1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
|
#
#
# Doctor Nim
# (c) Copyright 2020 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
#[
- introduce Phi nodes to complete the SSA representation
- the analysis has to take 'break', 'continue' and 'raises' into account
- We need to map arrays to Z3 and test for something like 'forall(i, (i in 3..4) -> (a[i] > 3))'
- We need teach DrNim what 'inc', 'dec' and 'swap' mean, for example
'x in n..m; inc x' implies 'x in n+1..m+1'
]#
import std / [
parseopt, strutils, os, tables, times, intsets, hashes
]
import ".." / compiler / [
ast, astalgo, types, renderer,
commands, options, msgs,
platform, trees, wordrecg, guards,
idents, lineinfos, cmdlinehelper, modulegraphs, condsyms,
pathutils, passes, passaux, sem, modules
]
import z3 / z3_api
when not defined(windows):
# on UNIX we use static linking because UNIX's lib*.so system is broken
# beyond repair and the neckbeards don't understand software development.
{.passL: "dist/z3/build/libz3.a".}
const
HelpMessage = "DrNim Version $1 [$2: $3]\n" &
"Compiled at $4\n" &
"Copyright (c) 2006-" & copyrightYear & " by Andreas Rumpf\n"
const
Usage = """
drnim [options] [projectfile]
Options: Same options that the Nim compiler supports. Plus:
--assumeUnique Assume unique `ref` pointers. This makes the analysis unsound
but more useful for wild Nim code such as the Nim compiler
itself.
"""
proc getCommandLineDesc(conf: ConfigRef): string =
result = (HelpMessage % [system.NimVersion, platform.OS[conf.target.hostOS].name,
CPU[conf.target.hostCPU].name, CompileDate]) &
Usage
proc helpOnError(conf: ConfigRef) =
msgWriteln(conf, getCommandLineDesc(conf), {msgStdout})
msgQuit(0)
type
CannotMapToZ3Error = object of ValueError
Z3Exception = object of ValueError
VersionScope = distinct int
DrnimContext = ref object
z3: Z3_context
graph: ModuleGraph
idgen: IdGenerator
facts: seq[(PNode, VersionScope)]
varVersions: seq[int] # this maps variable IDs to their current version.
varSyms: seq[PSym] # mirrors 'varVersions'
o: Operators
hasUnstructedCf: int
currOptions: TOptions
owner: PSym
mangler: seq[PSym]
opImplies: PSym
DrCon = object
graph: ModuleGraph
idgen: IdGenerator
mapping: Table[string, Z3_ast]
canonParameterNames: bool
assumeUniqueness: bool
up: DrnimContext
var
assumeUniqueness: bool
proc echoFacts(c: DrnimContext) =
echo "FACTS:"
for i in 0 ..< c.facts.len:
let f = c.facts[i]
echo f[0], " version ", int(f[1])
proc isLoc(m: PNode; assumeUniqueness: bool): bool =
# We can reason about "locations" and map them to Z3 constants.
# For code that is full of "ref" (e.g. the Nim compiler itself) that
# is too limiting
proc isLet(n: PNode): bool =
if n.kind == nkSym:
if n.sym.kind in {skLet, skTemp, skForVar}:
result = true
elif n.sym.kind == skParam and skipTypes(n.sym.typ,
abstractInst).kind != tyVar:
result = true
var n = m
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv, nkHiddenDeref:
n = n[0]
of nkDerefExpr:
n = n[0]
if not assumeUniqueness: return false
of nkBracketExpr:
if isConstExpr(n[1]) or isLet(n[1]) or isConstExpr(n[1].skipConv):
n = n[0]
else: return
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n[1]
else:
break
if n.kind == nkSym:
case n.sym.kind
of skLet, skTemp, skForVar, skParam:
result = true
#of skParam:
# result = skipTypes(n.sym.typ, abstractInst).kind != tyVar
of skResult, skVar:
result = {sfAddrTaken} * n.sym.flags == {}
else:
discard
proc currentVarVersion(c: DrnimContext; s: PSym; begin: VersionScope): int =
# we need to take into account both en- and disabled var bindings here,
# hence the 'abs' call:
result = 0
for i in countdown(int(begin)-1, 0):
if abs(c.varVersions[i]) == s.id: inc result
proc previousVarVersion(c: DrnimContext; s: PSym; begin: VersionScope): int =
# we need to ignore currently disabled var bindings here,
# hence no 'abs' call here.
result = -1
for i in countdown(int(begin)-1, 0):
if c.varVersions[i] == s.id: inc result
proc disamb(c: DrnimContext; s: PSym): int =
# we group by 's.name.s' to compute the stable name ID.
result = 0
for i in 0 ..< c.mangler.len:
if s == c.mangler[i]: return result
if s.name.s == c.mangler[i].name.s: inc result
c.mangler.add s
proc stableName(result: var string; c: DrnimContext; n: PNode; version: VersionScope;
isOld: bool) =
# we can map full Nim expressions like 'f(a, b, c)' to Z3 variables.
# We must be careful to select a unique, stable name for these expressions
# based on structural equality. 'stableName' helps us with this problem.
# In the future we will also use this string for the caching mechanism.
case n.kind
of nkEmpty, nkNilLit, nkType: discard
of nkIdent:
result.add n.ident.s
of nkSym:
result.add n.sym.name.s
if n.sym.magic == mNone:
let d = disamb(c, n.sym)
if d != 0:
result.add "`scope="
result.addInt d
let v = if isOld: c.previousVarVersion(n.sym, version)
else: c.currentVarVersion(n.sym, version)
if v > 0:
result.add '`'
result.addInt v
else:
result.add "`magic="
result.addInt ord(n.sym.magic)
of nkBindStmt:
# we use 'bind x 3' to use the 3rd version of variable 'x'. This
# is easier than using 'old' which is position relative.
assert n.len == 2
assert n[0].kind == nkSym
assert n[1].kind == nkIntLit
let s = n[0].sym
let v = int(n[1].intVal)
result.add s.name.s
let d = disamb(c, s)
if d != 0:
result.add "`scope="
result.addInt d
if v > 0:
result.add '`'
result.addInt v
of nkCharLit..nkUInt64Lit:
result.addInt n.intVal
of nkFloatLit..nkFloat64Lit:
result.addFloat n.floatVal
of nkStrLit..nkTripleStrLit:
result.add strutils.escape n.strVal
of nkDotExpr:
stableName(result, c, n[0], version, isOld)
result.add '.'
stableName(result, c, n[1], version, isOld)
of nkBracketExpr:
stableName(result, c, n[0], version, isOld)
result.add '['
stableName(result, c, n[1], version, isOld)
result.add ']'
of nkCallKinds:
if n.len == 2:
stableName(result, c, n[1], version, isOld)
result.add '.'
case getMagic(n)
of mLengthArray, mLengthOpenArray, mLengthSeq, mLengthStr:
result.add "len"
of mHigh:
result.add "high"
of mLow:
result.add "low"
else:
stableName(result, c, n[0], version, isOld)
elif n.kind == nkInfix and n.len == 3:
result.add '('
stableName(result, c, n[1], version, isOld)
result.add ' '
stableName(result, c, n[0], version, isOld)
result.add ' '
stableName(result, c, n[2], version, isOld)
result.add ')'
else:
stableName(result, c, n[0], version, isOld)
result.add '('
for i in 1..<n.len:
if i > 1: result.add ", "
stableName(result, c, n[i], version, isOld)
result.add ')'
else:
result.add $n.kind
result.add '('
for i in 0..<n.len:
if i > 0: result.add ", "
stableName(result, c, n[i], version, isOld)
result.add ')'
proc stableName(c: DrnimContext; n: PNode; version: VersionScope;
isOld = false): string =
stableName(result, c, n, version, isOld)
template allScopes(c): untyped = VersionScope(c.varVersions.len)
template currentScope(c): untyped = VersionScope(c.varVersions.len)
proc notImplemented(msg: string) {.noinline.} =
when defined(debug):
writeStackTrace()
echo msg
raise newException(CannotMapToZ3Error, "; cannot map to Z3: " & msg)
proc notImplemented(n: PNode) {.noinline.} =
when defined(debug):
writeStackTrace()
raise newException(CannotMapToZ3Error, "; cannot map to Z3: " & $n)
proc notImplemented(t: PType) {.noinline.} =
when defined(debug):
writeStackTrace()
raise newException(CannotMapToZ3Error, "; cannot map to Z3: " & typeToString t)
proc translateEnsures(e, x: PNode): PNode =
if e.kind == nkSym and e.sym.kind == skResult:
result = x
else:
result = shallowCopy(e)
for i in 0 ..< safeLen(e):
result[i] = translateEnsures(e[i], x)
proc typeToZ3(c: DrCon; t: PType): Z3_sort =
template ctx: untyped = c.up.z3
case t.skipTypes(abstractInst+{tyVar}).kind
of tyEnum, tyInt..tyInt64:
result = Z3_mk_int_sort(ctx)
of tyBool:
result = Z3_mk_bool_sort(ctx)
of tyFloat..tyFloat128:
result = Z3_mk_fpa_sort_double(ctx)
of tyChar, tyUInt..tyUInt64:
result = Z3_mk_bv_sort(ctx, 64)
#cuint(getSize(c.graph.config, t) * 8))
else:
notImplemented(t)
template binary(op, a, b): untyped =
var arr = [a, b]
op(ctx, cuint(2), addr(arr[0]))
proc nodeToZ3(c: var DrCon; n: PNode; scope: VersionScope; vars: var seq[PNode]): Z3_ast
proc nodeToDomain(c: var DrCon; n, q: PNode; opAnd: PSym): PNode =
assert n.kind == nkInfix
let opLe = createMagic(c.graph, c.idgen, "<=", mLeI)
case $n[0]
of "..":
result = buildCall(opAnd, buildCall(opLe, n[1], q), buildCall(opLe, q, n[2]))
of "..<":
let opLt = createMagic(c.graph, c.idgen, "<", mLtI)
result = buildCall(opAnd, buildCall(opLe, n[1], q), buildCall(opLt, q, n[2]))
else:
notImplemented(n)
template quantorToZ3(fn) {.dirty.} =
template ctx: untyped = c.up.z3
var bound = newSeq[Z3_app](n.len-2)
let opAnd = createMagic(c.graph, c.idgen, "and", mAnd)
var known: PNode
for i in 1..n.len-2:
let it = n[i]
doAssert it.kind == nkInfix
let v = it[1].sym
let name = Z3_mk_string_symbol(ctx, v.name.s)
let vz3 = Z3_mk_const(ctx, name, typeToZ3(c, v.typ))
c.mapping[stableName(c.up, it[1], allScopes(c.up))] = vz3
bound[i-1] = Z3_to_app(ctx, vz3)
let domain = nodeToDomain(c, it[2], it[1], opAnd)
if known == nil:
known = domain
else:
known = buildCall(opAnd, known, domain)
var dummy: seq[PNode]
assert known != nil
let x = nodeToZ3(c, buildCall(createMagic(c.graph, c.idgen, "->", mImplies),
known, n[^1]), scope, dummy)
result = fn(ctx, 0, bound.len.cuint, addr(bound[0]), 0, nil, x)
proc forallToZ3(c: var DrCon; n: PNode; scope: VersionScope): Z3_ast = quantorToZ3(Z3_mk_forall_const)
proc existsToZ3(c: var DrCon; n: PNode; scope: VersionScope): Z3_ast = quantorToZ3(Z3_mk_exists_const)
proc paramName(c: DrnimContext; n: PNode): string =
case n.sym.kind
of skParam: result = "arg" & $n.sym.position
of skResult: result = "result"
else: result = stableName(c, n, allScopes(c))
proc nodeToZ3(c: var DrCon; n: PNode; scope: VersionScope; vars: var seq[PNode]): Z3_ast =
template ctx: untyped = c.up.z3
template rec(n): untyped = nodeToZ3(c, n, scope, vars)
case n.kind
of nkSym:
let key = if c.canonParameterNames: paramName(c.up, n) else: stableName(c.up, n, scope)
result = c.mapping.getOrDefault(key)
if pointer(result) == nil:
let name = Z3_mk_string_symbol(ctx, key)
result = Z3_mk_const(ctx, name, typeToZ3(c, n.sym.typ))
c.mapping[key] = result
vars.add n
of nkCharLit..nkUInt64Lit:
if n.typ != nil and n.typ.skipTypes(abstractInst).kind in {tyInt..tyInt64}:
# optimized for the common case
result = Z3_mk_int64(ctx, clonglong(n.intval), Z3_mk_int_sort(ctx))
elif n.typ != nil and n.typ.kind == tyBool:
result = if n.intval != 0: Z3_mk_true(ctx) else: Z3_mk_false(ctx)
elif n.typ != nil and isUnsigned(n.typ):
result = Z3_mk_unsigned_int64(ctx, cast[uint64](n.intVal), typeToZ3(c, n.typ))
else:
let zt = if n.typ == nil: Z3_mk_int_sort(ctx) else: typeToZ3(c, n.typ)
result = Z3_mk_numeral(ctx, $getOrdValue(n), zt)
of nkFloatLit..nkFloat64Lit:
result = Z3_mk_fpa_numeral_double(ctx, n.floatVal, Z3_mk_fpa_sort_double(ctx))
of nkCallKinds:
assert n.len > 0
let operator = getMagic(n)
case operator
of mEqI, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
mEqStr, mEqSet, mEqCString:
result = Z3_mk_eq(ctx, rec n[1], rec n[2])
of mLeI, mLeEnum, mLeCh, mLeB, mLePtr, mLeStr:
result = Z3_mk_le(ctx, rec n[1], rec n[2])
of mLtI, mLtEnum, mLtCh, mLtB, mLtPtr, mLtStr:
result = Z3_mk_lt(ctx, rec n[1], rec n[2])
of mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq:
# len(x) needs the same logic as 'x' itself
if isLoc(n[1], c.assumeUniqueness):
let key = stableName(c.up, n, scope)
result = c.mapping.getOrDefault(key)
if pointer(result) == nil:
let name = Z3_mk_string_symbol(ctx, key)
result = Z3_mk_const(ctx, name, Z3_mk_int_sort(ctx))
c.mapping[key] = result
vars.add n
else:
notImplemented(n)
of mHigh:
let addOpr = createMagic(c.graph, c.idgen, "+", mAddI)
let lenOpr = createMagic(c.graph, c.idgen, "len", mLengthOpenArray)
let asLenExpr = addOpr.buildCall(lenOpr.buildCall(n[1]), nkIntLit.newIntNode(-1))
result = rec asLenExpr
of mLow:
result = rec lowBound(c.graph.config, n[1])
of mAddI, mSucc:
result = binary(Z3_mk_add, rec n[1], rec n[2])
of mSubI, mPred:
result = binary(Z3_mk_sub, rec n[1], rec n[2])
of mMulI:
result = binary(Z3_mk_mul, rec n[1], rec n[2])
of mDivI:
result = Z3_mk_div(ctx, rec n[1], rec n[2])
of mModI:
result = Z3_mk_mod(ctx, rec n[1], rec n[2])
of mMaxI:
# max(a, b) <=> ite(a < b, b, a)
result = Z3_mk_ite(ctx, Z3_mk_lt(ctx, rec n[1], rec n[2]),
rec n[2], rec n[1])
of mMinI:
# min(a, b) <=> ite(a < b, a, b)
result = Z3_mk_ite(ctx, Z3_mk_lt(ctx, rec n[1], rec n[2]),
rec n[1], rec n[2])
of mLeU:
result = Z3_mk_bvule(ctx, rec n[1], rec n[2])
of mLtU:
result = Z3_mk_bvult(ctx, rec n[1], rec n[2])
of mAnd:
# 'a and b' <=> ite(a, b, false)
result = Z3_mk_ite(ctx, rec n[1], rec n[2], Z3_mk_false(ctx))
#result = binary(Z3_mk_and, rec n[1], rec n[2])
of mOr:
result = Z3_mk_ite(ctx, rec n[1], Z3_mk_true(ctx), rec n[2])
#result = binary(Z3_mk_or, rec n[1], rec n[2])
of mXor:
result = Z3_mk_xor(ctx, rec n[1], rec n[2])
of mNot:
result = Z3_mk_not(ctx, rec n[1])
of mImplies:
result = Z3_mk_implies(ctx, rec n[1], rec n[2])
of mIff:
result = Z3_mk_iff(ctx, rec n[1], rec n[2])
of mForall:
result = forallToZ3(c, n, scope)
of mExists:
result = existsToZ3(c, n, scope)
of mLeF64:
result = Z3_mk_fpa_leq(ctx, rec n[1], rec n[2])
of mLtF64:
result = Z3_mk_fpa_lt(ctx, rec n[1], rec n[2])
of mAddF64:
result = Z3_mk_fpa_add(ctx, Z3_mk_fpa_round_nearest_ties_to_even(ctx), rec n[1], rec n[2])
of mSubF64:
result = Z3_mk_fpa_sub(ctx, Z3_mk_fpa_round_nearest_ties_to_even(ctx), rec n[1], rec n[2])
of mMulF64:
result = Z3_mk_fpa_mul(ctx, Z3_mk_fpa_round_nearest_ties_to_even(ctx), rec n[1], rec n[2])
of mDivF64:
result = Z3_mk_fpa_div(ctx, Z3_mk_fpa_round_nearest_ties_to_even(ctx), rec n[1], rec n[2])
of mShrI:
# XXX handle conversions from int to uint here somehow
result = Z3_mk_bvlshr(ctx, rec n[1], rec n[2])
of mAshrI:
result = Z3_mk_bvashr(ctx, rec n[1], rec n[2])
of mShlI:
result = Z3_mk_bvshl(ctx, rec n[1], rec n[2])
of mBitandI:
result = Z3_mk_bvand(ctx, rec n[1], rec n[2])
of mBitorI:
result = Z3_mk_bvor(ctx, rec n[1], rec n[2])
of mBitxorI:
result = Z3_mk_bvxor(ctx, rec n[1], rec n[2])
of mOrd, mChr:
result = rec n[1]
of mOld:
let key = if c.canonParameterNames: (paramName(c.up, n[1]) & ".old")
else: stableName(c.up, n[1], scope, isOld = true)
result = c.mapping.getOrDefault(key)
if pointer(result) == nil:
let name = Z3_mk_string_symbol(ctx, key)
result = Z3_mk_const(ctx, name, typeToZ3(c, n[1].typ))
c.mapping[key] = result
# XXX change the logic in `addRangeInfo` for this
#vars.add n
else:
# sempass2 adds some 'fact' like 'x = f(a, b)' (see addAsgnFact)
# 'f(a, b)' can have an .ensures annotation and we need to make use
# of this information.
# we need to map 'f(a, b)' to a Z3 variable of this name
let op = n[0].typ
if op != nil and op.n != nil and op.n.len > 0 and op.n[0].kind == nkEffectList and
ensuresEffects < op.n[0].len:
let ensures = op.n[0][ensuresEffects]
if ensures != nil and ensures.kind != nkEmpty:
let key = stableName(c.up, n, scope)
result = c.mapping.getOrDefault(key)
if pointer(result) == nil:
let name = Z3_mk_string_symbol(ctx, key)
result = Z3_mk_const(ctx, name, typeToZ3(c, n.typ))
c.mapping[key] = result
vars.add n
if pointer(result) == nil:
notImplemented(n)
of nkStmtListExpr, nkPar:
var isTrivial = true
for i in 0..n.len-2:
isTrivial = isTrivial and n[i].kind in {nkEmpty, nkCommentStmt}
if isTrivial:
result = rec n[^1]
else:
notImplemented(n)
of nkHiddenDeref:
result = rec n[0]
else:
if isLoc(n, c.assumeUniqueness):
let key = stableName(c.up, n, scope)
result = c.mapping.getOrDefault(key)
if pointer(result) == nil:
let name = Z3_mk_string_symbol(ctx, key)
result = Z3_mk_const(ctx, name, typeToZ3(c, n.typ))
c.mapping[key] = result
vars.add n
else:
notImplemented(n)
proc addRangeInfo(c: var DrCon, n: PNode; scope: VersionScope, res: var seq[Z3_ast]) =
var cmpOp = mLeI
if n.typ != nil:
cmpOp =
case n.typ.skipTypes(abstractInst).kind
of tyFloat..tyFloat128: mLeF64
of tyChar, tyUInt..tyUInt64: mLeU
else: mLeI
var lowBound, highBound: PNode
if n.kind == nkSym:
let v = n.sym
let t = v.typ.skipTypes(abstractInst - {tyRange})
case t.kind
of tyRange:
lowBound = t.n[0]
highBound = t.n[1]
of tyFloat..tyFloat128:
# no range information for non-range'd floats
return
of tyUInt..tyUInt64, tyChar:
lowBound = newIntNode(nkUInt64Lit, firstOrd(nil, v.typ))
lowBound.typ = v.typ
highBound = newIntNode(nkUInt64Lit, lastOrd(nil, v.typ))
highBound.typ = v.typ
of tyInt..tyInt64, tyEnum:
lowBound = newIntNode(nkInt64Lit, firstOrd(nil, v.typ))
highBound = newIntNode(nkInt64Lit, lastOrd(nil, v.typ))
else:
# no range information available:
return
elif n.kind in nkCallKinds and n.len == 2 and n[0].kind == nkSym and
n[0].sym.magic in {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq}:
# we know it's a 'len(x)' expression and we seek to teach
# Z3 that the result is >= 0 and <= high(int).
doAssert n.kind in nkCallKinds
doAssert n[0].kind == nkSym
doAssert n.len == 2
lowBound = newIntNode(nkInt64Lit, 0)
if n.typ != nil:
highBound = newIntNode(nkInt64Lit, lastOrd(nil, n.typ))
else:
highBound = newIntNode(nkInt64Lit, high(int64))
else:
let op = n[0].typ
if op != nil and op.n != nil and op.n.len > 0 and op.n[0].kind == nkEffectList and
ensuresEffects < op.n[0].len:
let ensures = op.n[0][ensuresEffects]
if ensures != nil and ensures.kind != nkEmpty:
var dummy: seq[PNode]
res.add nodeToZ3(c, translateEnsures(ensures, n), scope, dummy)
return
let x = newTree(nkInfix, newSymNode createMagic(c.graph, c.idgen, "<=", cmpOp), lowBound, n)
let y = newTree(nkInfix, newSymNode createMagic(c.graph, c.idgen, "<=", cmpOp), n, highBound)
var dummy: seq[PNode]
res.add nodeToZ3(c, x, scope, dummy)
res.add nodeToZ3(c, y, scope, dummy)
proc on_err(ctx: Z3_context, e: Z3_error_code) {.nimcall.} =
#writeStackTrace()
let msg = $Z3_get_error_msg(ctx, e)
raise newException(Z3Exception, msg)
proc forall(ctx: Z3_context; vars: seq[Z3_ast]; assumption, body: Z3_ast): Z3_ast =
let x = Z3_mk_implies(ctx, assumption, body)
if vars.len > 0:
var bound: seq[Z3_app]
for v in vars: bound.add Z3_to_app(ctx, v)
result = Z3_mk_forall_const(ctx, 0, bound.len.cuint, addr(bound[0]), 0, nil, x)
else:
result = x
proc conj(ctx: Z3_context; conds: seq[Z3_ast]): Z3_ast =
if conds.len > 0:
result = Z3_mk_and(ctx, cuint(conds.len), unsafeAddr conds[0])
else:
result = Z3_mk_true(ctx)
proc setupZ3(): Z3_context =
let cfg = Z3_mk_config()
when false:
Z3_set_param_value(cfg, "timeout", "1000")
Z3_set_param_value(cfg, "model", "true")
result = Z3_mk_context(cfg)
Z3_del_config(cfg)
Z3_set_error_handler(result, on_err)
proc proofEngineAux(c: var DrCon; assumptions: seq[(PNode, VersionScope)];
toProve: (PNode, VersionScope)): (bool, string) =
c.mapping = initTable[string, Z3_ast]()
try:
#[
For example, let's have these facts:
i < 10
i > 0
Question:
i + 3 < 13
What we need to produce:
forall(i, (i < 10) & (i > 0) -> (i + 3 < 13))
]#
var collectedVars: seq[PNode]
template ctx(): untyped = c.up.z3
let solver = Z3_mk_solver(ctx)
var lhs: seq[Z3_ast]
for assumption in items(assumptions):
try:
let za = nodeToZ3(c, assumption[0], assumption[1], collectedVars)
#Z3_solver_assert ctx, solver, za
lhs.add za
except CannotMapToZ3Error:
discard "ignore a fact we cannot map to Z3"
let z3toProve = nodeToZ3(c, toProve[0], toProve[1], collectedVars)
for v in collectedVars:
addRangeInfo(c, v, toProve[1], lhs)
# to make Z3 produce nice counterexamples, we try to prove the
# negation of our conjecture and see if it's Z3_L_FALSE
let fa = Z3_mk_not(ctx, Z3_mk_implies(ctx, conj(ctx, lhs), z3toProve))
#Z3_mk_not(ctx, forall(ctx, collectedVars, conj(ctx, lhs), z3toProve))
when defined(dz3):
echo "toProve: ", Z3_ast_to_string(ctx, fa), " ", c.graph.config $ toProve[0].info, " ", int(toProve[1])
Z3_solver_assert ctx, solver, fa
let z3res = Z3_solver_check(ctx, solver)
result[0] = z3res == Z3_L_FALSE
result[1] = ""
if not result[0]:
let counterex = strip($Z3_model_to_string(ctx, Z3_solver_get_model(ctx, solver)))
if counterex.len > 0:
result[1].add "; counter example: " & counterex
except ValueError:
result[0] = false
result[1] = getCurrentExceptionMsg()
proc proofEngine(ctx: DrnimContext; assumptions: seq[(PNode, VersionScope)];
toProve: (PNode, VersionScope)): (bool, string) =
var c: DrCon
c.graph = ctx.graph
c.idgen = ctx.idgen
c.assumeUniqueness = assumeUniqueness
c.up = ctx
result = proofEngineAux(c, assumptions, toProve)
proc skipAddr(n: PNode): PNode {.inline.} =
(if n.kind == nkHiddenAddr: n[0] else: n)
proc translateReq(r, call: PNode): PNode =
if r.kind == nkSym and r.sym.kind == skParam:
if r.sym.position+1 < call.len:
result = call[r.sym.position+1].skipAddr
else:
notImplemented("no argument given for formal parameter: " & r.sym.name.s)
else:
result = shallowCopy(r)
for i in 0 ..< safeLen(r):
result[i] = translateReq(r[i], call)
proc requirementsCheck(ctx: DrnimContext; assumptions: seq[(PNode, VersionScope)];
call, requirement: PNode): (bool, string) =
try:
let r = translateReq(requirement, call)
result = proofEngine(ctx, assumptions, (r, ctx.currentScope))
except ValueError:
result[0] = false
result[1] = getCurrentExceptionMsg()
proc compatibleProps(graph: ModuleGraph; formal, actual: PType): bool {.nimcall.} =
#[
Thoughts on subtyping rules for 'proc' types:
proc a(y: int) {.requires: y > 0.} # a is 'weaker' than F
# 'requires' must be weaker (or equal)
# 'ensures' must be stronger (or equal)
# a 'is weaker than' b iff b -> a
# a 'is stronger than' b iff a -> b
# --> We can use Z3 to compute whether 'var x: T = q' is valid
type
F = proc (y: int) {.requires: y > 5.}
var
x: F = a # valid?
]#
proc isEmpty(n: PNode): bool {.inline.} = n == nil or n.safeLen == 0
result = true
if formal.n != nil and formal.n.len > 0 and formal.n[0].kind == nkEffectList and
ensuresEffects < formal.n[0].len:
let frequires = formal.n[0][requiresEffects]
let fensures = formal.n[0][ensuresEffects]
if actual.n != nil and actual.n.len > 0 and actual.n[0].kind == nkEffectList and
ensuresEffects < actual.n[0].len:
let arequires = actual.n[0][requiresEffects]
let aensures = actual.n[0][ensuresEffects]
var c: DrCon
c.graph = graph
c.idgen = graph.idgen
c.canonParameterNames = true
try:
c.up = DrnimContext(z3: setupZ3(), o: initOperators(graph), graph: graph, owner: nil,
opImplies: createMagic(graph, c.idgen, "->", mImplies))
template zero: untyped = VersionScope(0)
if not frequires.isEmpty:
result = not arequires.isEmpty and proofEngineAux(c, @[(frequires, zero)], (arequires, zero))[0]
if result:
if not fensures.isEmpty:
result = not aensures.isEmpty and proofEngineAux(c, @[(aensures, zero)], (fensures, zero))[0]
finally:
Z3_del_context(c.up.z3)
else:
# formal has requirements but 'actual' has none, so make it
# incompatible. XXX What if the requirement only mentions that
# we already know from the type system?
result = frequires.isEmpty and fensures.isEmpty
template config(c: typed): untyped = c.graph.config
proc addFact(c: DrnimContext; n: PNode) =
let v = c.currentScope
if n.kind in nkCallKinds and n[0].kind == nkSym and n[0].sym.magic in {mOr, mAnd}:
c.addFact(n[1])
c.facts.add((n, v))
proc neg(c: DrnimContext; n: PNode): PNode =
result = newNodeI(nkCall, n.info, 2)
result[0] = newSymNode(c.o.opNot)
result[1] = n
proc addFactNeg(c: DrnimContext; n: PNode) =
addFact(c, neg(c, n))
proc combineFacts(c: DrnimContext; a, b: PNode): PNode =
if a == nil:
result = b
else:
result = buildCall(c.o.opAnd, a, b)
proc prove(c: DrnimContext; prop: PNode): bool =
let (success, m) = proofEngine(c, c.facts, (prop, c.currentScope))
if not success:
message(c.config, prop.info, warnStaticIndexCheck, "cannot prove: " & $prop & m)
result = success
proc traversePragmaStmt(c: DrnimContext, n: PNode) =
for it in n:
if it.kind == nkExprColonExpr:
let pragma = whichPragma(it)
if pragma == wAssume:
addFact(c, it[1])
elif pragma == wInvariant or pragma == wAssert:
if prove(c, it[1]):
addFact(c, it[1])
else:
echoFacts(c)
proc requiresCheck(c: DrnimContext, call: PNode; op: PType) =
assert op.n[0].kind == nkEffectList
if requiresEffects < op.n[0].len:
let requires = op.n[0][requiresEffects]
if requires != nil and requires.kind != nkEmpty:
# we need to map the call arguments to the formal parameters used inside
# 'requires':
let (success, m) = requirementsCheck(c, c.facts, call, requires)
if not success:
message(c.config, call.info, warnStaticIndexCheck, "cannot prove: " & $requires & m)
proc freshVersion(c: DrnimContext; arg: PNode) =
let v = getRoot(arg)
if v != nil:
c.varVersions.add v.id
c.varSyms.add v
proc translateEnsuresFromCall(c: DrnimContext, e, call: PNode): PNode =
if e.kind in nkCallKinds and e[0].kind == nkSym and e[0].sym.magic == mOld:
assert e[1].kind == nkSym and e[1].sym.kind == skParam
let param = e[1].sym
let arg = call[param.position+1].skipAddr
result = buildCall(e[0].sym, arg)
elif e.kind == nkSym and e.sym.kind == skParam:
let param = e.sym
let arg = call[param.position+1].skipAddr
result = arg
else:
result = shallowCopy(e)
for i in 0 ..< safeLen(e): result[i] = translateEnsuresFromCall(c, e[i], call)
proc collectEnsuredFacts(c: DrnimContext, call: PNode; op: PType) =
assert op.n[0].kind == nkEffectList
for i in 1 ..< min(call.len, op.len):
if op[i].kind == tyVar:
freshVersion(c, call[i].skipAddr)
if ensuresEffects < op.n[0].len:
let ensures = op.n[0][ensuresEffects]
if ensures != nil and ensures.kind != nkEmpty:
addFact(c, translateEnsuresFromCall(c, ensures, call))
proc checkLe(c: DrnimContext, a, b: PNode) =
var cmpOp = mLeI
if a.typ != nil:
case a.typ.skipTypes(abstractInst).kind
of tyFloat..tyFloat128: cmpOp = mLeF64
of tyChar, tyUInt..tyUInt64: cmpOp = mLeU
else: discard
let cmp = newTree(nkInfix, newSymNode createMagic(c.graph, c.idgen, "<=", cmpOp), a, b)
cmp.info = a.info
discard prove(c, cmp)
proc checkBounds(c: DrnimContext; arr, idx: PNode) =
checkLe(c, lowBound(c.config, arr), idx)
checkLe(c, idx, highBound(c.config, arr, c.o))
proc checkRange(c: DrnimContext; value: PNode; typ: PType) =
let t = typ.skipTypes(abstractInst - {tyRange})
if t.kind == tyRange:
let lowBound = copyTree(t.n[0])
lowBound.info = value.info
let highBound = copyTree(t.n[1])
highBound.info = value.info
checkLe(c, lowBound, value)
checkLe(c, value, highBound)
proc addAsgnFact*(c: DrnimContext, key, value: PNode) =
var fact = newNodeI(nkCall, key.info, 3)
fact[0] = newSymNode(c.o.opEq)
fact[1] = key
fact[2] = value
c.facts.add((fact, c.currentScope))
proc traverse(c: DrnimContext; n: PNode)
proc traverseTryStmt(c: DrnimContext; n: PNode) =
traverse(c, n[0])
let oldFacts = c.facts.len
for i in 1 ..< n.len:
traverse(c, n[i].lastSon)
setLen(c.facts, oldFacts)
proc traverseCase(c: DrnimContext; n: PNode) =
traverse(c, n[0])
let oldFacts = c.facts.len
for i in 1 ..< n.len:
traverse(c, n[i].lastSon)
# XXX make this as smart as 'if elif'
setLen(c.facts, oldFacts)
proc disableVarVersions(c: DrnimContext; until: int) =
for i in until..<c.varVersions.len:
c.varVersions[i] = - abs(c.varVersions[i])
proc varOfVersion(c: DrnimContext; x: PSym; scope: int): PNode =
let version = currentVarVersion(c, x, VersionScope(scope))
result = newTree(nkBindStmt, newSymNode(x), newIntNode(nkIntLit, version))
proc traverseIf(c: DrnimContext; n: PNode) =
#[ Consider this example::
var x = y # x'0
if a:
inc x # x'1 == x'0 + 1
elif b:
inc x, 2 # x'2 == x'0 + 2
afterwards we know this is fact::
x'3 = Phi(x'0, x'1, x'2)
So a Phi node from SSA representation is an 'or' formula like::
x'3 == x'1 or x'3 == x'2 or x'3 == x'0
However, this loses some information. The formula that doesn't
lose information is::
(a -> (x'3 == x'1)) and
((not a and b) -> (x'3 == x'2)) and
((not a and not b) -> (x'3 == x'0))
(Where ``->`` is the logical implication.)
In addition to the Phi information we also know the 'facts'
computed by the branches, for example::
if a:
factA
elif b:
factB
else:
factC
(a -> factA) and
((not a and b) -> factB) and
((not a and not b) -> factC)
We can combine these two aspects by producing the following facts
after each branch::
var x = y # x'0
if a:
inc x # x'1 == x'0 + 1
# also: x'1 == x'final
elif b:
inc x, 2 # x'2 == x'0 + 2
# also: x'2 == x'final
else:
# also: x'0 == x'final
]#
let oldFacts = c.facts.len
let oldVars = c.varVersions.len
var newFacts: seq[PNode]
var branches = newSeq[(PNode, int)](n.len) # (cond, newVars) pairs
template condVersion(): untyped = VersionScope(oldVars)
for i in 0..<n.len:
let branch = n[i]
setLen(c.facts, oldFacts)
var cond = PNode(nil)
for j in 0..i-1:
addFactNeg(c, n[j][0])
cond = combineFacts(c, cond, neg(c, n[j][0]))
if branch.len > 1:
addFact(c, branch[0])
cond = combineFacts(c, cond, branch[0])
for i in 0..<branch.len:
traverse(c, branch[i])
assert cond != nil
branches[i] = (cond, c.varVersions.len)
var newInfo = PNode(nil)
for f in oldFacts..<c.facts.len:
newInfo = combineFacts(c, newInfo, c.facts[f][0])
if newInfo != nil:
newFacts.add buildCall(c.opImplies, cond, newInfo)
disableVarVersions(c, oldVars)
setLen(c.facts, oldFacts)
for f in newFacts: c.facts.add((f, condVersion))
# build the 'Phi' information:
let varsWithoutFinals = c.varVersions.len
var mutatedVars = initIntSet()
for i in oldVars ..< varsWithoutFinals:
let vv = c.varVersions[i]
if not mutatedVars.containsOrIncl(vv):
c.varVersions.add vv
c.varSyms.add c.varSyms[i]
var prevIdx = oldVars
for i in 0 ..< branches.len:
for v in prevIdx .. branches[i][1] - 1:
c.facts.add((buildCall(c.opImplies, branches[i][0],
buildCall(c.o.opEq, varOfVersion(c, c.varSyms[v], branches[i][1]), newSymNode(c.varSyms[v]))),
condVersion))
prevIdx = branches[i][1]
proc traverseBlock(c: DrnimContext; n: PNode) =
traverse(c, n)
proc addFactLe(c: DrnimContext; a, b: PNode) =
c.addFact c.o.opLe.buildCall(a, b)
proc addFactLt(c: DrnimContext; a, b: PNode) =
c.addFact c.o.opLt.buildCall(a, b)
proc ensuresCheck(c: DrnimContext; owner: PSym) =
if owner.typ != nil and owner.typ.kind == tyProc and owner.typ.n != nil:
let n = owner.typ.n
if n.len > 0 and n[0].kind == nkEffectList and ensuresEffects < n[0].len:
let ensures = n[0][ensuresEffects]
if ensures != nil and ensures.kind != nkEmpty:
discard prove(c, ensures)
proc traverseAsgn(c: DrnimContext; n: PNode) =
traverse(c, n[0])
traverse(c, n[1])
proc replaceByOldParams(fact, le: PNode): PNode =
if guards.sameTree(fact, le):
result = newNodeIT(nkCall, fact.info, fact.typ)
result.add newSymNode createMagic(c.graph, c.idgen, "old", mOld)
result.add fact
else:
result = shallowCopy(fact)
for i in 0 ..< safeLen(fact):
result[i] = replaceByOldParams(fact[i], le)
freshVersion(c, n[0])
addAsgnFact(c, n[0], replaceByOldParams(n[1], n[0]))
when defined(debug):
echoFacts(c)
proc traverse(c: DrnimContext; n: PNode) =
case n.kind
of nkEmpty..nkNilLit:
discard "nothing to do"
of nkRaiseStmt, nkBreakStmt, nkContinueStmt:
inc c.hasUnstructedCf
for i in 0..<n.safeLen:
traverse(c, n[i])
of nkReturnStmt:
for i in 0 ..< n.safeLen:
traverse(c, n[i])
ensuresCheck(c, c.owner)
of nkCallKinds:
# p's effects are ours too:
var a = n[0]
let op = a.typ
if op != nil and op.kind == tyProc and op.n[0].kind == nkEffectList:
requiresCheck(c, n, op)
collectEnsuredFacts(c, n, op)
if a.kind == nkSym:
case a.sym.magic
of mNew, mNewFinalize, mNewSeq:
# may not look like an assignment, but it is:
let arg = n[1]
freshVersion(c, arg)
traverse(c, arg)
let x = newNodeIT(nkObjConstr, arg.info, arg.typ)
x.add arg
addAsgnFact(c, arg, x)
of mArrGet, mArrPut:
#if optStaticBoundsCheck in c.currOptions: checkBounds(c, n[1], n[2])
discard
else:
discard
for i in 0..<n.safeLen:
traverse(c, n[i])
of nkDotExpr:
#guardDotAccess(c, n)
for i in 0..<n.len: traverse(c, n[i])
of nkCheckedFieldExpr:
traverse(c, n[0])
#checkFieldAccess(c.facts, n, c.config)
of nkTryStmt: traverseTryStmt(c, n)
of nkPragma: traversePragmaStmt(c, n)
of nkAsgn, nkFastAsgn: traverseAsgn(c, n)
of nkVarSection, nkLetSection:
for child in n:
let last = lastSon(child)
if last.kind != nkEmpty: traverse(c, last)
if child.kind == nkIdentDefs and last.kind != nkEmpty:
for i in 0..<child.len-2:
addAsgnFact(c, child[i], last)
elif child.kind == nkVarTuple and last.kind != nkEmpty:
for i in 0..<child.len-1:
if child[i].kind == nkEmpty or
child[i].kind == nkSym and child[i].sym.name.s == "_":
discard "anon variable"
elif last.kind in {nkPar, nkTupleConstr}:
addAsgnFact(c, child[i], last[i])
of nkConstSection:
for child in n:
let last = lastSon(child)
traverse(c, last)
of nkCaseStmt: traverseCase(c, n)
of nkWhen, nkIfStmt, nkIfExpr: traverseIf(c, n)
of nkBlockStmt, nkBlockExpr: traverseBlock(c, n[1])
of nkWhileStmt:
# 'while true' loop?
if isTrue(n[0]):
traverseBlock(c, n[1])
else:
let oldFacts = c.facts.len
addFact(c, n[0])
traverse(c, n[0])
traverse(c, n[1])
setLen(c.facts, oldFacts)
of nkForStmt, nkParForStmt:
# we are very conservative here and assume the loop is never executed:
let oldFacts = c.facts.len
let iterCall = n[n.len-2]
if optStaticBoundsCheck in c.currOptions and iterCall.kind in nkCallKinds:
let op = iterCall[0]
if op.kind == nkSym and fromSystem(op.sym):
let iterVar = n[0]
case op.sym.name.s
of "..", "countup", "countdown":
let lower = iterCall[1]
let upper = iterCall[2]
# for i in 0..n means 0 <= i and i <= n. Countdown is
# the same since only the iteration direction changes.
addFactLe(c, lower, iterVar)
addFactLe(c, iterVar, upper)
of "..<":
let lower = iterCall[1]
let upper = iterCall[2]
addFactLe(c, lower, iterVar)
addFactLt(c, iterVar, upper)
else: discard
for i in 0..<n.len-2:
let it = n[i]
traverse(c, it)
let loopBody = n[^1]
traverse(c, iterCall)
traverse(c, loopBody)
setLen(c.facts, oldFacts)
of nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef, nkIteratorDef,
nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
discard
of nkCast:
if n.len == 2:
traverse(c, n[1])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
if n.len == 2:
traverse(c, n[1])
if optStaticBoundsCheck in c.currOptions:
checkRange(c, n[1], n.typ)
of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
if n.len == 1:
traverse(c, n[0])
if optStaticBoundsCheck in c.currOptions:
checkRange(c, n[0], n.typ)
of nkBracketExpr:
if optStaticBoundsCheck in c.currOptions and n.len == 2:
if n[0].typ != nil and skipTypes(n[0].typ, abstractVar).kind != tyTuple:
checkBounds(c, n[0], n[1])
for i in 0 ..< n.len: traverse(c, n[i])
else:
for i in 0 ..< n.len: traverse(c, n[i])
proc strongSemCheck(graph: ModuleGraph; owner: PSym; n: PNode) =
var c = DrnimContext()
c.currOptions = graph.config.options + owner.options
if optStaticBoundsCheck in c.currOptions:
c.z3 = setupZ3()
c.o = initOperators(graph)
c.graph = graph
c.idgen = graph.idgen
c.owner = owner
c.opImplies = createMagic(c.graph, c.idgen, "->", mImplies)
try:
traverse(c, n)
ensuresCheck(c, owner)
finally:
Z3_del_context(c.z3)
proc mainCommand(graph: ModuleGraph) =
let conf = graph.config
conf.lastCmdTime = epochTime()
graph.strongSemCheck = strongSemCheck
graph.compatibleProps = compatibleProps
graph.config.setErrorMaxHighMaybe
defineSymbol(graph.config.symbols, "nimcheck")
defineSymbol(graph.config.symbols, "nimDrNim")
registerPass graph, verbosePass
registerPass graph, semPass
compileProject(graph)
if conf.errorCounter == 0:
genSuccessX(graph.config)
proc processCmdLine(pass: TCmdLinePass, cmd: string; config: ConfigRef) =
var p = parseopt.initOptParser(cmd)
var argsCount = 1
config.commandLine.setLen 0
config.setCmd cmdCheck
while true:
parseopt.next(p)
case p.kind
of cmdEnd: break
of cmdLongOption, cmdShortOption:
config.commandLine.add " "
config.commandLine.addCmdPrefix p.kind
config.commandLine.add p.key.quoteShell # quoteShell to be future proof
if p.val.len > 0:
config.commandLine.add ':'
config.commandLine.add p.val.quoteShell
if p.key == " ":
p.key = "-"
if processArgument(pass, p, argsCount, config): break
else:
case p.key.normalize
of "assumeunique":
assumeUniqueness = true
else:
processSwitch(pass, p, config)
of cmdArgument:
config.commandLine.add " "
config.commandLine.add p.key.quoteShell
if processArgument(pass, p, argsCount, config): break
if pass == passCmd2:
if {optRun, optWasNimscript} * config.globalOptions == {} and
config.arguments.len > 0 and config.cmd notin {cmdTcc, cmdNimscript}:
rawMessage(config, errGenerated, errArgsNeedRunOption)
proc handleCmdLine(cache: IdentCache; conf: ConfigRef) =
incl conf.options, optStaticBoundsCheck
let self = NimProg(
supportsStdinFile: true,
processCmdLine: processCmdLine
)
self.initDefinesProg(conf, "drnim")
if paramCount() == 0:
helpOnError(conf)
return
self.processCmdLineAndProjectPath(conf)
var graph = newModuleGraph(cache, conf)
if not self.loadConfigsAndProcessCmdLine(cache, conf, graph): return
mainCommand(graph)
if conf.hasHint(hintGCStats): echo(GC_getStatistics())
when compileOption("gc", "refc"):
# the new correct mark&sweep collector is too slow :-/
GC_disableMarkAndSweep()
when not defined(selftest):
let conf = newConfigRef()
handleCmdLine(newIdentCache(), conf)
when declared(GC_setMaxPause):
echo GC_getStatistics()
msgQuit(int8(conf.errorCounter > 0))
|