var tmp1 = TDest(x+n.len-2)
    c.genLit(n[^2], tmp1)

    # payload idx
    var tmp2 = TDest(x+n.len-1)
    c.genLit(n[^1], tmp2)

    c.gABC(n, opcNDynBindSym, dest, x, n.len)
    c.freeTempRange(x, n.len)

proc fitsRegister*(t: PType): bool =
  assert t != nil
  t.skipTypes(abstractInst-{tyTypeDesc}).kind in {
    tyRange, tyEnum, tyBool, tyInt..tyUInt64, tyChar}

proc ldNullOpcode(t: PType): TOpcode =
  assert t != nil
  if fitsRegister(t): opcLdNullReg else: opcLdNull

proc whichAsgnOpc(n: PNode; requiresCopy = true): TOpcode =
  case n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc}).kind
  of tyBool, tyChar, tyEnum, tyOrdinal, tyInt..tyInt64, tyUInt..tyUInt64:
    opcAsgnInt
  of tyFloat..tyFloat128:
    opcAsgnFloat
  of tyRef, tyNil, tyVar, tyLent, tyPtr:
    opcAsgnRef
  else:
    (if requiresCopy: opcAsgnComplex else: opcFastAsgnComplex)

proc genMagic(c: PCtx; n: PNode; dest: var TDest; m: TMagic) =
  case m
  of mAnd: c.genAndOr(n, opcFJmp, dest)
  of mOr:  c.genAndOr(n, opcTJmp, dest)
  of mPred, mSubI:
    c.genAddSubInt(n, dest, opcSubInt)
  of mSucc, mAddI:
    c.genAddSubInt(n, dest, opcAddInt)
  of mInc, mDec:
    unused(c, n, dest)
    let isUnsigned = n[1].typ.skipTypes(abstractVarRange).kind in {tyUInt..tyUInt64}
    let opc = if not isUnsigned:
                if m == mInc: opcAddInt else: opcSubInt
              else:
                if m == mInc: opcAddu else: opcSubu
    let d = c.genx(n[1])
    if n[2].isInt8Lit and not isUnsigned:
      c.gABI(n, succ(opc), d, d, n[2].intVal)
    else:
      let tmp = c.genx(n[2])
      c.gABC(n, opc, d, d, tmp)
      c.freeTemp(tmp)
    c.genNarrow(n[1], d)
    c.genAsgnPatch(n[1], d)
    c.freeTemp(d)
  of mOrd, mChr, mArrToSeq, mUnown, mIsolate: c.gen(n[1], dest)
  of mNew, mNewFinalize:
    unused(c, n, dest)
    c.genNew(n)
  of mNewSeq:
    unused(c, n, dest)
    c.genNewSeq(n)
  of mNewSeqOfCap: c.genNewSeqOfCap(n, dest)
  of mNewString:
    genUnaryABC(c, n, dest, opcNewStr)
    # XXX buggy
  of mNewStringOfCap:
    # we ignore the 'cap' argument and translate it as 'newString(0)'.
    # eval n[1] for possible side effects:
    c.freeTemp(c.genx(n[1]))
    var tmp = c.getTemp(n[1].typ)
    c.gABx(n, opcLdImmInt, tmp, 0)
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABC(n, opcNewStr, dest, tmp)
    c.freeTemp(tmp)
    # XXX buggy
  of mLengthOpenArray, mLengthArray, mLengthSeq:
    genUnaryABI(c, n, dest, opcLenSeq)
  of mLengthStr:
    case n[1].typ.kind
    of tyString: genUnaryABI(c, n, dest, opcLenStr)
    of tyCString: genUnaryABI(c, n, dest, opcLenCstring)
    else: doAssert false, $n[1].typ.kind
  of mIncl, mExcl:
    unused(c, n, dest)
    var d = c.genx(n[1])
    var tmp = c.genx(n[2])
    c.genSetType(n[1], d)
    c.gABC(n, if m == mIncl: opcIncl else: opcExcl, d, tmp)
    c.freeTemp(d)
    c.freeTemp(tmp)
  of mCard: genCard(c, n, dest)
  of mMulI: genBinaryABCnarrow(c, n, dest, opcMulInt)
  of mDivI: genBinaryABCnarrow(c, n, dest, opcDivInt)
  of mModI: genBinaryABCnarrow(c, n, dest, opcModInt)
  of mAddF64: genBinaryABC(c, n, dest, opcAddFloat)
  of mSubF64: genBinaryABC(c, n, dest, opcSubFloat)
  of mMulF64: genBinaryABC(c, n, dest, opcMulFloat)
  of mDivF64: genBinaryABC(c, n, dest, opcDivFloat)
  of mShrI:
    # modified: genBinaryABC(c, n, dest, opcShrInt)
    # narrowU is applied to the left operandthe idea here is to narrow the left operand
    let tmp = c.genx(n[1])
    c.genNarrowU(n, tmp)
    let tmp2 = c.genx(n[2])
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABC(n, opcShrInt, dest, tmp, tmp2)
    c.freeTemp(tmp)
    c.freeTemp(tmp2)
  of mShlI:
    genBinaryABC(c, n, dest, opcShlInt)
    # genNarrowU modified
    let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
    if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
      c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
    elif t.kind in {tyInt8..tyInt32} or (t.kind == tyInt and t.size < 8):
      c.gABC(n, opcSignExtend, dest, TRegister(t.size*8))
  of mAshrI: genBinaryABC(c, n, dest, opcAshrInt)
  of mBitandI: genBinaryABC(c, n, dest, opcBitandInt)
  of mBitorI: genBinaryABC(c, n, dest, opcBitorInt)
  of mBitxorI: genBinaryABC(c, n, dest, opcBitxorInt)
  of mAddU: genBinaryABCnarrowU(c, n, dest, opcAddu)
  of mSubU: genBinaryABCnarrowU(c, n, dest, opcSubu)
  of mMulU: genBinaryABCnarrowU(c, n, dest, opcMulu)
  of mDivU: genBinaryABCnarrowU(c, n, dest, opcDivu)
  of mModU: genBinaryABCnarrowU(c, n, dest, opcModu)
  of mEqI, mEqB, mEqEnum, mEqCh:
    genBinaryABC(c, n, dest, opcEqInt)
  of mLeI, mLeEnum, mLeCh, mLeB:
    genBinaryABC(c, n, dest, opcLeInt)
  of mLtI, mLtEnum, mLtCh, mLtB:
    genBinaryABC(c, n, dest, opcLtInt)
  of mEqF64: genBinaryABC(c, n, dest, opcEqFloat)
  of mLeF64: genBinaryABC(c, n, dest, opcLeFloat)
  of mLtF64: genBinaryABC(c, n, dest, opcLtFloat)
  of mLePtr, mLeU: genBinaryABC(c, n, dest, opcLeu)
  of mLtPtr, mLtU: genBinaryABC(c, n, dest, opcLtu)
  of mEqProc, mEqRef:
    genBinaryABC(c, n, dest, opcEqRef)
  of mXor: genBinaryABC(c, n, dest, opcXor)
  of mNot: genUnaryABC(c, n, dest, opcNot)
  of mUnaryMinusI, mUnaryMinusI64:
    genUnaryABC(c, n, dest, opcUnaryMinusInt)
    genNarrow(c, n, dest)
  of mUnaryMinusF64: genUnaryABC(c, n, dest, opcUnaryMinusFloat)
  of mUnaryPlusI, mUnaryPlusF64: gen(c, n[1], dest)
  of mBitnotI:
    genUnaryABC(c, n, dest, opcBitnotInt)
    #genNarrowU modified, do not narrow signed types
    let t = skipTypes(n.typ, abstractVar-{tyTypeDesc})
    if t.kind in {tyUInt8..tyUInt32} or (t.kind == tyUInt and t.size < 8):
      c.gABC(n, opcNarrowU, dest, TRegister(t.size*8))
  of mCharToStr, mBoolToStr, mIntToStr, mInt64ToStr,
     mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr:
    genConv(c, n, n[1], dest)
  of mEqStr, mEqCString: genBinaryABC(c, n, dest, opcEqStr)
  of mLeStr: genBinaryABC(c, n, dest, opcLeStr)
  of mLtStr: genBinaryABC(c, n, dest, opcLtStr)
  of mEqSet: genBinarySet(c, n, dest, opcEqSet)
  of mLeSet: genBinarySet(c, n, dest, opcLeSet)
  of mLtSet: genBinarySet(c, n, dest, opcLtSet)
  of mMulSet: genBinarySet(c, n, dest, opcMulSet)
  of mPlusSet: genBinarySet(c, n, dest, opcPlusSet)
  of mMinusSet: genBinarySet(c, n, dest, opcMinusSet)
  of mConStrStr: genVarargsABC(c, n, dest, opcConcatStr)
  of mInSet: genBinarySet(c, n, dest, opcContainsSet)
  of mRepr: genUnaryABC(c, n, dest, opcRepr)
  of mExit:
    unused(c, n, dest)
    var tmp = c.genx(n[1])
    c.gABC(n, opcQuit, tmp)
    c.freeTemp(tmp)
  of mSetLengthStr, mSetLengthSeq:
    unused(c, n, dest)
    var d = c.genx(n[1])
    var tmp = c.genx(n[2])
    c.gABC(n, if m == mSetLengthStr: opcSetLenStr else: opcSetLenSeq, d, tmp)
    c.genAsgnPatch(n[1], d)
    c.freeTemp(tmp)
    c.freeTemp(d)
  of mSwap:
    unused(c, n, dest)
    c.gen(lowerSwap(c.graph, n, c.idgen, if c.prc == nil or c.prc.sym == nil: c.module else: c.prc.sym))
  of mIsNil: genUnaryABC(c, n, dest, opcIsNil)
  of mParseBiggestFloat:
    if dest < 0: dest = c.getTemp(n.typ)
    var d2: TRegister
    # skip 'nkHiddenAddr':
    let d2AsNode = n[2][0]
    if needsAsgnPatch(d2AsNode):
      d2 = c.getTemp(getSysType(c.graph, n.info, tyFloat))
    else:
      d2 = c.genx(d2AsNode)
    var
      tmp1 = c.genx(n[1])
      tmp3 = c.genx(n[3])
    c.gABC(n, opcParseFloat, dest, tmp1, d2)
    c.gABC(n, opcParseFloat, tmp3)
    c.freeTemp(tmp1)
    c.freeTemp(tmp3)
    c.genAsgnPatch(d2AsNode, d2)
    c.freeTemp(d2)
  of mReset:
    unused(c, n, dest)
    var d = c.genx(n[1])
    # XXX use ldNullOpcode() here?
    c.gABx(n, opcLdNull, d, c.genType(n[1].typ))
    c.gABx(n, opcNodeToReg, d, d)
    c.genAsgnPatch(n[1], d)
  of mDefault:
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABx(n, ldNullOpcode(n.typ), dest, c.genType(n.typ))
  of mOf, mIs:
    if dest < 0: dest = c.getTemp(n.typ)
    var tmp = c.genx(n[1])
    var idx = c.getTemp(getSysType(c.graph, n.info, tyInt))
    var typ = n[2].typ
    if m == mOf: typ = typ.skipTypes(abstractPtrs)
    c.gABx(n, opcLdImmInt, idx, c.genType(typ))
    c.gABC(n, if m == mOf: opcOf else: opcIs, dest, tmp, idx)
    c.freeTemp(tmp)
    c.freeTemp(idx)
  of mHigh:
    if dest < 0: dest = c.getTemp(n.typ)
    let tmp = c.genx(n[1])
    case n[1].typ.skipTypes(abstractVar-{tyTypeDesc}).kind:
    of tyString: c.gABI(n, opcLenStr, dest, tmp, 1)
    of tyCString: c.gABI(n, opcLenCstring, dest, tmp, 1)
    else: c.gABI(n, opcLenSeq, dest, tmp, 1)
    c.freeTemp(tmp)
  of mEcho:
    unused(c, n, dest)
    let n = n[1].skipConv
    if n.kind == nkBracket:
      # can happen for nim check, see bug #9609
      let x = c.getTempRange(n.len, slotTempUnknown)
      for i in 0..<n.len:
        var r: TRegister = x+i
        c.gen(n[i], r)
      c.gABC(n, opcEcho, x, n.len)
      c.freeTempRange(x, n.len)
  of mAppendStrCh:
    unused(c, n, dest)
    genBinaryStmtVar(c, n, opcAddStrCh)
  of mAppendStrStr:
    unused(c, n, dest)
    genBinaryStmtVar(c, n, opcAddStrStr)
  of mAppendSeqElem:
    unused(c, n, dest)
    genBinaryStmtVar(c, n, opcAddSeqElem)
  of mParseExprToAst:
    genUnaryABC(c, n, dest, opcParseExprToAst)
  of mParseStmtToAst:
    genUnaryABC(c, n, dest, opcParseStmtToAst)
  of mTypeTrait:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABx(n, opcSetType, tmp, c.genType(n[1].typ))
    c.gABC(n, opcTypeTrait, dest, tmp)
    c.freeTemp(tmp)
  of mSlurp: genUnaryABC(c, n, dest, opcSlurp)
  of mStaticExec: genBinaryABCD(c, n, dest, opcGorge)
  of mNLen: genUnaryABI(c, n, dest, opcLenSeq, nimNodeFlag)
  of mGetImpl: genUnaryABC(c, n, dest, opcGetImpl)
  of mGetImplTransf: genUnaryABC(c, n, dest, opcGetImplTransf)
  of mSymOwner: genUnaryABC(c, n, dest, opcSymOwner)
  of mSymIsInstantiationOf: genBinaryABC(c, n, dest, opcSymIsInstantiationOf)
  of mNChild: genBinaryABC(c, n, dest, opcNChild)
  of mNSetChild: genVoidABC(c, n, dest, opcNSetChild)
  of mNDel: genVoidABC(c, n, dest, opcNDel)
  of mNAdd: genBinaryABC(c, n, dest, opcNAdd)
  of mNAddMultiple: genBinaryABC(c, n, dest, opcNAddMultiple)
  of mNKind: genUnaryABC(c, n, dest, opcNKind)
  of mNSymKind: genUnaryABC(c, n, dest, opcNSymKind)

  of mNccValue: genUnaryABC(c, n, dest, opcNccValue)
  of mNccInc: genBinaryABC(c, n, dest, opcNccInc)
  of mNcsAdd: genBinaryABC(c, n, dest, opcNcsAdd)
  of mNcsIncl: genBinaryABC(c, n, dest, opcNcsIncl)
  of mNcsLen: genUnaryABC(c, n, dest, opcNcsLen)
  of mNcsAt: genBinaryABC(c, n, dest, opcNcsAt)
  of mNctPut: genVoidABC(c, n, dest, opcNctPut)
  of mNctLen: genUnaryABC(c, n, dest, opcNctLen)
  of mNctGet: genBinaryABC(c, n, dest, opcNctGet)
  of mNctHasNext: genBinaryABC(c, n, dest, opcNctHasNext)
  of mNctNext: genBinaryABC(c, n, dest, opcNctNext)

  of mNIntVal: genUnaryABC(c, n, dest, opcNIntVal)
  of mNFloatVal: genUnaryABC(c, n, dest, opcNFloatVal)
  of mNSymbol: genUnaryABC(c, n, dest, opcNSymbol)
  of mNIdent: genUnaryABC(c, n, dest, opcNIdent)
  of mNGetType:
    let tmp = c.genx(n[1])
    if dest < 0: dest = c.getTemp(n.typ)
    let rc = case n[0].sym.name.s:
      of "getType": 0
      of "typeKind": 1
      of "getTypeInst": 2
      else: 3  # "getTypeImpl"
    c.gABC(n, opcNGetType, dest, tmp, rc)
    c.freeTemp(tmp)
    #genUnaryABC(c, n, dest, opcNGetType)
  of mNSizeOf:
    let imm = case n[0].sym.name.s:
      of "getSize": 0
      of "getAlign": 1
      else: 2 # "getOffset"
    c.genUnaryABI(n, dest, opcNGetSize, imm)
  of mNStrVal: genUnaryABC(c, n, dest, opcNStrVal)
  of mNSigHash: genUnaryABC(c, n , dest, opcNSigHash)
  of mNSetIntVal:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetIntVal)
  of mNSetFloatVal:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetFloatVal)
  of mNSetSymbol:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetSymbol)
  of mNSetIdent:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetIdent)
  of mNSetType:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetType)
  of mNSetStrVal:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNSetStrVal)
  of mNNewNimNode: genBinaryABC(c, n, dest, opcNNewNimNode)
  of mNCopyNimNode: genUnaryABC(c, n, dest, opcNCopyNimNode)
  of mNCopyNimTree: genUnaryABC(c, n, dest, opcNCopyNimTree)
  of mNBindSym: genBindSym(c, n, dest)
  of mStrToIdent: genUnaryABC(c, n, dest, opcStrToIdent)
  of mEqIdent: genBinaryABC(c, n, dest, opcEqIdent)
  of mEqNimrodNode: genBinaryABC(c, n, dest, opcEqNimNode)
  of mSameNodeType: genBinaryABC(c, n, dest, opcSameNodeType)
  of mNLineInfo:
    case n[0].sym.name.s
    of "getFile": genUnaryABI(c, n, dest, opcNGetLineInfo, 0)
    of "getLine": genUnaryABI(c, n, dest, opcNGetLineInfo, 1)
    of "getColumn": genUnaryABI(c, n, dest, opcNGetLineInfo, 2)
    of "copyLineInfo":
      internalAssert c.config, n.len == 3
      unused(c, n, dest)
      genBinaryStmt(c, n, opcNSetLineInfo)
    else: internalAssert c.config, false
  of mNHint:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNHint)
  of mNWarning:
    unused(c, n, dest)
    genBinaryStmt(c, n, opcNWarning)
  of mNError:
    if n.len <= 1:
      # query error condition:
      c.gABC(n, opcQueryErrorFlag, dest)
    else:
      # setter
      unused(c, n, dest)
      genBinaryStmt(c, n, opcNError)
  of mNCallSite:
    if dest < 0: dest = c.getTemp(n.typ)
    c.gABC(n, opcCallSite, dest)
  of mNGenSym: genBinaryABC(c, n, dest, opcGenSym)
  of mMinI, mMaxI, mAbsI, mDotDot:
    c.genCall(n, dest)
  of mExpandToAst:
    if n.len != 2:
      globalError(c.config, n.info, "expandToAst requires 1 argument")
    let arg = n[1]
    if arg.kind in nkCallKinds:
      #if arg[0].kind != nkSym or arg[0].sym.kind notin {skTemplate, skMacro}:
      #      "ExpandToAst: expanded symbol is no macro or template"
      if dest < 0: dest = c.getTemp(n.typ)
      c.genCall(arg, dest)
      # do not call clearDest(n, dest) here as getAst has a meta-type as such
      # produces a value
    else:
      globalError(c.config, n.info, "expandToAst requires a call expression")
  of mSizeOf:
    globalError(c.config, n.info, sizeOfLikeMsg("sizeof"))
  of mAlignOf:
    globalError(c.config, n.info, sizeOfLikeMsg("alignof"))
  of mOffsetOf:
    globalError(c.config, n.info, sizeOfLikeMsg("offsetof"))
  of mRunnableExamples:
    discard "just ignore any call to runnableExamples"
  of mDestroy: discard "ignore calls to the default destructor"
  of mMove:
    let arg = n[1]
    let a = c.genx(arg)
    if dest < 0: dest = c.getTemp(arg.typ)
    gABC(c, arg, whichAsgnOpc(arg, requiresCopy=false), dest, a)
    # XXX use ldNullOpcode() here?
    c.gABx(n, opcLdNull, a, c.genType(arg.typ))
    c.gABx(n, opcNodeToReg, a, a)
    c.genAsgnPatch(arg, a)
    c.freeTemp(a)
  of mNodeId:
    c.genUnaryABC(n, dest, opcNodeId)
  else:
    # mGCref, mGCunref,
    globalError(c.config, n.info, "cannot generate code for: " & $m)

proc genMarshalLoad(c: PCtx, n: PNode, dest: var TDest) =
  ## Signature: proc to*[T](data: string): T
  if dest < 0: dest = c.getTemp(n.typ)
  var tmp = c.genx(n[1])
  c.gABC(n, opcMarshalLoad, dest, tmp)
  c.gABx(n, opcMarshalLoad, 0, c.genType(n.typ))
  c.freeTemp(tmp)

proc genMarshalStore(c: PCtx, n: PNode, dest: var TDest) =
  ## Signature: proc `$$`*[T](x: T): string
  if dest < 0: dest = c.getTemp(n.typ)
  var tmp = c.genx(n[1])
  c.gABC(n, opcMarshalStore, dest, tmp)
  c.gABx(n, opcMarshalStore, 0, c.genType(n[1].typ))
  c.freeTemp(tmp)

proc unneededIndirection(n: PNode): bool =
  n.typ.skipTypes(abstractInstOwned-{tyTypeDesc}).kind == tyRef

proc canElimAddr(n: PNode): PNode =
  if n[0].typ.skipTypes(abstractInst).kind in {tyObject, tyTuple, tyArray}:
    # objects are reference types in the VM
    return n[0]
  case n[0].kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    var m = n[0][0]
    if m.kind in {nkDerefExpr, nkHiddenDeref}:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      result = copyNode(n[0])
      result.add m[0]
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    var m = n[0][1]
    if m.kind in {nkDerefExpr, nkHiddenDeref}:
      # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x)
      result = copyNode(n[0])
      result.add m[0]
  else:
    if n[0].kind in {nkDerefExpr, nkHiddenDeref}:
      # addr ( deref ( x )) --> x
      result = n[0][0]

proc genAddr(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
  if (let m = canElimAddr(n); m != nil):
    gen(c, m, dest, flags)
    return

  let newflags = flags-{gfNode}+{gfNodeAddr}

  if isGlobal(n[0]) or n[0].kind in {nkDotExpr, nkCheckedFieldExpr, nkBracketExpr}:
    # checking for this pattern:  addr(obj.field) / addr(array[i])
    gen(c, n[0], dest, newflags)
  else:
    let tmp = c.genx(n[0], newflags)
    if dest < 0: dest = c.getTemp(n.typ)
    if c.prc.slots[tmp].kind >= slotTempUnknown:
      gABC(c, n, opcAddrNode, dest, tmp)
      # hack ahead; in order to fix bug #1781 we mark the temporary as
      # permanent, so that it's not used for anything else:
      c.prc.slots[tmp].kind = slotTempPerm
      # XXX this is still a hack
      #message(n.info, warnUser, "suspicious opcode used")
    else:
      gABC(c, n, opcAddrReg, dest, tmp)
    c.freeTemp(tmp)

proc genDeref(c: PCtx, n: PNode, dest: var TDest, flags: TGenFlags) =
  if unneededIndirection(n[0]):
    gen(c, n[0], dest, flags)
    if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
      c.gABC(n, opcNodeToReg, dest, dest)
  else:
    let tmp = c.genx(n[0], flags)
    if dest < 0: dest = c.getTemp(n.typ)
    gABC(c, n, opcLdDeref, dest, tmp)
    assert n.typ != nil
    if {gfNodeAddr, gfNode} * flags == {} and fitsRegister(n.typ):
      c.gABC(n, opcNodeToReg, dest, dest)
    c.freeTemp(tmp)

proc genAsgn(c: PCtx; dest: TDest; ri: PNode; requiresCopy: bool) =
  let tmp = c.genx(ri)
  assert dest >= 0
  gABC(c, ri, whichAsgnOpc(ri, requiresCopy), dest, tmp)
  c.freeTemp(tmp)

proc setSlot(c: PCtx; v: PSym) =
  # XXX generate type initialization here?
  if v.position == 0:
    v.position = getFreeRegister(c, if v.kind == skLet: slotFixedLet else: slotFixedVar, start = 1)

proc cannotEval(c: PCtx; n: PNode) {.noinline.} =
  globalError(c.config, n.info, "cannot evaluate at compile time: " &
    n.renderTree)

proc isOwnedBy(a, b: PSym): bool =
  var a = a.owner
  while a != nil and a.kind != skModule:
    if a == b: return true
    a = a.owner

proc getOwner(c: PCtx): PSym =
  result = c.prc.sym
  if result.isNil: result = c.module

proc importcCondVar*(s: PSym): bool {.inline.} =
  # see also importcCond
  if sfImportc in s.flags:
    return s.kind in {skVar, skLet, skConst}

proc checkCanEval(c: PCtx; n: PNode) =
  # we need to ensure that we don't evaluate 'x' here:
  # proc foo() = var x ...
  let s = n.sym
  if {sfCompileTime, sfGlobal} <= s.flags: return
  if s.importcCondVar: return
  if s.kind in {skVar, skTemp, skLet, skParam, skResult} and
      not s.isOwnedBy(c.prc.sym) and s.owner != c.module and c.mode != emRepl:
    # little hack ahead for bug #12612: assume gensym'ed variables
    # are in the right scope:
    if sfGenSym in s.flags and c.prc.sym == nil: discard
    else: cannotEval(c, n)
  elif s.kind in {skProc, skFunc, skConverter, skMethod,
                  skIterator} and sfForward in s.flags:
    cannotEval(c, n)

template needsAdditionalCopy(n): untyped =
  not c.isTemp(dest) and not fitsRegister(n.typ)

proc genAdditionalCopy(c: PCtx; n: PNode; opc: TOpcode;
                       dest, idx, value: TRegister) =
  var cc = c.getTemp(n.typ)
  c.gABC(n, whichAsgnOpc(n), cc, value)
  c.gABC(n, opc, dest, idx, cc)
  c.freeTemp(cc)

proc preventFalseAlias(c: PCtx; n: PNode; opc: TOpcode;
                       dest, idx, value: TRegister) =
  # opcLdObj et al really means "load address". We sometimes have to create a
  # copy in order to not introduce false aliasing:
  # mylocal = a.b  # needs a copy of the data!
  assert n.typ != nil
  if needsAdditionalCopy(n):
    genAdditionalCopy(c, n, opc, dest, idx, value)
  else:
    c.gABC(n, opc, dest, idx, value)

proc genAsgn(c: PCtx; le, ri: PNode; requiresCopy: bool) =
  case le.kind
  of nkBracketExpr:
    let dest = c.genx(le[0], {gfNode})
    let idx = c.genIndex(le[1], le[0].typ)
    let tmp = c.genx(ri)
    if le[0].typ.skipTypes(abstractVarRange-{tyTypeDesc}).kind in {
        tyString, tyCString}:
      c.preventFalseAlias(le, opcWrStrIdx, dest, idx, tmp)
    else:
      c.preventFalseAlias(le, opcWrArr, dest, idx, tmp)
    c.freeTemp(tmp)
    c.freeTemp(idx)
    c.freeTemp(dest)
  of nkCheckedFieldExpr:
    var objR: TDest = -1
    genCheckedObjAccessAux(c, le, objR, {gfNode})
    let idx = genField(c, le[0][1])
    let tmp = c.genx(ri)
    c.preventFalseAlias(le[0], opcWrObj, objR, idx, tmp)
    c.freeTemp(tmp)
    # c.freeTemp(idx) # BUGFIX, see nkDotExpr
    c.freeTemp(objR)
  of nkDotExpr:
    let dest = c.genx(le[0], {gfNode})
    let idx = genField(c, le[1])
    let tmp = c.genx(ri)
    c.preventFalseAlias(le, opcWrObj, dest, idx, tmp)
    # c.freeTemp(idx) # BUGFIX: idx is an immediate (field position), not a register
    c.freeTemp(tmp)
    c.freeTemp(dest)
  of nkDerefExpr, nkHiddenDeref:
    let dest = c.genx(le[0], {gfNode})
    let tmp = c.genx(ri)
    c.preventFalseAlias(le, opcWrDeref, dest, 0, tmp)
    c.freeTemp(dest)
    c.freeTemp(tmp)
  of nkSym:
    let s = le.sym
    checkCanEval(c, le)
    if s.isGlobal:
      withTemp(tmp, le.typ):
        c.gen(le, tmp, {gfNodeAddr})
        let val = c.genx(ri)
        c.preventFalseAlias(le, opcWrDeref, tmp, 0, val)
        c.freeTemp(val)
    else:
      if s.kind == skForVar: c.setSlot s
      internalAssert c.config, s.position > 0 or (s.position == 0 and
                                        s.kind in {skParam, skResult})
      var dest: TRegister = s.position + ord(s.kind == skParam)
      assert le.typ != nil
      if needsAdditionalCopy(le) and s.kind in {skResult, skVar, skParam}:
        var cc = c.getTemp(le.typ)
        gen(c, ri, cc)
        c.gABC(le, whichAsgnOpc(le), dest, cc)
        c.freeTemp(cc)
      else:
        gen(c, ri, dest)
  else:
    let dest = c.genx(le, {gfNodeAddr})
    genAsgn(c, dest, ri, requiresCopy)
    c.freeTemp(dest)

proc genTypeLit(c: PCtx; t: PType; dest: var TDest) =
  var n = newNode(nkType)
  n.typ = t
  genLit(c, n, dest)

proc importcCond*(c: PCtx; s: PSym): bool {.inline.} =
  ## return true to importc `s`, false to execute its body instead (refs #8405)
  if sfImportc in s.flags:
    if s.kind in routineKinds:
      return getBody(c.graph, s).kind == nkEmpty

proc importcSym(c: PCtx; info: TLineInfo; s: PSym) =
  when hasFFI:
    if compiletimeFFI in c.config.features:
      c.globals.add(importcSymbol(c.config, s))
      s.position = c.globals.len
    else:
      localError(c.config, info,
        "VM is not allowed to 'importc' without --experimental:compiletimeFFI")
  else:
    localError(c.config, info,
               "cannot 'importc' variable at compile time; " & s.name.s)

proc getNullValue*(typ: PType, info: TLineInfo; conf: ConfigRef): PNode

proc genGlobalInit(c: PCtx; n: PNode; s: PSym) =
  c.globals.add(getNullValue(s.typ, n.info, c.config))
  s.position = c.globals.len
  # This is rather hard to support, due to the laziness of the VM code
  # generator. See tests/compile/tmacro2 for why this is necessary:
  #   var decls{.compileTime.}: seq[NimNode] = @[]
  let dest = c.getTemp(s.typ)
  c.gABx(n, opcLdGlobal, dest, s.position)
  if s.astdef != nil:
    let tmp = c.genx(s.astdef)
    c.genAdditionalCopy(n, opcWrDeref, dest, 0, tmp)
    c.freeTemp(dest)
    c.freeTemp(tmp)

proc genRdVar(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  # gfNodeAddr and gfNode are mutually exclusive
  assert card(flags * {gfNodeAddr, gfNode}) < 2
  let s = n.sym
  if s.isGlobal:
    let isImportcVar = importcCondVar(s)
    if sfCompileTime in s.flags or c.mode == emRepl or isImportcVar:
      discard
    elif s.position == 0:
      cannotEval(c, n)
    if s.position == 0:
      if importcCond(c, s) or isImportcVar: c.importcSym(n.info, s)
      else: genGlobalInit(c, n, s)
    if dest < 0: dest = c.getTemp(n.typ)
    assert s.typ != nil

    if gfNodeAddr in flags:
      if isImportcVar:
        c.gABx(n, opcLdGlobalAddrDerefFFI, dest, s.position)
      else:
        c.gABx(n, opcLdGlobalAddr, dest, s.position)
    elif isImportcVar:
      c.gABx(n, opcLdGlobalDerefFFI, dest, s.position)
    elif fitsRegister(s.typ) and gfNode notin flags:
      var cc = c.getTemp(n.typ)
      c.gABx(n, opcLdGlobal, cc, s.position)
      c.gABC(n, opcNodeToReg, dest, cc)
      c.freeTemp(cc)
    else:
      c.gABx(n, opcLdGlobal, dest, s.position)
  else:
    if s.kind == skForVar and c.mode == emRepl: c.setSlot(s)
    if s.position > 0 or (s.position == 0 and
                          s.kind in {skParam, skResult}):
      if dest < 0:
        dest = s.position + ord(s.kind == skParam)
        internalAssert(c.config, c.prc.slots[dest].kind < slotSomeTemp)
      else:
        # we need to generate an assignment:
        let requiresCopy = c.prc.slots[dest].kind >= slotSomeTemp and
          gfIsParam notin flags
        genAsgn(c, dest, n, requiresCopy)
    else:
      # see tests/t99bott for an example that triggers it:
      cannotEval(c, n)

template needsRegLoad(): untyped =
  {gfNode, gfNodeAddr} * flags == {} and
    fitsRegister(n.typ.skipTypes({tyVar, tyLent, tyStatic}))

proc genArrAccessOpcode(c: PCtx; n: PNode; dest: var TDest; opc: TOpcode;
                        flags: TGenFlags) =
  let a = c.genx(n[0], flags)
  let b = c.genIndex(n[1], n[0].typ)
  if dest < 0: dest = c.getTemp(n.typ)
  if opc in {opcLdArrAddr, opcLdStrIdxAddr} and gfNodeAddr in flags:
    c.gABC(n, opc, dest, a, b)
  elif needsRegLoad():
    var cc = c.getTemp(n.typ)
    c.gABC(n, opc, cc, a, b)
    c.gABC(n, opcNodeToReg, dest, cc)
    c.freeTemp(cc)
  else:
    #message(n.info, warnUser, "argh")
    #echo "FLAGS ", flags, " ", fitsRegister(n.typ), " ", typeToString(n.typ)
    c.gABC(n, opc, dest, a, b)
  c.freeTemp(a)
  c.freeTemp(b)

proc genObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  let a = c.genx(n[0], flags)
  let b = genField(c, n[1])
  if dest < 0: dest = c.getTemp(n.typ)
  if {gfNodeAddr} * flags != {}:
    c.gABC(n, opcLdObjAddr, dest, a, b)
  elif needsRegLoad():
    var cc = c.getTemp(n.typ)
    c.gABC(n, opcLdObj, cc, a, b)
    c.gABC(n, opcNodeToReg, dest, cc)
    c.freeTemp(cc)
  else:
    c.gABC(n, opcLdObj, dest, a, b)
  c.freeTemp(a)

proc genCheckedObjAccessAux(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  internalAssert c.config, n.kind == nkCheckedFieldExpr
  # nkDotExpr to access the requested field
  let accessExpr = n[0]
  # nkCall to check if the discriminant is valid
  var checkExpr = n[1]

  let negCheck = checkExpr[0].sym.magic == mNot
  if negCheck:
    checkExpr = checkExpr[^1]

  # Discriminant symbol
  let disc = checkExpr[2]
  internalAssert c.config, disc.sym.kind == skField

  # Load the object in `dest`
  c.gen(accessExpr[0], dest, flags)
  # Load the discriminant
  var discVal = c.getTemp(disc.typ)
  c.gABC(n, opcLdObj, discVal, dest, genField(c, disc))
  # Check if its value is contained in the supplied set
  let setLit = c.genx(checkExpr[1])
  var rs = c.getTemp(getSysType(c.graph, n.info, tyBool))
  c.gABC(n, opcContainsSet, rs, setLit, discVal)
  c.freeTemp(discVal)
  c.freeTemp(setLit)
  # If the check fails let the user know
  let lab1 = c.xjmp(n, if negCheck: opcFJmp else: opcTJmp, rs)
  c.freeTemp(rs)
  let strType = getSysType(c.graph, n.info, tyString)
  var fieldNameRegister: TDest = c.getTemp(strType)
  let strLit = newStrNode($accessExpr[1], accessExpr[1].info)
  strLit.typ = strType
  c.genLit(strLit, fieldNameRegister)
  c.gABC(n, opcInvalidField, fieldNameRegister)
  c.freeTemp(fieldNameRegister)
  c.patch(lab1)

proc genCheckedObjAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  var objR: TDest = -1
  genCheckedObjAccessAux(c, n, objR, flags)

  let accessExpr = n[0]
  # Field symbol
  var field = accessExpr[1]
  internalAssert c.config, field.sym.kind == skField

  # Load the content now
  if dest < 0: dest = c.getTemp(n.typ)
  let fieldPos = genField(c, field)

  if {gfNodeAddr} * flags != {}:
    c.gABC(n, opcLdObjAddr, dest, objR, fieldPos)
  elif needsRegLoad():
    var cc = c.getTemp(accessExpr.typ)
    c.gABC(n, opcLdObj, cc, objR, fieldPos)
    c.gABC(n, opcNodeToReg, dest, cc)
    c.freeTemp(cc)
  else:
    c.gABC(n, opcLdObj, dest, objR, fieldPos)

  c.freeTemp(objR)

proc genArrAccess(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags) =
  let arrayType = n[0].typ.skipTypes(abstractVarRange-{tyTypeDesc}).kind
  if arrayType in {tyString, tyCString}:
    let opc = if gfNodeAddr in flags: opcLdStrIdxAddr else: opcLdStrIdx
    genArrAccessOpcode(c, n, dest, opc, flags)
  elif arrayType == tyTypeDesc:
    c.genTypeLit(n.typ, dest)
  else:
    let opc = if gfNodeAddr in flags: opcLdArrAddr else: opcLdArr
    genArrAccessOpcode(c, n, dest, opc, flags)

proc getNullValueAux(t: PType; obj: PNode, result: PNode; conf: ConfigRef; currPosition: var int) =
  if t != nil and t.len > 0 and t[0] != nil:
    let b = skipTypes(t[0], skipPtrs)
    getNullValueAux(b, b.n, result, conf, currPosition)
  case obj.kind
  of nkRecList:
    for i in 0..<obj.len: getNullValueAux(nil, obj[i], result, conf, currPosition)
  of nkRecCase:
    getNullValueAux(nil, obj[0], result, conf, currPosition)
    for i in 1..<obj.len:
      getNullValueAux(nil, lastSon(obj[i]), result, conf, currPosition)
  of nkSym:
    let field = newNodeI(nkExprColonExpr, result.info)
    field.add(obj)
    field.add(getNullValue(obj.sym.typ, result.info, conf))
    result.add field
    doAssert obj.sym.position == currPosition
    inc currPosition
  else: globalError(conf, result.info, "cannot create null element for: " & $obj)

proc getNullValue(typ: PType, info: TLineInfo; conf: ConfigRef): PNode =
  var t = skipTypes(typ, abstractRange+{tyStatic, tyOwned}-{tyTypeDesc})
  case t.kind
  of tyBool, tyEnum, tyChar, tyInt..tyInt64:
    result = newNodeIT(nkIntLit, info, t)
  of tyUInt..tyUInt64:
    result = newNodeIT(nkUIntLit, info, t)
  of tyFloat..tyFloat128:
    result = newNodeIT(nkFloatLit, info, t)
  of tyCString, tyString:
    result = newNodeIT(nkStrLit, info, t)
    result.strVal = ""
  of tyVar, tyLent, tyPointer, tyPtr, tyUntyped,
     tyTyped, tyTypeDesc, tyRef, tyNil:
    result = newNodeIT(nkNilLit, info, t)
  of tyProc:
    if t.callConv != ccClosure:
      result = newNodeIT(nkNilLit, info, t)
    else:
      result = newNodeIT(nkTupleConstr, info, t)
      result.add(newNodeIT(nkNilLit, info, t))
      result.add(newNodeIT(nkNilLit, info, t))
  of tyObject:
    result = newNodeIT(nkObjConstr, info, t)
    result.add(newNodeIT(nkEmpty, info, t))
    # initialize inherited fields, and all in the correct order:
    var currPosition = 0
    getNullValueAux(t, t.n, result, conf, currPosition)
  of tyArray:
    result = newNodeIT(nkBracket, info, t)
    for i in 0..<toInt(lengthOrd(conf, t)):
      result.add getNullValue(elemType(t), info, conf)
  of tyTuple:
    result = newNodeIT(nkTupleConstr, info, t)
    for i in 0..<t.len:
      result.add getNullValue(t[i], info, conf)
  of tySet:
    result = newNodeIT(nkCurly, info, t)
  of tySequence, tyOpenArray:
    result = newNodeIT(nkBracket, info, t)
  else:
    globalError(conf, info, "cannot create null element for: " & $t.kind)
    result = newNodeI(nkEmpty, info)

proc genVarSection(c: PCtx; n: PNode) =
  for a in n:
    if a.kind == nkCommentStmt: continue
    #assert(a[0].kind == nkSym) can happen for transformed vars
    if a.kind == nkVarTuple:
      for i in 0..<a.len-2:
        if a[i].kind == nkSym:
          if not a[i].sym.isGlobal: setSlot(c, a[i].sym)
          checkCanEval(c, a[i])
      c.gen(lowerTupleUnpacking(c.graph, a, c.idgen, c.getOwner))
    elif a[0].kind == nkSym:
      let s = a[0].sym
      checkCanEval(c, a[0])
      if s.isGlobal:
        if s.position == 0:
          if importcCond(c, s): c.importcSym(a.info, s)
          else:
            let sa = getNullValue(s.typ, a.info, c.config)
            #if s.ast.isNil: getNullValue(s.typ, a.info)
            #else: canonValue(s.ast)
            assert sa.kind != nkCall
            c.globals.add(sa)
            s.position = c.globals.len
        if a[2].kind != nkEmpty:
          let tmp = c.genx(a[0], {gfNodeAddr})
          let val = c.genx(a[2])
          c.genAdditionalCopy(a[2], opcWrDeref, tmp, 0, val)
          c.freeTemp(val)
          c.freeTemp(tmp)
      else:
        setSlot(c, s)
        if a[2].kind == nkEmpty:
          c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
        else:
          assert s.typ != nil
          if not fitsRegister(s.typ):
            c.gABx(a, ldNullOpcode(s.typ), s.position, c.genType(s.typ))
          let le = a[0]
          assert le.typ != nil
          if not fitsRegister(le.typ) and s.kind in {skResult, skVar, skParam}:
            var cc = c.getTemp(le.typ)
            gen(c, a[2], cc)
            c.gABC(le, whichAsgnOpc(le), s.position.TRegister, cc)
            c.freeTemp(cc)
          else:
            gen(c, a[2], s.position.TRegister)
    else:
      # assign to a[0]; happens for closures
      if a[2].kind == nkEmpty:
        let tmp = genx(c, a[0])
        c.gABx(a, ldNullOpcode(a[0].typ), tmp, c.genType(a[0].typ))
        c.freeTemp(tmp)
      else:
        genAsgn(c, a[0], a[2], true)

proc genArrayConstr(c: PCtx, n: PNode, dest: var TDest) =
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABx(n, opcLdNull, dest, c.genType(n.typ))

  let intType = getSysType(c.graph, n.info, tyInt)
  let seqType = n.typ.skipTypes(abstractVar-{tyTypeDesc})
  if seqType.kind == tySequence:
    var tmp = c.getTemp(intType)
    c.gABx(n, opcLdImmInt, tmp, n.len)
    c.gABx(n, opcNewSeq, dest, c.genType(seqType))
    c.gABx(n, opcNewSeq, tmp, 0)
    c.freeTemp(tmp)

  if n.len > 0:
    var tmp = getTemp(c, intType)
    c.gABx(n, opcLdNullReg, tmp, c.genType(intType))
    for x in n:
      let a = c.genx(x)
      c.preventFalseAlias(n, opcWrArr, dest, tmp, a)
      c.gABI(n, opcAddImmInt, tmp, tmp, 1)
      c.freeTemp(a)
    c.freeTemp(tmp)

proc genSetConstr(c: PCtx, n: PNode, dest: var TDest) =
  if dest < 0: dest = c.getTemp(n.typ)
  c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  for x in n:
    if x.kind == nkRange:
      let a = c.genx(x[0])
      let b = c.genx(x[1])
      c.gABC(n, opcInclRange, dest, a, b)
      c.freeTemp(b)
      c.freeTemp(a)
    else:
      let a = c.genx(x)
      c.gABC(n, opcIncl, dest, a)
      c.freeTemp(a)

proc genObjConstr(c: PCtx, n: PNode, dest: var TDest) =
  if dest < 0: dest = c.getTemp(n.typ)
  let t = n.typ.skipTypes(abstractRange+{tyOwned}-{tyTypeDesc})
  if t.kind == tyRef:
    c.gABx(n, opcNew, dest, c.genType(t[0]))
  else:
    c.gABx(n, opcLdNull, dest, c.genType(n.typ))
  for i in 1..<n.len:
    let it = n[i]
    if it.kind == nkExprColonExpr and it[0].kind == nkSym:
      let idx = genField(c, it[0])
      let tmp = c.genx(it[1])
      c.preventFalseAlias(it[1], opcWrObj,
                          dest, idx, tmp)
      c.freeTemp(tmp)
    else:
      globalError(c.config, n.info, "invalid object constructor")

proc genTupleConstr(c: PCtx, n: PNode, dest: var TDest) =
  if dest < 0: dest = c.getTemp(n.typ)
  if n.typ.kind != tyTypeDesc:
    c.gABx(n, opcLdNull, dest, c.genType(n.typ))
    # XXX x = (x.old, 22)  produces wrong code ... stupid self assignments
    for i in 0..<n.len:
      let it = n[i]
      if it.kind == nkExprColonExpr:
        let idx = genField(c, it[0])
        let tmp = c.genx(it[1])
        c.preventFalseAlias(it[1], opcWrObj,
                            dest, idx, tmp)
        c.freeTemp(tmp)
      else:
        let tmp = c.genx(it)
        c.preventFalseAlias(it, opcWrObj, dest, i.TRegister, tmp)
        c.freeTemp(tmp)

proc genProc*(c: PCtx; s: PSym): int

proc matches(s: PSym; x: string): bool =
  let y = x.split('.')
  var s = s
  for i in 1..y.len:
    if s == nil or (y[^i].cmpIgnoreStyle(s.name.s) != 0 and y[^i] != "*"):
      return false
    s = if sfFromGeneric in s.flags: s.owner.owner else: s.owner
    while s != nil and s.kind == skPackage and s.owner != nil: s = s.owner
  result = true

proc procIsCallback(c: PCtx; s: PSym): bool =
  if s.offset < -1: return true
  var i = -2
  for key, value in items(c.callbacks):
    if s.matches(key):
      doAssert s.offset == -1
      s.offset = i
      return true
    dec i

proc gen(c: PCtx; n: PNode; dest: var TDest; flags: TGenFlags = {}) =
  case n.kind
  of nkSym:
    let s = n.sym
    checkCanEval(c, n)
    case s.kind
    of skVar, skForVar, skTemp, skLet, skParam, skResult:
      genRdVar(c, n, dest, flags)
    of skProc, skFunc, skConverter, skMacro, skTemplate, skMethod, skIterator:
      # 'skTemplate' is only allowed for 'getAst' support:
      if s.kind == skIterator and s.typ.callConv == TCallingConvention.ccClosure:
        globalError(c.config, n.info, "Closure iterators are not supported by VM!")
      if procIsCallback(c, s): discard
      elif importcCond(c, s): c.importcSym(n.info, s)
      genLit(c, n, dest)
    of skConst:
      let constVal = if s.ast != nil: s.ast else: s.typ.n
      gen(c, constVal, dest)
    of skEnumField:
      # we never reach this case - as of the time of this comment,
      # skEnumField is folded to an int in semfold.nim, but this code
      # remains for robustness
      if dest < 0: dest = c.getTemp(n.typ)
      if s.position >= low(int16) and s.position <= high(int16):
        c.gABx(n, opcLdImmInt, dest, s.position)
      else:
        var lit = genLiteral(c, newIntNode(nkIntLit, s.position))
        c.gABx(n, opcLdConst, dest, lit)
    of skType:
      genTypeLit(c, s.typ, dest)
    of skGenericParam:
      if c.prc.sym != nil and c.prc.sym.kind == skMacro:
        genRdVar(c, n, dest, flags)
      else:
        globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
    else:
      globalError(c.config, n.info, "cannot generate code for: " & s.name.s)
  of nkCallKinds:
    if n[0].kind == nkSym:
      let s = n[0].sym
      if s.magic != mNone:
        genMagic(c, n, dest, s.magic)
      elif s.kind == skMethod:
        localError(c.config, n.info, "cannot call method " & s.name.s &
          " at compile time")
      elif matches(s, "stdlib.marshal.to"):
        # XXX marshal load&store should not be opcodes, but use the
        # general callback mechanisms.
        genMarshalLoad(c, n, dest)
      elif matches(s, "stdlib.marshal.$$"):
        genMarshalStore(c, n, dest)
      else:
        genCall(c, n, dest)
        clearDest(c, n, dest)
    else:
      genCall(c, n, dest)
      clearDest(c, n, dest)
  of nkCharLit..nkInt64Lit:
    if isInt16Lit(n):
      if dest < 0: dest = c.getTemp(n.typ)
      c.gABx(n, opcLdImmInt, dest, n.intVal.int)
    else:
      genLit(c, n, dest)
  of nkUIntLit..pred(nkNilLit): genLit(c, n, dest)
  of nkNilLit:
    if not n.typ.isEmptyType: genLit(c, getNullValue(n.typ, n.info, c.config), dest)
    else: unused(c, n, dest)
  of nkAsgn, nkFastAsgn:
    unused(c, n, dest)
    genAsgn(c, n[0], n[1], n.kind == nkAsgn)
  of nkDotExpr: genObjAccess(c, n, dest, flags)
  of nkCheckedFieldExpr: genCheckedObjAccess(c, n, dest, flags)
  of nkBracketExpr: genArrAccess(c, n, dest, flags)
  of nkDerefExpr, nkHiddenDeref: genDeref(c, n, dest, flags)
  of nkAddr, nkHiddenAddr: genAddr(c, n, dest, flags)
  of nkIfStmt, nkIfExpr: genIf(c, n, dest)
  of nkWhenStmt:
    # This is "when nimvm" node. Chose the first branch.
    gen(c, n[0][1], dest)
  of nkCaseStmt: genCase(c, n, dest)
  of nkWhileStmt:
    unused(c, n, dest)
    genWhile(c, n)
  of nkBlockExpr, nkBlockStmt: genBlock(c, n, dest)
  of nkReturnStmt:
    genReturn(c, n)
  of nkRaiseStmt:
    genRaise(c, n)
  of nkBreakStmt:
    genBreak(c, n)
  of nkTryStmt, nkHiddenTryStmt: genTry(c, n, dest)
  of nkStmtList:
    #unused(c, n, dest)
    # XXX Fix this bug properly, lexim triggers it
    for x in n: gen(c, x)
  of nkStmtListExpr:
    for i in 0..<n.len-1: gen(c, n[i])
    gen(c, n[^1], dest, flags)
  of nkPragmaBlock:
    gen(c, n.lastSon, dest, flags)
  of nkDiscardStmt:
    unused(c, n, dest)
    gen(c, n[0])
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    genConv(c, n, n[1], dest)
  of nkObjDownConv:
    genConv(c, n, n[0], dest)
  of nkObjUpConv:
    genConv(c, n, n[0], dest)
  of nkVarSection, nkLetSection:
    unused(c, n, dest)
    genVarSection(c, n)
  of declarativeDefs, nkMacroDef:
    unused(c, n, dest)
  of nkLambdaKinds:
    #let s = n[namePos].sym
    #discard genProc(c, s)
    genLit(c, newSymNode(n[namePos].sym), dest)
  of nkChckRangeF, nkChckRange64, nkChckRange:
    let
      tmp0 = c.genx(n[0])
      tmp1 = c.genx(n[1])
      tmp2 = c.genx(n[2])
    c.gABC(n, opcRangeChck, tmp0, tmp1, tmp2)
    c.freeTemp(tmp1)
    c.freeTemp(tmp2)
    if dest >= 0:
      gABC(c, n, whichAsgnOpc(n), dest, tmp0)
      c.freeTemp(tmp0)
    else:
      dest = tmp0
  of nkEmpty, nkCommentStmt, nkTypeSection, nkConstSection, nkPragma,
     nkTemplateDef, nkIncludeStmt, nkImportStmt, nkFromStmt, nkExportStmt:
    unused(c, n, dest)
  of nkStringToCString, nkCStringToString:
    gen(c, n[0], dest)
  of nkBracket: genArrayConstr(c, n, dest)
  of nkCurly: genSetConstr(c, n, dest)
  of nkObjConstr: genObjConstr(c, n, dest)
  of nkPar, nkClosure, nkTupleConstr: genTupleConstr(c, n, dest)
  of nkCast:
    if allowCast in c.features:
      genConv(c, n, n[1], dest, opcCast)
    else:
      genCastIntFloat(c, n, dest)
  of nkTypeOfExpr:
    genTypeLit(c, n.typ, dest)
  of nkComesFrom:
    discard "XXX to implement for better stack traces"
  else:
    if n.typ != nil and n.typ.isCompileTimeOnly:
      genTypeLit(c, n.typ, dest)
    else:
      globalError(c.config, n.info, "cannot generate VM code for " & $n)

proc removeLastEof(c: PCtx) =
  let last = c.code.len-1
  if last >= 0 and c.code[last].opcode == opcEof:
    # overwrite last EOF:
    assert c.code.len == c.debug.len
    c.code.setLen(last)
    c.debug.setLen(last)

proc genStmt*(c: PCtx; n: PNode): int =
  c.removeLastEof
  result = c.code.len
  var d: TDest = -1
  c.gen(n, d)
  c.gABC(n, opcEof)
  if d >= 0:
    globalError(c.config, n.info, "VM problem: dest register is set")

proc genExpr*(c: PCtx; n: PNode, requiresValue = true): int =
  c.removeLastEof
  result = c.code.len
  var d: TDest = -1
  c.gen(n, d)
  if d < 0:
    if requiresValue:
      globalError(c.config, n.info, "VM problem: dest register is not set")
    d = 0
  c.gABC(n, opcEof, d)

  #echo renderTree(n)
  #c.echoCode(result)

proc genParams(c: PCtx; params: PNode) =
  # res.sym.position is already 0
  c.prc.slots[0] = (inUse: true, kind: slotFixedVar)
  for i in 1..<params.len:
    c.prc.slots[i] = (inUse: true, kind: slotFixedLet)
  c.prc.maxSlots = max(params.len, 1)

proc finalJumpTarget(c: PCtx; pc, diff: int) =
  internalAssert(c.config, regBxMin < diff and diff < regBxMax)
  let oldInstr = c.code[pc]
  # opcode and regA stay the same:
  c.code[pc] = ((oldInstr.TInstrType and ((regOMask shl regOShift) or (regAMask shl regAShift))).TInstrType or
                TInstrType(diff+wordExcess) shl regBxShift).TInstr

proc genGenericParams(c: PCtx; gp: PNode) =
  var base = c.prc.maxSlots
  for i in 0..<gp.len:
    var param = gp[i].sym
    param.position = base + i # XXX: fix this earlier; make it consistent with templates
    c.prc.slots[base + i] = (inUse: true, kind: slotFixedLet)
  c.prc.maxSlots = base + gp.len

proc optimizeJumps(c: PCtx; start: int) =
  const maxIterations = 10
  for i in start..<c.code.len:
    let opc = c.code[i].opcode
    case opc
    of opcTJmp, opcFJmp:
      var reg = c.code[i].regA
      var d = i + c.code[i].jmpDiff
      for iters in countdown(maxIterations, 0):
        case c.code[d].opcode
        of opcJmp:
          d += c.code[d].jmpDiff
        of opcTJmp, opcFJmp:
          if c.code[d].regA != reg: break
          # tjmp x, 23
          # ...
          # tjmp x, 12
          # -- we know 'x' is true, and so can jump to 12+13:
          if c.code[d].opcode == opc:
            d += c.code[d].jmpDiff
          else:
            # tjmp x, 23
            # fjmp x, 22
            # We know 'x' is true so skip to the next instruction:
            d += 1
        else: break
      if d != i + c.code[i].jmpDiff:
        c.finalJumpTarget(i, d - i)
    of opcJmp, opcJmpBack:
      var d = i + c.code[i].jmpDiff
      var iters = maxIterations
      while c.code[d].opcode == opcJmp and iters > 0:
        d += c.code[d].jmpDiff
        dec iters
      if c.code[d].opcode == opcRet:
        # optimize 'jmp to ret' to 'ret' here
        c.code[i] = c.code[d]
      elif d != i + c.code[i].jmpDiff:
        c.finalJumpTarget(i, d - i)
    else: discard

proc genProc(c: PCtx; s: PSym): int =
  var x = s.ast[miscPos]
  if x.kind == nkEmpty or x[0].kind == nkEmpty:
    #if s.name.s == "outterMacro" or s.name.s == "innerProc":
    #  echo "GENERATING CODE FOR ", s.name.s
    let last = c.code.len-1
    var eofInstr: TInstr
    if last >= 0 and c.code[last].opcode == opcEof:
      eofInstr = c.code[last]
      c.code.setLen(last)
      c.debug.setLen(last)
    #c.removeLastEof
    result = c.code.len+1 # skip the jump instruction
    if x.kind == nkEmpty:
      x = newTree(nkBracket, newIntNode(nkIntLit, result), x)
    else:
      x[0] = newIntNode(nkIntLit, result)
    s.ast[miscPos] = x
    # thanks to the jmp we can add top level statements easily and also nest
    # procs easily:
    let body = transformBody(c.graph, c.idgen, s, cache = not isCompileTimeProc(s))
    let procStart = c.xjmp(body, opcJmp, 0)
    var p = PProc(blocks: @[], sym: s)
    let oldPrc = c.prc
    c.prc = p
    # iterate over the parameters and allocate space for them:
    genParams(c, s.typ.n)

    # allocate additional space for any generically bound parameters
    if s.kind == skMacro and s.ast[genericParamsPos].kind != nkEmpty:
      genGenericParams(c, s.ast[genericParamsPos])

    if tfCapturesEnv in s.typ.flags:
      #let env = s.ast[paramsPos].lastSon.sym
      #assert env.position == 2
      c.prc.slots[c.prc.maxSlots] = (inUse: true, kind: slotFixedLet)
      inc c.prc.maxSlots
    gen(c, body)
    # generate final 'return' statement:
    c.gABC(body, opcRet)
    c.patch(procStart)
    c.gABC(body, opcEof, eofInstr.regA)
    c.optimizeJumps(result)
    s.offset = c.prc.maxSlots
    #if s.name.s == "main" or s.name.s == "[]":
    #  echo renderTree(body)
    #  c.echoCode(result)
    c.prc = oldPrc
  else:
    c.prc.maxSlots = s.offset
    result = x[0].intVal.int