summary refs log tree commit diff stats
path: root/lib/core/macros.nim
blob: f97b4a15fb17478f7b168ce0955359b3feff220b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.InputMismatchException;

class Number {
    private double value;
    Number(double n) {
        value = n;
    }
    double valueOf() {
        return value;
    }
}

class ArithmeticOperations {
    static Number add(Number a, Number b) {
        return new Number(a.valueOf() + b.valueOf());
    }
}

class AddTwoNumbers {
    static void process(double a, double b) {
        Number n1 = new Number(a), n2 = new Number(b);
        System.out.println(n1.valueOf() + " + " + n2.valueOf() + " = " +
            ArithmeticOperations.add(n1, n2).valueOf());
    }
}

class AddTwoNumbersCLI extends AddTwoNumbers {
    public static void main(String args[]) {
        if (args.length != 2) {
            System.err.println("Usage: AddTwoNumbersCLI first-number second-number");
            System.exit(1);
        }
        try {
            System.out.println("Taking input from CLI arguments:");
            var v1 = Double.parseDouble(args[0]);
            var v2 = Double.parseDouble(args[1]);
            process(v1, v2);
        } catch (NumberFormatException e) {
            System.err.println("Invalid numbers");
        }
    }
}

class AddTwoNumbersScan extends AddTwoNumbers {
    public static void main(String args[]) {
        try {
            System.out.println("Taking input using java.util.Scanner:");
            var sc = new Scanner(System.in);
            System.out.print("Enter first number: ");
            var v1 = sc.nextDouble();
            System.out.print("Enter second number: ");
            var v2 = sc.nextDouble();
            process(v1, v2);
        } catch (InputMismatchException e) {
            System.err.println("Invalid numbers");
        }
    }
}

class AddTwoNumbersBuf extends AddTwoNumbers {
    public static void main(String args[]) {
        try {
            System.out.println("Taking input using java.io.BufferedReader:");
            var r = new BufferedReader(new InputStreamReader(System.in));
            System.out.print("Enter first number: ");
            var v1 = Double.parseDouble(r.readLine());
            System.out.print("Enter second number: ");
            var v2 = Double.parseDouble(r.readLine());
            process(v1, v2);
        } catch (NumberFormatException e) {
            System.err.println("Invalid numbers");
        } catch (IOException e) {
            System.err.println("I/O error occured while reading input.");
        }
    }
}
'#n778'>778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

include "system/inclrtl"

## This module contains the interface to the compiler's abstract syntax
## tree (`AST`:idx:). Macros operate on this tree.
##
## See also:
## * `macros tutorial <tut3.html>`_
## * `macros section in Nim manual <manual.html#macros>`_

## .. include:: ../../doc/astspec.txt

# If you look for the implementation of the magic symbol
# ``{.magic: "Foo".}``, search for `mFoo` and `opcFoo`.

type
  NimNodeKind* = enum
    nnkNone, nnkEmpty, nnkIdent, nnkSym,
    nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit,
    nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit,
    nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit,
    nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit,
    nnkTripleStrLit, nnkNilLit, nnkComesFrom, nnkDotCall,
    nnkCommand, nnkCall, nnkCallStrLit, nnkInfix,
    nnkPrefix, nnkPostfix, nnkHiddenCallConv,
    nnkExprEqExpr,
    nnkExprColonExpr, nnkIdentDefs, nnkVarTuple,
    nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr,
    nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange,
    nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr,
    nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted,
    nnkTableConstr, nnkBind,
    nnkClosedSymChoice,
    nnkOpenSymChoice,
    nnkHiddenStdConv,
    nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr,
    nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv,
    nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange,
    nnkStringToCString, nnkCStringToString, nnkAsgn,
    nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit,
    nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef,
    nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch,
    nnkElifBranch, nnkExceptBranch, nnkElse,
    nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt,
    nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt,
    nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection,
    nnkConstDef, nnkTypeDef,
    nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt,
    nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt,
    nnkDiscardStmt, nnkStmtList,
    nnkImportStmt,
    nnkImportExceptStmt,
    nnkExportStmt,
    nnkExportExceptStmt,
    nnkFromStmt,
    nnkIncludeStmt,
    nnkBindStmt, nnkMixinStmt, nnkUsingStmt,
    nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr,
    nnkStmtListType, nnkBlockType,
    nnkWith, nnkWithout,
    nnkTypeOfExpr, nnkObjectTy,
    nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy,
    nnkRecList, nnkRecCase, nnkRecWhen,
    nnkRefTy, nnkPtrTy, nnkVarTy,
    nnkConstTy, nnkMutableTy,
    nnkDistinctTy,
    nnkProcTy,
    nnkIteratorTy,         # iterator type
    nnkSharedTy,           # 'shared T'
    nnkEnumTy,
    nnkEnumFieldDef,
    nnkArglist, nnkPattern
    nnkHiddenTryStmt,
    nnkClosure,
    nnkGotoState,
    nnkState,
    nnkBreakState,
    nnkFuncDef,
    nnkTupleConstr

  NimNodeKinds* = set[NimNodeKind]
  NimTypeKind* = enum  # some types are no longer used, see ast.nim
    ntyNone, ntyBool, ntyChar, ntyEmpty,
    ntyAlias, ntyNil, ntyExpr, ntyStmt,
    ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst,
    ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal,
    ntyArray, ntyObject, ntyTuple, ntySet,
    ntyRange, ntyPtr, ntyRef, ntyVar,
    ntySequence, ntyProc, ntyPointer, ntyOpenArray,
    ntyString, ntyCString, ntyForward, ntyInt,
    ntyInt8, ntyInt16, ntyInt32, ntyInt64,
    ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128,
    ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64,
    ntyUnused0, ntyUnused1, ntyUnused2,
    ntyVarargs,
    ntyUncheckedArray,
    ntyError,
    ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst,
    ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot,
    ntyAnything, ntyStatic, ntyFromExpr, ntyOpt, ntyVoid

  TNimTypeKinds* {.deprecated.} = set[NimTypeKind]
  NimSymKind* = enum
    nskUnknown, nskConditional, nskDynLib, nskParam,
    nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet,
    nskConst, nskResult,
    nskProc, nskFunc, nskMethod, nskIterator,
    nskConverter, nskMacro, nskTemplate, nskField,
    nskEnumField, nskForVar, nskLabel,
    nskStub

  TNimSymKinds* {.deprecated.} = set[NimSymKind]

type
  NimIdent* {.deprecated.} = object of RootObj
    ## Represents a Nim identifier in the AST. **Note**: This is only
    ## rarely useful, for identifier construction from a string
    ## use ``ident"abc"``.

  NimSymObj = object # hidden
  NimSym* {.deprecated.} = ref NimSymObj
    ## Represents a Nim *symbol* in the compiler; a *symbol* is a looked-up
    ## *ident*.


const
  nnkLiterals* = {nnkCharLit..nnkNilLit}
  nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
                   nnkCallStrLit}
  nnkPragmaCallKinds = {nnkExprColonExpr, nnkCall, nnkCallStrLit}

{.push warnings: off.}

proc `!`*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
  "Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
  ## Constructs an identifier from the string `s`.

proc toNimIdent*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
  "Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
  ## Constructs an identifier from the string `s`.

proc `==`*(a, b: NimIdent): bool {.magic: "EqIdent", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; Use '==' on 'NimNode' instead.".}
  ## Compares two Nim identifiers.

proc `==`*(a, b: NimNode): bool {.magic: "EqNimrodNode", noSideEffect.}
  ## Compare two Nim nodes. Return true if nodes are structurally
  ## equivalent. This means two independently created nodes can be equal.

proc `==`*(a, b: NimSym): bool {.magic: "EqNimrodNode", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; Use '==(NimNode, NimNode)' instead.".}
  ## Compares two Nim symbols.

{.pop.}

proc sameType*(a, b: NimNode): bool {.magic: "SameNodeType", noSideEffect.} =
  ## Compares two Nim nodes' types. Return true if the types are the same,
  ## eg. true when comparing alias with original type.
  discard

proc len*(n: NimNode): int {.magic: "NLen", noSideEffect.}
  ## Returns the number of children of `n`.

proc `[]`*(n: NimNode, i: int): NimNode {.magic: "NChild", noSideEffect.}
  ## Get `n`'s `i`'th child.

proc `[]`*(n: NimNode, i: BackwardsIndex): NimNode = n[n.len - i.int]
  ## Get `n`'s `i`'th child.

template `^^`(n: NimNode, i: untyped): untyped =
  (when i is BackwardsIndex: n.len - int(i) else: int(i))

proc `[]`*[T, U](n: NimNode, x: HSlice[T, U]): seq[NimNode] =
  ## Slice operation for NimNode.
  ## Returns a seq of child of `n` who inclusive range [n[x.a], n[x.b]].
  let xa = n ^^ x.a
  let L = (n ^^ x.b) - xa + 1
  result = newSeq[NimNode](L)
  for i in 0..<L:
    result[i] = n[i + xa]

proc `[]=`*(n: NimNode, i: int, child: NimNode) {.magic: "NSetChild",
  noSideEffect.}
  ## Set `n`'s `i`'th child to `child`.

proc `[]=`*(n: NimNode, i: BackwardsIndex, child: NimNode) =
  ## Set `n`'s `i`'th child to `child`.
  n[n.len - i.int] = child

template `or`*(x, y: NimNode): NimNode =
  ## Evaluate ``x`` and when it is not an empty node, return
  ## it. Otherwise evaluate to ``y``. Can be used to chain several
  ## expressions to get the first expression that is not empty.
  ##
  ## .. code-block:: nim
  ##
  ##   let node = mightBeEmpty() or mightAlsoBeEmpty() or fallbackNode

  let arg = x
  if arg != nil and arg.kind != nnkEmpty:
    arg
  else:
    y

proc add*(father, child: NimNode): NimNode {.magic: "NAdd", discardable,
  noSideEffect, locks: 0.}
  ## Adds the `child` to the `father` node. Returns the
  ## father node so that calls can be nested.

proc add*(father: NimNode, children: varargs[NimNode]): NimNode {.
  magic: "NAddMultiple", discardable, noSideEffect, locks: 0.}
  ## Adds each child of `children` to the `father` node.
  ## Returns the `father` node so that calls can be nested.

proc del*(father: NimNode, idx = 0, n = 1) {.magic: "NDel", noSideEffect.}
  ## Deletes `n` children of `father` starting at index `idx`.

proc kind*(n: NimNode): NimNodeKind {.magic: "NKind", noSideEffect.}
  ## Returns the `kind` of the node `n`.

proc intVal*(n: NimNode): BiggestInt {.magic: "NIntVal", noSideEffect.}
  ## Returns an integer value from any integer literal or enum field symbol.

proc floatVal*(n: NimNode): BiggestFloat {.magic: "NFloatVal", noSideEffect.}
  ## Returns a float from any floating point literal.

{.push warnings: off.}

proc ident*(n: NimNode): NimIdent {.magic: "NIdent", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}

proc symbol*(n: NimNode): NimSym {.magic: "NSymbol", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}

proc getImpl*(s: NimSym): NimNode {.magic: "GetImpl", noSideEffect, deprecated: "use `getImpl: NimNode -> NimNode` instead".}

when defined(nimSymKind):
  proc symKind*(symbol: NimNode): NimSymKind {.magic: "NSymKind", noSideEffect.}
  proc getImpl*(symbol: NimNode): NimNode {.magic: "GetImpl", noSideEffect.}
    ## Returns a copy of the declaration of a symbol or `nil`.
  proc strVal*(n: NimNode): string  {.magic: "NStrVal", noSideEffect.}
    ## Returns the string value of an identifier, symbol, comment, or string literal.
    ##
    ## See also:
    ## * `strVal= proc<#strVal=,NimNode,string>`_ for setting the string value.

  proc `$`*(i: NimIdent): string {.magic: "NStrVal", noSideEffect, deprecated:
    "Deprecated since version 0.18.1; Use 'strVal' instead.".}
    ## Converts a Nim identifier to a string.

  proc `$`*(s: NimSym): string {.magic: "NStrVal", noSideEffect, deprecated:
    "Deprecated since version 0.18.1; Use 'strVal' instead.".}
    ## Converts a Nim symbol to a string.

else: # bootstrapping substitute
  proc getImpl*(symbol: NimNode): NimNode =
    symbol.symbol.getImpl

  proc strValOld(n: NimNode): string {.magic: "NStrVal", noSideEffect.}

  proc `$`*(s: NimSym): string {.magic: "IdentToStr", noSideEffect.}

  proc `$`*(i: NimIdent): string {.magic: "IdentToStr", noSideEffect.}

  proc strVal*(n: NimNode): string =
    if n.kind == nnkIdent:
      $n.ident
    elif n.kind == nnkSym:
      $n.symbol
    else:
      n.strValOld

{.pop.}

when defined(nimSymImplTransform):
  proc getImplTransformed*(symbol: NimNode): NimNode {.magic: "GetImplTransf", noSideEffect.}
    ## For a typed proc returns the AST after transformation pass.

when defined(nimHasSymOwnerInMacro):
  proc owner*(sym: NimNode): NimNode {.magic: "SymOwner", noSideEffect.}
    ## Accepts a node of kind `nnkSym` and returns its owner's symbol.
    ## The meaning of 'owner' depends on `sym`'s `NimSymKind` and declaration
    ## context. For top level declarations this is an `nskModule` symbol,
    ## for proc local variables an `nskProc` symbol, for enum/object fields an
    ## `nskType` symbol, etc. For symbols without an owner, `nil` is returned.
    ##
    ## See also:
    ## * `symKind proc<#symKind,NimNode>`_ to get the kind of a symbol
    ## * `getImpl proc<#getImpl,NimNode>`_ to get the declaration of a symbol

when defined(nimHasInstantiationOfInMacro):
  proc isInstantiationOf*(instanceProcSym, genProcSym: NimNode): bool {.magic: "SymIsInstantiationOf", noSideEffect.}
    ## Checks if a proc symbol is an instance of the generic proc symbol.
    ## Useful to check proc symbols against generic symbols
    ## returned by `bindSym`.

proc getType*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
  ## With 'getType' you can access the node's `type`:idx:. A Nim type is
  ## mapped to a Nim AST too, so it's slightly confusing but it means the same
  ## API can be used to traverse types. Recursive types are flattened for you
  ## so there is no danger of infinite recursions during traversal. To
  ## resolve recursive types, you have to call 'getType' again. To see what
  ## kind of type it is, call `typeKind` on getType's result.

proc getType*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
  ## Version of ``getType`` which takes a ``typedesc``.

proc typeKind*(n: NimNode): NimTypeKind {.magic: "NGetType", noSideEffect.}
  ## Returns the type kind of the node 'n' that should represent a type, that
  ## means the node should have been obtained via ``getType``.

proc getTypeInst*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
  ## Returns the `type`:idx: of a node in a form matching the way the
  ## type instance was declared in the code.
  runnableExamples:
    type
      Vec[N: static[int], T] = object
        arr: array[N, T]
      Vec4[T] = Vec[4, T]
      Vec4f = Vec4[float32]
    var a: Vec4f
    var b: Vec4[float32]
    var c: Vec[4, float32]
    macro dumpTypeInst(x: typed): untyped =
      newLit(x.getTypeInst.repr)
    doAssert(dumpTypeInst(a) == "Vec4f")
    doAssert(dumpTypeInst(b) == "Vec4[float32]")
    doAssert(dumpTypeInst(c) == "Vec[4, float32]")

proc getTypeInst*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
  ## Version of ``getTypeInst`` which takes a ``typedesc``.

proc getTypeImpl*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
  ## Returns the `type`:idx: of a node in a form matching the implementation
  ## of the type. Any intermediate aliases are expanded to arrive at the final
  ## type implementation. You can instead use ``getImpl`` on a symbol if you
  ## want to find the intermediate aliases.
  runnableExamples:
    type
      Vec[N: static[int], T] = object
        arr: array[N, T]
      Vec4[T] = Vec[4, T]
      Vec4f = Vec4[float32]
    var a: Vec4f
    var b: Vec4[float32]
    var c: Vec[4, float32]
    macro dumpTypeImpl(x: typed): untyped =
      newLit(x.getTypeImpl.repr)
    let t = """
object
  arr: array[0 .. 3, float32]
"""
    doAssert(dumpTypeImpl(a) == t)
    doAssert(dumpTypeImpl(b) == t)
    doAssert(dumpTypeImpl(c) == t)

when defined(nimHasSignatureHashInMacro):
  proc signatureHash*(n: NimNode): string {.magic: "NSigHash", noSideEffect.}
    ## Returns a stable identifier derived from the signature of a symbol.
    ## The signature combines many factors such as the type of the symbol,
    ## the owning module of the symbol and others. The same identifier is
    ## used in the back-end to produce the mangled symbol name.

proc symBodyHash*(s: NimNode): string {.noSideEffect.} =
  ## Returns a stable digest for symbols derived not only from type signature
  ## and owning module, but also implementation body. All procs/variables used in
  ## the implementation of this symbol are hashed recursively as well, including
  ## magics from system module.
  discard

proc getTypeImpl*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
  ## Version of ``getTypeImpl`` which takes a ``typedesc``.

proc `intVal=`*(n: NimNode, val: BiggestInt) {.magic: "NSetIntVal", noSideEffect.}
proc `floatVal=`*(n: NimNode, val: BiggestFloat) {.magic: "NSetFloatVal", noSideEffect.}

{.push warnings: off.}

proc `symbol=`*(n: NimNode, val: NimSym) {.magic: "NSetSymbol", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'genSym' instead.".}

proc `ident=`*(n: NimNode, val: NimIdent) {.magic: "NSetIdent", noSideEffect, deprecated:
  "Deprecated since version 0.18.1; Generate a new 'NimNode' with 'ident(string)' instead.".}

{.pop.}

#proc `typ=`*(n: NimNode, typ: typedesc) {.magic: "NSetType".}
# this is not sound! Unfortunately forbidding 'typ=' is not enough, as you
# can easily do:
#   let bracket = semCheck([1, 2])
#   let fake = semCheck(2.0)
#   bracket[0] = fake  # constructs a mixed array with ints and floats!

proc `strVal=`*(n: NimNode, val: string) {.magic: "NSetStrVal", noSideEffect.}
  ## Sets the string value of a string literal or comment.
  ## Setting `strVal` is disallowed for `nnkIdent` and `nnkSym` nodes; a new node
  ## must be created using `ident` or `bindSym` instead.
  ##
  ## See also:
  ## * `strVal proc<#strVal,NimNode>`_ for getting the string value.
  ## * `ident proc<#ident,string>`_ for creating an identifier.
  ## * `bindSym proc<#bindSym%2C%2CBindSymRule>`_ for binding a symbol.

proc newNimNode*(kind: NimNodeKind,
                 lineInfoFrom: NimNode = nil): NimNode
  {.magic: "NNewNimNode", noSideEffect.}
  ## Creates a new AST node of the specified kind.
  ##
  ## The ``lineInfoFrom`` parameter is used for line information when the
  ## produced code crashes. You should ensure that it is set to a node that
  ## you are transforming.

proc copyNimNode*(n: NimNode): NimNode {.magic: "NCopyNimNode", noSideEffect.}
proc copyNimTree*(n: NimNode): NimNode {.magic: "NCopyNimTree", noSideEffect.}

proc error*(msg: string, n: NimNode = nil) {.magic: "NError", benign.}
  ## Writes an error message at compile time. The optional ``n: NimNode``
  ## parameter is used as the source for file and line number information in
  ## the compilation error message.

proc warning*(msg: string, n: NimNode = nil) {.magic: "NWarning", benign.}
  ## Writes a warning message at compile time.

proc hint*(msg: string, n: NimNode = nil) {.magic: "NHint", benign.}
  ## Writes a hint message at compile time.

proc newStrLitNode*(s: string): NimNode {.compileTime, noSideEffect.} =
  ## Creates a string literal node from `s`.
  result = newNimNode(nnkStrLit)
  result.strVal = s

proc newCommentStmtNode*(s: string): NimNode {.compileTime, noSideEffect.} =
  ## Creates a comment statement node.
  result = newNimNode(nnkCommentStmt)
  result.strVal = s

proc newIntLitNode*(i: BiggestInt): NimNode {.compileTime.} =
  ## Creates an int literal node from `i`.
  result = newNimNode(nnkIntLit)
  result.intVal = i

proc newFloatLitNode*(f: BiggestFloat): NimNode {.compileTime.} =
  ## Creates a float literal node from `f`.
  result = newNimNode(nnkFloatLit)
  result.floatVal = f

{.push warnings: off.}

proc newIdentNode*(i: NimIdent): NimNode {.compileTime, deprecated.} =
  ## Creates an identifier node from `i`.
  result = newNimNode(nnkIdent)
  result.ident = i

{.pop.}

proc newIdentNode*(i: string): NimNode {.magic: "StrToIdent", noSideEffect, compilerproc.}
  ## Creates an identifier node from `i`. It is simply an alias for
  ## ``ident(string)``. Use that, it's shorter.


type
  BindSymRule* = enum    ## specifies how ``bindSym`` behaves
    brClosed,            ## only the symbols in current scope are bound
    brOpen,              ## open wrt overloaded symbols, but may be a single
                         ## symbol if not ambiguous (the rules match that of
                         ## binding in generics)
    brForceOpen          ## same as brOpen, but it will always be open even
                         ## if not ambiguous (this cannot be achieved with
                         ## any other means in the language currently)

proc bindSym*(ident: string | NimNode, rule: BindSymRule = brClosed): NimNode {.
              magic: "NBindSym", noSideEffect.}
  ## Ceates a node that binds `ident` to a symbol node. The bound symbol
  ## may be an overloaded symbol.
  ## if `ident` is a NimNode, it must have ``nnkIdent`` kind.
  ## If ``rule == brClosed`` either an ``nnkClosedSymChoice`` tree is
  ## returned or ``nnkSym`` if the symbol is not ambiguous.
  ## If ``rule == brOpen`` either an ``nnkOpenSymChoice`` tree is
  ## returned or ``nnkSym`` if the symbol is not ambiguous.
  ## If ``rule == brForceOpen`` always an ``nnkOpenSymChoice`` tree is
  ## returned even if the symbol is not ambiguous.
  ##
  ## Experimental feature:
  ## use {.experimental: "dynamicBindSym".} to activate it.
  ## If called from template / regular code, `ident` and `rule` must be
  ## constant expression / literal value.
  ## If called from macros / compile time procs / static blocks,
  ## `ident` and `rule` can be VM computed value.

proc genSym*(kind: NimSymKind = nskLet; ident = ""): NimNode {.
  magic: "NGenSym", noSideEffect.}
  ## Generates a fresh symbol that is guaranteed to be unique. The symbol
  ## needs to occur in a declaration context.

proc callsite*(): NimNode {.magic: "NCallSite", benign, deprecated:
  "Deprecated since v0.18.1; use varargs[untyped] in the macro prototype instead".}
  ## Returns the AST of the invocation expression that invoked this macro.

proc toStrLit*(n: NimNode): NimNode {.compileTime.} =
  ## Converts the AST `n` to the concrete Nim code and wraps that
  ## in a string literal node.
  return newStrLitNode(repr(n))

type
  LineInfo* = object
    filename*: string
    line*,column*: int

proc `$`*(arg: LineInfo): string =
  ## Return a string representation in the form `filepath(line, column)`.
  # BUG: without `result = `, gives compile error
  result = arg.filename & "(" & $arg.line & ", " & $arg.column & ")"

#proc lineinfo*(n: NimNode): LineInfo {.magic: "NLineInfo", noSideEffect.}
#  ## returns the position the node appears in the original source file
#  ## in the form filename(line, col)

proc getLine(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
proc getColumn(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
proc getFile(arg: NimNode): string {.magic: "NLineInfo", noSideEffect.}

proc copyLineInfo*(arg: NimNode, info: NimNode) {.magic: "NLineInfo", noSideEffect.}
  ## Copy lineinfo from ``info``.

proc lineInfoObj*(n: NimNode): LineInfo {.compileTime.} =
  ## Returns ``LineInfo`` of ``n``, using absolute path for ``filename``.
  result.filename = n.getFile
  result.line = n.getLine
  result.column = n.getColumn

proc lineInfo*(arg: NimNode): string {.compileTime.} =
  ## Return line info in the form `filepath(line, column)`.
  $arg.lineInfoObj

proc internalParseExpr(s: string): NimNode {.
  magic: "ParseExprToAst", noSideEffect.}

proc internalParseStmt(s: string): NimNode {.
  magic: "ParseStmtToAst", noSideEffect.}

proc internalErrorFlag*(): string {.magic: "NError", noSideEffect.}
  ## Some builtins set an error flag. This is then turned into a proper
  ## exception. **Note**: Ordinary application code should not call this.

proc parseExpr*(s: string): NimNode {.noSideEffect, compileTime.} =
  ## Compiles the passed string to its AST representation.
  ## Expects a single expression. Raises ``ValueError`` for parsing errors.
  result = internalParseExpr(s)
  let x = internalErrorFlag()
  if x.len > 0: raise newException(ValueError, x)

proc parseStmt*(s: string): NimNode {.noSideEffect, compileTime.} =
  ## Compiles the passed string to its AST representation.
  ## Expects one or more statements. Raises ``ValueError`` for parsing errors.
  result = internalParseStmt(s)
  let x = internalErrorFlag()
  if x.len > 0: raise newException(ValueError, x)

proc getAst*(macroOrTemplate: untyped): NimNode {.magic: "ExpandToAst", noSideEffect.}
  ## Obtains the AST nodes returned from a macro or template invocation.
  ## Example:
  ##
  ## .. code-block:: nim
  ##
  ##   macro FooMacro() =
  ##     var ast = getAst(BarTemplate())

proc quote*(bl: typed, op = "``"): NimNode {.magic: "QuoteAst", noSideEffect.}
  ## Quasi-quoting operator.
  ## Accepts an expression or a block and returns the AST that represents it.
  ## Within the quoted AST, you are able to interpolate NimNode expressions
  ## from the surrounding scope. If no operator is given, quoting is done using
  ## backticks. Otherwise, the given operator must be used as a prefix operator
  ## for any interpolated expression.
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##
  ##   macro check(ex: untyped) =
  ##     # this is a simplified version of the check macro from the
  ##     # unittest module.
  ##
  ##     # If there is a failed check, we want to make it easy for
  ##     # the user to jump to the faulty line in the code, so we
  ##     # get the line info here:
  ##     var info = ex.lineinfo
  ##
  ##     # We will also display the code string of the failed check:
  ##     var expString = ex.toStrLit
  ##
  ##     # Finally we compose the code to implement the check:
  ##     result = quote do:
  ##       if not `ex`:
  ##         echo `info` & ": Check failed: " & `expString`

proc expectKind*(n: NimNode, k: NimNodeKind) {.compileTime.} =
  ## Checks that `n` is of kind `k`. If this is not the case,
  ## compilation aborts with an error message. This is useful for writing
  ## macros that check the AST that is passed to them.
  if n.kind != k: error("Expected a node of kind " & $k & ", got " & $n.kind, n)

proc expectMinLen*(n: NimNode, min: int) {.compileTime.} =
  ## Checks that `n` has at least `min` children. If this is not the case,
  ## compilation aborts with an error message. This is useful for writing
  ## macros that check its number of arguments.
  if n.len < min: error("macro expects a node with " & $min & " children", n)

proc expectLen*(n: NimNode, len: int) {.compileTime.} =
  ## Checks that `n` has exactly `len` children. If this is not the case,
  ## compilation aborts with an error message. This is useful for writing
  ## macros that check its number of arguments.
  if n.len != len: error("macro expects a node with " & $len & " children", n)

proc expectLen*(n: NimNode, min, max: int) {.compileTime.} =
  ## Checks that `n` has a number of children in the range ``min..max``.
  ## If this is not the case, compilation aborts with an error message.
  ## This is useful for writing macros that check its number of arguments.
  if n.len < min or n.len > max:
    error("macro expects a node with " & $min & ".." & $max & " children", n)

proc newTree*(kind: NimNodeKind,
              children: varargs[NimNode]): NimNode {.compileTime.} =
  ## Produces a new node with children.
  result = newNimNode(kind)
  result.add(children)

proc newCall*(theProc: NimNode,
              args: varargs[NimNode]): NimNode {.compileTime.} =
  ## Produces a new call node. `theProc` is the proc that is called with
  ## the arguments ``args[0..]``.
  result = newNimNode(nnkCall)
  result.add(theProc)
  result.add(args)

{.push warnings: off.}

proc newCall*(theProc: NimIdent, args: varargs[NimNode]): NimNode {.compileTime, deprecated:
  "Deprecated since v0.18.1; use 'newCall(string, ...)' or 'newCall(NimNode, ...)' instead".} =
  ## Produces a new call node. `theProc` is the proc that is called with
  ## the arguments ``args[0..]``.
  result = newNimNode(nnkCall)
  result.add(newIdentNode(theProc))
  result.add(args)

{.pop.}

proc newCall*(theProc: string,
              args: varargs[NimNode]): NimNode {.compileTime.} =
  ## Produces a new call node. `theProc` is the proc that is called with
  ## the arguments ``args[0..]``.
  result = newNimNode(nnkCall)
  result.add(newIdentNode(theProc))
  result.add(args)

proc newLit*(c: char): NimNode {.compileTime.} =
  ## Produces a new character literal node.
  result = newNimNode(nnkCharLit)
  result.intVal = ord(c)

proc newLit*(i: int): NimNode {.compileTime.} =
  ## Produces a new integer literal node.
  result = newNimNode(nnkIntLit)
  result.intVal = i

proc newLit*(i: int8): NimNode {.compileTime.} =
  ## Produces a new integer literal node.
  result = newNimNode(nnkInt8Lit)
  result.intVal = i

proc newLit*(i: int16): NimNode {.compileTime.} =
  ## Produces a new integer literal node.
  result = newNimNode(nnkInt16Lit)
  result.intVal = i

proc newLit*(i: int32): NimNode {.compileTime.} =
  ## Produces a new integer literal node.
  result = newNimNode(nnkInt32Lit)
  result.intVal = i

proc newLit*(i: int64): NimNode {.compileTime.} =
  ## Produces a new integer literal node.
  result = newNimNode(nnkInt64Lit)
  result.intVal = i

proc newLit*(i: uint): NimNode {.compileTime.} =
  ## Produces a new unsigned integer literal node.
  result = newNimNode(nnkUIntLit)
  result.intVal = BiggestInt(i)

proc newLit*(i: uint8): NimNode {.compileTime.} =
  ## Produces a new unsigned integer literal node.
  result = newNimNode(nnkUInt8Lit)
  result.intVal = BiggestInt(i)

proc newLit*(i: uint16): NimNode {.compileTime.} =
  ## Produces a new unsigned integer literal node.
  result = newNimNode(nnkUInt16Lit)
  result.intVal = BiggestInt(i)

proc newLit*(i: uint32): NimNode {.compileTime.} =
  ## Produces a new unsigned integer literal node.
  result = newNimNode(nnkUInt32Lit)
  result.intVal = BiggestInt(i)

proc newLit*(i: uint64): NimNode {.compileTime.} =
  ## Produces a new unsigned integer literal node.
  result = newNimNode(nnkUInt64Lit)
  result.intVal = BiggestInt(i)

proc newLit*(b: bool): NimNode {.compileTime.} =
  ## Produces a new boolean literal node.
  result = if b: bindSym"true" else: bindSym"false"

proc newLit*(s: string): NimNode {.compileTime.} =
  ## Produces a new string literal node.
  result = newNimNode(nnkStrLit)
  result.strVal = s

when false:
  # the float type is not really a distinct type as described in https://github.com/nim-lang/Nim/issues/5875
  proc newLit*(f: float): NimNode {.compileTime.} =
    ## Produces a new float literal node.
    result = newNimNode(nnkFloatLit)
    result.floatVal = f

proc newLit*(f: float32): NimNode {.compileTime.} =
  ## Produces a new float literal node.
  result = newNimNode(nnkFloat32Lit)
  result.floatVal = f

proc newLit*(f: float64): NimNode {.compileTime.} =
  ## Produces a new float literal node.
  result = newNimNode(nnkFloat64Lit)
  result.floatVal = f

when declared(float128):
  proc newLit*(f: float128): NimNode {.compileTime.} =
    ## Produces a new float literal node.
    result = newNimNode(nnkFloat128Lit)
    result.floatVal = f

proc newLit*(arg: enum): NimNode {.compileTime.} =
  result = newCall(
    arg.type.getTypeInst[1],
    newLit(int(arg))
  )

proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.}
proc newLit*[T](arg: seq[T]): NimNode {.compileTime.}
proc newLit*[T](s: set[T]): NimNode {.compileTime.}
proc newLit*(arg: tuple): NimNode {.compileTime.}

proc newLit*(arg: object): NimNode {.compileTime.} =
  result = nnkObjConstr.newTree(arg.type.getTypeInst[1])
  for a, b in arg.fieldPairs:
    result.add nnkExprColonExpr.newTree( newIdentNode(a), newLit(b) )

proc newLit*(arg: ref object): NimNode {.compileTime.} =
  ## produces a new ref type literal node.
  result = nnkObjConstr.newTree(arg.type.getTypeInst[1])
  for a, b in fieldPairs(arg[]):
    result.add nnkExprColonExpr.newTree(newIdentNode(a), newLit(b))

proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.} =
  result = nnkBracket.newTree
  for x in arg:
    result.add newLit(x)

proc newLit*[T](arg: seq[T]): NimNode {.compileTime.} =
  let bracket = nnkBracket.newTree
  for x in arg:
    bracket.add newLit(x)
  result = nnkPrefix.newTree(
    bindSym"@",
    bracket
  )
  if arg.len == 0:
    # add type cast for empty seq
    var typ = getTypeInst(typeof(arg))[1]
    result = newCall(typ,result)

proc newLit*[T](s: set[T]): NimNode {.compileTime.} =
  result = nnkCurly.newTree
  for x in s:
    result.add newLit(x)

proc newLit*(arg: tuple): NimNode {.compileTime.} =
  result = nnkPar.newTree
  for a,b in arg.fieldPairs:
    result.add nnkExprColonExpr.newTree(newIdentNode(a), newLit(b))

proc nestList*(op: NimNode; pack: NimNode): NimNode {.compileTime.} =
  ## Nests the list `pack` into a tree of call expressions:
  ## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
  ## This is also known as fold expression.
  if pack.len < 1:
    error("`nestList` expects a node with at least 1 child")
  result = pack[^1]
  for i in countdown(pack.len - 2, 0):
    result = newCall(op, pack[i], result)

proc nestList*(op: NimNode; pack: NimNode; init: NimNode): NimNode {.compileTime.} =
  ## Nests the list `pack` into a tree of call expressions:
  ## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
  ## This is also known as fold expression.
  result = init
  for i in countdown(pack.len - 1, 0):
    result = newCall(op, pack[i], result)

{.push warnings: off.}

proc nestList*(theProc: NimIdent, x: NimNode): NimNode {.compileTime, deprecated:
  "Deprecated since v0.18.1; use one of 'nestList(NimNode, ...)' instead.".} =
  nestList(newIdentNode(theProc), x)

{.pop.}

proc treeTraverse(n: NimNode; res: var string; level = 0; isLisp = false, indented = false) {.benign.} =
  if level > 0:
    if indented:
      res.add("\n")
      for i in 0 .. level-1:
        if isLisp:
          res.add(" ")          # dumpLisp indentation
        else:
          res.add("  ")         # dumpTree indentation
    else:
      res.add(" ")

  if isLisp:
    res.add("(")
  res.add(($n.kind).substr(3))

  case n.kind
  of nnkEmpty, nnkNilLit:
    discard # same as nil node in this representation
  of nnkCharLit .. nnkInt64Lit:
    res.add(" " & $n.intVal)
  of nnkFloatLit .. nnkFloat64Lit:
    res.add(" " & $n.floatVal)
  of nnkStrLit .. nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
    res.add(" " & $n.strVal.newLit.repr)
  of nnkNone:
    assert false
  else:
    for j in 0 .. n.len-1:
      n[j].treeTraverse(res, level+1, isLisp, indented)

  if isLisp:
    res.add(")")

proc treeRepr*(n: NimNode): string {.compileTime, benign.} =
  ## Convert the AST `n` to a human-readable tree-like string.
  ##
  ## See also `repr`, `lispRepr`, and `astGenRepr`.
  n.treeTraverse(result, isLisp = false, indented = true)

proc lispRepr*(n: NimNode; indented = false): string {.compileTime, benign.} =
  ## Convert the AST ``n`` to a human-readable lisp-like string.
  ##
  ## See also ``repr``, ``treeRepr``, and ``astGenRepr``.
  n.treeTraverse(result, isLisp = true, indented = indented)

proc astGenRepr*(n: NimNode): string {.compileTime, benign.} =
  ## Convert the AST ``n`` to the code required to generate that AST.
  ##
  ## See also ``repr``, ``treeRepr``, and ``lispRepr``.

  const
    NodeKinds = {nnkEmpty, nnkIdent, nnkSym, nnkNone, nnkCommentStmt}
    LitKinds = {nnkCharLit..nnkInt64Lit, nnkFloatLit..nnkFloat64Lit, nnkStrLit..nnkTripleStrLit}

  proc traverse(res: var string, level: int, n: NimNode) {.benign.} =
    for i in 0..level-1: res.add "  "
    if n.kind in NodeKinds:
      res.add("new" & ($n.kind).substr(3) & "Node(")
    elif n.kind in LitKinds:
      res.add("newLit(")
    elif n.kind == nnkNilLit:
      res.add("newNilLit()")
    else:
      res.add($n.kind)

    case n.kind
    of nnkEmpty, nnkNilLit: discard
    of nnkCharLit: res.add("'" & $chr(n.intVal) & "'")
    of nnkIntLit..nnkInt64Lit: res.add($n.intVal)
    of nnkFloatLit..nnkFloat64Lit: res.add($n.floatVal)
    of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
      res.add(n.strVal.newLit.repr)
    of nnkNone: assert false
    else:
      res.add(".newTree(")
      for j in 0..<n.len:
        res.add "\n"
        traverse(res, level + 1, n[j])
        if j != n.len-1:
          res.add(",")

      res.add("\n")
      for i in 0..level-1: res.add "  "
      res.add(")")

    if n.kind in NodeKinds+LitKinds:
      res.add(")")

  result = ""
  traverse(result, 0, n)

macro dumpTree*(s: untyped): untyped = echo s.treeRepr
  ## Accepts a block of nim code and prints the parsed abstract syntax
  ## tree using the ``treeRepr`` proc. Printing is done *at compile time*.
  ##
  ## You can use this as a tool to explore the Nim's abstract syntax
  ## tree and to discover what kind of nodes must be created to represent
  ## a certain expression/statement.
  ##
  ## For example:
  ##
  ## .. code-block:: nim
  ##    dumpTree:
  ##      echo "Hello, World!"
  ##
  ## Outputs:
  ##
  ## .. code-block::
  ##    StmtList
  ##      Command
  ##        Ident "echo"
  ##        StrLit "Hello, World!"
  ##
  ## Also see ``dumpAstGen`` and ``dumpLisp``.

macro dumpLisp*(s: untyped): untyped = echo s.lispRepr(indented = true)
  ## Accepts a block of nim code and prints the parsed abstract syntax
  ## tree using the ``lispRepr`` proc. Printing is done *at compile time*.
  ##
  ## You can use this as a tool to explore the Nim's abstract syntax
  ## tree and to discover what kind of nodes must be created to represent
  ## a certain expression/statement.
  ##
  ## For example:
  ##
  ## .. code-block:: nim
  ##    dumpLisp:
  ##      echo "Hello, World!"
  ##
  ## Outputs:
  ##
  ## .. code-block::
  ##    (StmtList
  ##     (Command
  ##      (Ident "echo")
  ##      (StrLit "Hello, World!")))
  ##
  ## Also see ``dumpAstGen`` and ``dumpTree``.

macro dumpAstGen*(s: untyped): untyped = echo s.astGenRepr
  ## Accepts a block of nim code and prints the parsed abstract syntax
  ## tree using the ``astGenRepr`` proc. Printing is done *at compile time*.
  ##
  ## You can use this as a tool to write macros quicker by writing example
  ## outputs and then copying the snippets into the macro for modification.
  ##
  ## For example:
  ##
  ## .. code-block:: nim
  ##    dumpAstGen:
  ##      echo "Hello, World!"
  ##
  ## Outputs:
  ##
  ## .. code-block:: nim
  ##    nnkStmtList.newTree(
  ##      nnkCommand.newTree(
  ##        newIdentNode("echo"),
  ##        newLit("Hello, World!")
  ##      )
  ##    )
  ##
  ## Also see ``dumpTree`` and ``dumpLisp``.

macro dumpTreeImm*(s: untyped): untyped {.deprecated.} = echo s.treeRepr
  ## Deprecated. Use `dumpTree` instead.

macro dumpLispImm*(s: untyped): untyped {.deprecated.} = echo s.lispRepr
  ## Deprecated. Use `dumpLisp` instead.

proc newEmptyNode*(): NimNode {.compileTime, noSideEffect.} =
  ## Create a new empty node.
  result = newNimNode(nnkEmpty)

proc newStmtList*(stmts: varargs[NimNode]): NimNode {.compileTime.}=
  ## Create a new statement list.
  result = newNimNode(nnkStmtList).add(stmts)

proc newPar*(exprs: varargs[NimNode]): NimNode {.compileTime.}=
  ## Create a new parentheses-enclosed expression.
  newNimNode(nnkPar).add(exprs)

proc newBlockStmt*(label, body: NimNode): NimNode {.compileTime.} =
  ## Create a new block statement with label.
  return newNimNode(nnkBlockStmt).add(label, body)

proc newBlockStmt*(body: NimNode): NimNode {.compileTime.} =
  ## Create a new block: stmt.
  return newNimNode(nnkBlockStmt).add(newEmptyNode(), body)

proc newVarStmt*(name, value: NimNode): NimNode {.compileTime.} =
  ## Create a new var stmt.
  return newNimNode(nnkVarSection).add(
    newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))

proc newLetStmt*(name, value: NimNode): NimNode {.compileTime.} =
  ## Create a new let stmt.
  return newNimNode(nnkLetSection).add(
    newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))

proc newConstStmt*(name, value: NimNode): NimNode {.compileTime.} =
  ## Create a new const stmt.
  newNimNode(nnkConstSection).add(
    newNimNode(nnkConstDef).add(name, newNimNode(nnkEmpty), value))

proc newAssignment*(lhs, rhs: NimNode): NimNode {.compileTime.} =
  return newNimNode(nnkAsgn).add(lhs, rhs)

proc newDotExpr*(a, b: NimNode): NimNode {.compileTime.} =
  ## Create new dot expression.
  ## a.dot(b) -> `a.b`
  return newNimNode(nnkDotExpr).add(a, b)

proc newColonExpr*(a, b: NimNode): NimNode {.compileTime.} =
  ## Create new colon expression.
  ## newColonExpr(a, b) -> `a: b`
  newNimNode(nnkExprColonExpr).add(a, b)

proc newIdentDefs*(name, kind: NimNode;
                   default = newEmptyNode()): NimNode {.compileTime.} =
  ## Creates a new ``nnkIdentDefs`` node of a specific kind and value.
  ##
  ## ``nnkIdentDefs`` need to have at least three children, but they can have
  ## more: first comes a list of identifiers followed by a type and value
  ## nodes. This helper proc creates a three node subtree, the first subnode
  ## being a single identifier name. Both the ``kind`` node and ``default``
  ## (value) nodes may be empty depending on where the ``nnkIdentDefs``
  ## appears: tuple or object definitions will have an empty ``default`` node,
  ## ``let`` or ``var`` blocks may have an empty ``kind`` node if the
  ## identifier is being assigned a value. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   var varSection = newNimNode(nnkVarSection).add(
  ##     newIdentDefs(ident("a"), ident("string")),
  ##     newIdentDefs(ident("b"), newEmptyNode(), newLit(3)))
  ##   # --> var
  ##   #       a: string
  ##   #       b = 3
  ##
  ## If you need to create multiple identifiers you need to use the lower level
  ## ``newNimNode``:
  ##
  ## .. code-block:: nim
  ##
  ##   result = newNimNode(nnkIdentDefs).add(
  ##     ident("a"), ident("b"), ident("c"), ident("string"),
  ##       newStrLitNode("Hello"))
  newNimNode(nnkIdentDefs).add(name, kind, default)

proc newNilLit*(): NimNode {.compileTime.} =
  ## New nil literal shortcut.
  result = newNimNode(nnkNilLit)

proc last*(node: NimNode): NimNode {.compileTime.} = node[node.len-1]
  ## Return the last item in nodes children. Same as `node[^1]`.


const
  RoutineNodes* = {nnkProcDef, nnkFuncDef, nnkMethodDef, nnkDo, nnkLambda,
                   nnkIteratorDef, nnkTemplateDef, nnkConverterDef}
  AtomicNodes* = {nnkNone..nnkNilLit}
  CallNodes* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
    nnkCallStrLit, nnkHiddenCallConv}

proc expectKind*(n: NimNode; k: set[NimNodeKind]) {.compileTime.} =
  ## Checks that `n` is of kind `k`. If this is not the case,
  ## compilation aborts with an error message. This is useful for writing
  ## macros that check the AST that is passed to them.
  if n.kind notin k: error("Expected one of " & $k & ", got " & $n.kind, n)

proc newProc*(name = newEmptyNode();
              params: openArray[NimNode] = [newEmptyNode()];
              body: NimNode = newStmtList();
              procType = nnkProcDef;
              pragmas: NimNode = newEmptyNode()): NimNode {.compileTime.} =
  ## Shortcut for creating a new proc.
  ##
  ## The ``params`` array must start with the return type of the proc,
  ## followed by a list of IdentDefs which specify the params.
  if procType notin RoutineNodes:
    error("Expected one of " & $RoutineNodes & ", got " & $procType)
  pragmas.expectKind({nnkEmpty, nnkPragma})
  result = newNimNode(procType).add(
    name,
    newEmptyNode(),
    newEmptyNode(),
    newNimNode(nnkFormalParams).add(params),
    pragmas,
    newEmptyNode(),
    body)

proc newIfStmt*(branches: varargs[tuple[cond, body: NimNode]]):
                NimNode {.compileTime.} =
  ## Constructor for ``if`` statements.
  ##
  ## .. code-block:: nim
  ##
  ##    newIfStmt(
  ##      (Ident, StmtList),
  ##      ...
  ##    )
  ##
  result = newNimNode(nnkIfStmt)
  if len(branches) < 1:
    error("If statement must have at least one branch")
  for i in branches:
    result.add(newTree(nnkElifBranch, i.cond, i.body))

proc newEnum*(name: NimNode, fields: openArray[NimNode],
              public, pure: bool): NimNode {.compileTime.} =

  ## Creates a new enum. `name` must be an ident. Fields are allowed to be
  ## either idents or EnumFieldDef
  ##
  ## .. code-block:: nim
  ##
  ##    newEnum(
  ##      name    = ident("Colors"),
  ##      fields  = [ident("Blue"), ident("Red")],
  ##      public  = true, pure = false)
  ##
  ##    # type Colors* = Blue Red
  ##

  expectKind name, nnkIdent
  if len(fields) < 1:
    error("Enum must contain at least one field")
  for field in fields:
    expectKind field, {nnkIdent, nnkEnumFieldDef}

  let enumBody = newNimNode(nnkEnumTy).add(newEmptyNode()).add(fields)
  var typeDefArgs = [name, newEmptyNode(), enumBody]

  if public:
    let postNode = newNimNode(nnkPostfix).add(
      newIdentNode("*"), typeDefArgs[0])

    typeDefArgs[0] = postNode

  if pure:
    let pragmaNode = newNimNode(nnkPragmaExpr).add(
      typeDefArgs[0],
      add(newNimNode(nnkPragma), newIdentNode("pure")))

    typeDefArgs[0] = pragmaNode

  let
    typeDef   = add(newNimNode(nnkTypeDef), typeDefArgs)
    typeSect  = add(newNimNode(nnkTypeSection), typeDef)

  return typeSect

proc copyChildrenTo*(src, dest: NimNode) {.compileTime.}=
  ## Copy all children from `src` to `dest`.
  for i in 0 ..< src.len:
    dest.add src[i].copyNimTree

template expectRoutine(node: NimNode) =
  expectKind(node, RoutineNodes)

proc name*(someProc: NimNode): NimNode {.compileTime.} =
  someProc.expectRoutine
  result = someProc[0]
  if result.kind == nnkPostfix:
    if result[1].kind == nnkAccQuoted:
      result = result[1][0]
    else:
      result = result[1]
  elif result.kind == nnkAccQuoted:
    result = result[0]

proc `name=`*(someProc: NimNode; val: NimNode) {.compileTime.} =
  someProc.expectRoutine
  if someProc[0].kind == nnkPostfix:
    someProc[0][1] = val
  else: someProc[0] = val

proc params*(someProc: NimNode): NimNode {.compileTime.} =
  someProc.expectRoutine
  result = someProc[3]
proc `params=`* (someProc: NimNode; params: NimNode) {.compileTime.}=
  someProc.expectRoutine
  expectKind(params, nnkFormalParams)
  someProc[3] = params

proc pragma*(someProc: NimNode): NimNode {.compileTime.} =
  ## Get the pragma of a proc type.
  ## These will be expanded.
  if someProc.kind == nnkProcTy:
    result = someProc[1]
  else:
    someProc.expectRoutine
    result = someProc[4]
proc `pragma=`*(someProc: NimNode; val: NimNode) {.compileTime.}=
  ## Set the pragma of a proc type.
  expectKind(val, {nnkEmpty, nnkPragma})
  if someProc.kind == nnkProcTy:
    someProc[1] = val
  else:
    someProc.expectRoutine
    someProc[4] = val

proc addPragma*(someProc, pragma: NimNode) {.compileTime.} =
  ## Adds pragma to routine definition.
  someProc.expectKind(RoutineNodes + {nnkProcTy})
  var pragmaNode = someProc.pragma
  if pragmaNode.isNil or pragmaNode.kind == nnkEmpty:
    pragmaNode = newNimNode(nnkPragma)
    someProc.pragma = pragmaNode
  pragmaNode.add(pragma)

template badNodeKind(n, f) =
  error("Invalid node kind " & $n.kind & " for macros.`" & $f & "`", n)

proc body*(someProc: NimNode): NimNode {.compileTime.} =
  case someProc.kind:
  of RoutineNodes:
    return someProc[6]
  of nnkBlockStmt, nnkWhileStmt:
    return someProc[1]
  of nnkForStmt:
    return someProc.last
  else:
    badNodeKind someProc, "body"

proc `body=`*(someProc: NimNode, val: NimNode) {.compileTime.} =
  case someProc.kind
  of RoutineNodes:
    someProc[6] = val
  of nnkBlockStmt, nnkWhileStmt:
    someProc[1] = val
  of nnkForStmt:
    someProc[len(someProc)-1] = val
  else:
    badNodeKind someProc, "body="

proc basename*(a: NimNode): NimNode {.compileTime, benign.}

proc `$`*(node: NimNode): string {.compileTime.} =
  ## Get the string of an identifier node.
  case node.kind
  of nnkPostfix:
    result = node.basename.strVal & "*"
  of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkSym, nnkIdent:
    result = node.strVal
  of nnkOpenSymChoice, nnkClosedSymChoice:
    result = $node[0]
  of nnkAccQuoted:
    result = $node[0]
  else:
    badNodeKind node, "$"

proc ident*(name: string): NimNode {.magic: "StrToIdent", noSideEffect.}
  ## Create a new ident node from a string.

iterator items*(n: NimNode): NimNode {.inline.} =
  ## Iterates over the children of the NimNode ``n``.
  for i in 0 ..< n.len:
    yield n[i]

iterator pairs*(n: NimNode): (int, NimNode) {.inline.} =
  ## Iterates over the children of the NimNode ``n`` and its indices.
  for i in 0 ..< n.len:
    yield (i, n[i])

iterator children*(n: NimNode): NimNode {.inline.} =
  ## Iterates over the children of the NimNode ``n``.
  for i in 0 ..< n.len:
    yield n[i]

template findChild*(n: NimNode; cond: untyped): NimNode {.dirty.} =
  ## Find the first child node matching condition (or nil).
  ##
  ## .. code-block:: nim
  ##   var res = findChild(n, it.kind == nnkPostfix and
  ##                          it.basename.ident == toNimIdent"foo")
  block:
    var res: NimNode
    for it in n.children:
      if cond:
        res = it
        break
    res

proc insert*(a: NimNode; pos: int; b: NimNode) {.compileTime.} =
  ## Insert node ``b`` into node ``a`` at ``pos``.
  if len(a)-1 < pos:
    # add some empty nodes first
    for i in len(a)-1..pos-2:
      a.add newEmptyNode()
    a.add b
  else:
    # push the last item onto the list again
    # and shift each item down to pos up one
    a.add(a[a.len-1])
    for i in countdown(len(a) - 3, pos):
      a[i + 1] = a[i]
    a[pos] = b

proc basename*(a: NimNode): NimNode =
  ## Pull an identifier from prefix/postfix expressions.
  case a.kind
  of nnkIdent: result = a
  of nnkPostfix, nnkPrefix: result = a[1]
  of nnkPragmaExpr: result = basename(a[0])
  else:
    error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
      repr(a), a)

proc `basename=`*(a: NimNode; val: string) {.compileTime.}=
  case a.kind
  of nnkIdent:
    a.strVal = val
  of nnkPostfix, nnkPrefix:
    a[1] = ident(val)
  of nnkPragmaExpr: `basename=`(a[0], val)
  else:
    error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
      repr(a), a)

proc postfix*(node: NimNode; op: string): NimNode {.compileTime.} =
  newNimNode(nnkPostfix).add(ident(op), node)

proc prefix*(node: NimNode; op: string): NimNode {.compileTime.} =
  newNimNode(nnkPrefix).add(ident(op), node)

proc infix*(a: NimNode; op: string;
            b: NimNode): NimNode {.compileTime.} =
  newNimNode(nnkInfix).add(ident(op), a, b)

proc unpackPostfix*(node: NimNode): tuple[node: NimNode; op: string] {.
  compileTime.} =
  node.expectKind nnkPostfix
  result = (node[1], $node[0])

proc unpackPrefix*(node: NimNode): tuple[node: NimNode; op: string] {.
  compileTime.} =
  node.expectKind nnkPrefix
  result = (node[1], $node[0])

proc unpackInfix*(node: NimNode): tuple[left: NimNode; op: string;
                                        right: NimNode] {.compileTime.} =
  expectKind(node, nnkInfix)
  result = (node[1], $node[0], node[2])

proc copy*(node: NimNode): NimNode {.compileTime.} =
  ## An alias for `copyNimTree<#copyNimTree,NimNode>`_.
  return node.copyNimTree()

when defined(nimVmEqIdent):
  proc eqIdent*(a: string; b: string): bool {.magic: "EqIdent", noSideEffect.}
    ## Style insensitive comparison.

  proc eqIdent*(a: NimNode; b: string): bool {.magic: "EqIdent", noSideEffect.}
    ## Style insensitive comparison.  ``a`` can be an identifier or a
    ## symbol. ``a`` may be wrapped in an export marker
    ## (``nnkPostfix``) or quoted with backticks (``nnkAccQuoted``),
    ## these nodes will be unwrapped.

  proc eqIdent*(a: string; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
    ## Style insensitive comparison.  ``b`` can be an identifier or a
    ## symbol. ``b`` may be wrapped in an export marker
    ## (``nnkPostfix``) or quoted with backticks (``nnkAccQuoted``),
    ## these nodes will be unwrapped.

  proc eqIdent*(a: NimNode; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
    ## Style insensitive comparison.  ``a`` and ``b`` can be an
    ## identifier or a symbol. Both may be wrapped in an export marker
    ## (``nnkPostfix``) or quoted with backticks (``nnkAccQuoted``),
    ## these nodes will be unwrapped.

else:
  # this procedure is optimized for native code, it should not be compiled to nimVM bytecode.
  proc cmpIgnoreStyle(a, b: cstring): int {.noSideEffect.} =
    proc toLower(c: char): char {.inline.} =
      if c in {'A'..'Z'}: result = chr(ord(c) + (ord('a') - ord('A')))
      else: result = c
    var i = 0
    var j = 0
    # first char is case sensitive
    if a[0] != b[0]: return 1
    while true:
      while a[i] == '_': inc(i)
      while b[j] == '_': inc(j) # BUGFIX: typo
      var aa = toLower(a[i])
      var bb = toLower(b[j])
      result = ord(aa) - ord(bb)
      if result != 0 or aa == '\0': break
      inc(i)
      inc(j)


  proc eqIdent*(a, b: string): bool = cmpIgnoreStyle(a, b) == 0
    ## Check if two idents are equal.

  proc eqIdent*(node: NimNode; s: string): bool {.compileTime.} =
    ## Check if node is some identifier node (``nnkIdent``, ``nnkSym``, etc.)
    ## is the same as ``s``. Note that this is the preferred way to check! Most
    ## other ways like ``node.ident`` are much more error-prone, unfortunately.
    case node.kind
    of nnkSym, nnkIdent:
      result = eqIdent(node.strVal, s)
    of nnkOpenSymChoice, nnkClosedSymChoice:
      result = eqIdent($node[0], s)
    else:
      result = false

proc hasArgOfName*(params: NimNode; name: string): bool {.compileTime.}=
  ## Search ``nnkFormalParams`` for an argument.
  expectKind(params, nnkFormalParams)
  for i in 1 ..< params.len:
    template node: untyped = params[i]
    if name.eqIdent( $ node[0]):
      return true

proc addIdentIfAbsent*(dest: NimNode, ident: string) {.compileTime.} =
  ## Add ``ident`` to ``dest`` if it is not present. This is intended for use
  ## with pragmas.
  for node in dest.children:
    case node.kind
    of nnkIdent:
      if ident.eqIdent($node): return
    of nnkExprColonExpr:
      if ident.eqIdent($node[0]): return
    else: discard
  dest.add(ident(ident))

proc boolVal*(n: NimNode): bool {.compileTime, noSideEffect.} =
  if n.kind == nnkIntLit: n.intVal != 0
  else: n == bindSym"true" # hacky solution for now

when defined(nimMacrosGetNodeId):
  proc nodeID*(n: NimNode): int {.magic: NodeId.}
    ## Returns the id of ``n``, when the compiler has been compiled
    ## with the flag ``-d:useNodeids``, otherwise returns ``-1``. This
    ## proc is for the purpose to debug the compiler only.

macro expandMacros*(body: typed): untyped =
  ## Expands one level of macro - useful for debugging.
  ## Can be used to inspect what happens when a macro call is expanded,
  ## without altering its result.
  ##
  ## For instance,
  ##
  ## .. code-block:: nim
  ##   import future, macros
  ##
  ##   let
  ##     x = 10
  ##     y = 20
  ##   expandMacros:
  ##     dump(x + y)
  ##
  ## will actually dump `x + y`, but at the same time will print at
  ## compile time the expansion of the ``dump`` macro, which in this
  ## case is ``debugEcho ["x + y", " = ", x + y]``.
  echo body.toStrLit
  result = body

proc customPragmaNode(n: NimNode): NimNode =
  expectKind(n, {nnkSym, nnkDotExpr, nnkBracketExpr, nnkTypeOfExpr, nnkCheckedFieldExpr})
  let
    typ = n.getTypeInst()

  if typ.kind == nnkBracketExpr and typ.len > 1 and typ[1].kind == nnkProcTy:
    return typ[1][1]
  elif typ.typeKind == ntyTypeDesc:
    let impl = typ[1].getImpl()
    if impl[0].kind == nnkPragmaExpr:
      return impl[0][1]
    else:
      return impl[0] # handle types which don't have macro at all

  if n.kind == nnkSym: # either an variable or a proc
    let impl = n.getImpl()
    if impl.kind in RoutineNodes:
      return impl.pragma
    elif impl.kind == nnkIdentDefs and impl[0].kind == nnkPragmaExpr:
      return impl[0][1]
    else:
      let timpl = typ.getImpl()
      if timpl.len>0 and timpl[0].len>1:
        return timpl[0][1]
      else:
        return timpl

  if n.kind in {nnkDotExpr, nnkCheckedFieldExpr}:
    let name = $(if n.kind == nnkCheckedFieldExpr: n[0][1] else: n[1])
    let typInst = getTypeInst(if n.kind == nnkCheckedFieldExpr or n[0].kind == nnkHiddenDeref: n[0][0] else: n[0])
    var typDef = getImpl(if typInst.kind == nnkVarTy: typInst[0] else: typInst)
    while typDef != nil:
      typDef.expectKind(nnkTypeDef)
      let typ = typDef[2]
      typ.expectKind({nnkRefTy, nnkPtrTy, nnkObjectTy})
      let isRef = typ.kind in {nnkRefTy, nnkPtrTy}
      if isRef and typ[0].kind in {nnkSym, nnkBracketExpr}: # defines ref type for another object(e.g. X = ref X)
        typDef = getImpl(typ[0])
      else: # object definition, maybe an object directly defined as a ref type
        let
          obj = (if isRef: typ[0] else: typ)
        var identDefsStack = newSeq[NimNode](obj[2].len)
        for i in 0..<identDefsStack.len: identDefsStack[i] = obj[2][i]
        while identDefsStack.len > 0:
          var identDefs = identDefsStack.pop()
          if identDefs.kind == nnkRecCase:
            identDefsStack.add(identDefs[0])
            for i in 1..<identDefs.len:
              let varNode = identDefs[i]
              # if it is and empty branch, skip
              if varNode[0].kind == nnkNilLit: continue
              if varNode[1].kind == nnkIdentDefs:
                identDefsStack.add(varNode[1])
              else: # nnkRecList
                for j in 0 ..< varNode[1].len:
                  identDefsStack.add(varNode[1][j])

          else:
            for i in 0 .. identDefs.len - 3:
              let varNode = identDefs[i]
              if varNode.kind == nnkPragmaExpr:
                var varName = varNode[0]
                if varName.kind == nnkPostfix:
                  # This is a public field. We are skipping the postfix *
                  varName = varName[1]
                if eqIdent($varName, name):
                  return varNode[1]

        if obj[1].kind == nnkOfInherit: # explore the parent object
          typDef = getImpl(obj[1][0])
        else:
          typDef = nil

macro hasCustomPragma*(n: typed, cp: typed{nkSym}): untyped =
  ## Expands to `true` if expression `n` which is expected to be `nnkDotExpr`
  ## (if checking a field), a proc or a type has custom pragma `cp`.
  ##
  ## See also `getCustomPragmaVal`.
  ##
  ## .. code-block:: nim
  ##   template myAttr() {.pragma.}
  ##   type
  ##     MyObj = object
  ##       myField {.myAttr.}: int
  ##
  ##   proc myProc() {.myAttr.} = discard
  ##
  ##   var o: MyObj
  ##   assert(o.myField.hasCustomPragma(myAttr))
  ##   assert(myProc.hasCustomPragma(myAttr))
  let pragmaNode = customPragmaNode(n)
  for p in pragmaNode:
    if (p.kind == nnkSym and p == cp) or
        (p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp):
      return newLit(true)
  return newLit(false)

macro getCustomPragmaVal*(n: typed, cp: typed{nkSym}): untyped =
  ## Expands to value of custom pragma `cp` of expression `n` which is expected
  ## to be `nnkDotExpr`, a proc or a type.
  ##
  ## See also `hasCustomPragma`
  ##
  ## .. code-block:: nim
  ##   template serializationKey(key: string) {.pragma.}
  ##   type
  ##     MyObj {.serializationKey: "mo".} = object
  ##       myField {.serializationKey: "mf".}: int
  ##   var o: MyObj
  ##   assert(o.myField.getCustomPragmaVal(serializationKey) == "mf")
  ##   assert(o.getCustomPragmaVal(serializationKey) == "mo")
  ##   assert(MyObj.getCustomPragmaVal(serializationKey) == "mo")
  let pragmaNode = customPragmaNode(n)
  for p in pragmaNode:
    if p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp:
      if p.len == 2:
        result = p[1]
      else:
        let def = p[0].getImpl[3]
        result = newTree(nnkPar)
        for i in 1 ..< def.len:
          let key = def[i][0]
          let val = p[i]
          result.add newTree(nnkExprColonExpr, key, val)
      break
  if result.kind == nnkEmpty:
    error(n.repr & " doesn't have a pragma named " & cp.repr()) # returning an empty node results in most cases in a cryptic error,


when not defined(booting):
  template emit*(e: static[string]): untyped {.deprecated.} =
    ## Accepts a single string argument and treats it as nim code
    ## that should be inserted verbatim in the program
    ## Example:
    ##
    ## .. code-block:: nim
    ##   emit("echo " & '"' & "hello world".toUpper & '"')
    ##
    ## Deprecated since version 0.15 since it's so rarely useful.
    macro payload: untyped {.gensym.} =
      result = parseStmt(e)
    payload()

macro unpackVarargs*(callee: untyped; args: varargs[untyped]): untyped =
  result = newCall(callee)
  for i in 0 ..< args.len:
    result.add args[i]

proc getProjectPath*(): string = discard
  ## Returns the path to the currently compiling project.
  ##
  ## This is not to be confused with `system.currentSourcePath <system.html#currentSourcePath.t>`_
  ## which returns the path of the source file containing that template
  ## call.
  ##
  ## For example, assume a ``dir1/foo.nim`` that imports a ``dir2/bar.nim``,
  ## have the ``bar.nim`` print out both ``getProjectPath`` and
  ## ``currentSourcePath`` outputs.
  ##
  ## Now when ``foo.nim`` is compiled, the ``getProjectPath`` from
  ## ``bar.nim`` will return the ``dir1/`` path, while the ``currentSourcePath``
  ## will return the path to the ``bar.nim`` source file.
  ##
  ## Now when ``bar.nim`` is compiled directly, the ``getProjectPath``
  ## will now return the ``dir2/`` path, and the ``currentSourcePath``
  ## will still return the same path, the path to the ``bar.nim`` source
  ## file.
  ##
  ## The path returned by this proc is set at compile time.
  ##
  ## See also:
  ## * `getCurrentDir proc <os.html#getCurrentDir>`_

when defined(nimMacrosSizealignof):
  proc getSize*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
    ## Returns the same result as ``system.sizeof`` if the size is
    ## known by the Nim compiler. Returns a negative value if the Nim
    ## compiler does not know the size.
  proc getAlign*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
    ## Returns the same result as ``system.alignof`` if the alignment
    ## is known by the Nim compiler. It works on ``NimNode`` for use
    ## in macro context. Returns a negative value if the Nim compiler
    ## does not know the alignment.
  proc getOffset*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
    ## Returns the same result as ``system.offsetof`` if the offset is
    ## known by the Nim compiler. It expects a resolved symbol node
    ## from a field of a type. Therefore it only requires one argument
    ## instead of two. Returns a negative value if the Nim compiler
    ## does not know the offset.

proc isExported*(n: NimNode): bool {.noSideEffect.} =
  ## Returns whether the symbol is exported or not.