# write: like _write, but also support in-memory streams in addition to file
# descriptors.
#
# Our first dependency-injected and testable primitive. We can pass it either
# a file descriptor or an address to a stream. If a file descriptor is passed
# in, we _write to it using the right syscall. If a 'fake file descriptor' or
# stream is passed in, we append to the stream. This lets us redirect output
# in tests and check it later.
#
# We assume our data segment will never begin at an address shorter than
# 0x08000000, so any smaller arguments are assumed to be real file descriptors.
#
# A stream looks like this:
# read: int # index at which to read next
# write: int # index at which writes go
# data: (array byte) # prefixed by size as usual
== code
# instruction effective address register displacement immediate
# . op subop mod rm32 base index scale r32
# . 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes
# TODO: come up with a way to signal when a write to disk fails
write: # f: fd or (addr stream byte), s: (addr array byte)
# . prologue
55/push-ebp
89/copy 3/mod/direct 5/rm32/ebp . . . 4/r32/esp . . # copy esp to ebp
# if (f < 0x08000000) _write(f, s) and return # f can't be a user-mode address, so treat it as a kernel file descriptor
81 7/subop/compare 1/mod/*+disp8 5/rm32/ebp . . . . 8/disp8 0x08000000/imm32 # compare *(ebp+8)
73/jump-if-addr>= $write:fake/disp8
# . . push args
ff 6/subop/push 1/mod/*+disp8 5/rm32/ebp . . . . 0xc/disp8 . # push *(ebp+12)
ff 6/subop/push 1/mod/*+disp8 5/rm32/ebp . . . . 8/disp8 . # push *(ebp+8)
# . . call
e8/call _write/disp32
# . . discard args
81 0/subop/add 3/mod/direct 4/rm32/esp . . . . . 8/imm32 # add to esp
eb/jump $write:end/disp8
$write:fake:
# otherwise, treat 'f' as a stream to append to
# . save registers
50/push-eax
51/push-ecx
52/push-edx
53/push-ebx
# ecx = f
8b/copy 1/mod/*+disp8 5/rm32/ebp . . 1/r32/ecx 8/disp8 . # copy *(ebp+8) to ecx
# edx = f->write
8b/copy 0/mod/indirect 1/rm32/ecx . . . 2/r32/edx . . # copy *ecx to edx
# ebx = f->size
8b/copy 1/mod/*+disp8 1/rm32/ecx . . . 3/r32/ebx 8/disp8 . # copy *(ecx+8) to ebx
# eax = _append-3(&f->data[f->write], &f->data[f->size], s)
# . . push s
ff 6/subop/push 1/mod/*+disp8 5/rm32/e#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the interface to the compiler's abstract syntax
## tree (`AST`:idx:). Macros operate on this tree.
## .. include:: ../doc/astspec.txt
type
TNimrodNodeKind* = enum
nnkNone, nnkEmpty, nnkIdent, nnkSym,
nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit,
nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit,
nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit,
nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit,
nnkTripleStrLit, nnkNilLit, nnkMetaNode, nnkDotCall,
nnkCommand, nnkCall, nnkCallStrLit, nnkInfix,
nnkPrefix, nnkPostfix, nnkHiddenCallConv,
nnkExprEqExpr,
nnkExprColonExpr, nnkIdentDefs, nnkVarTuple,
nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr,
nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange,
nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr,
nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted,
nnkTableConstr, nnkBind,
nnkClosedSymChoice,
nnkOpenSymChoice,
nnkHiddenStdConv,
nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr,
nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv,
nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange,
nnkStringToCString, nnkCStringToString, nnkAsgn,
nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit,
nnkModule, nnkProcDef, nnkMethodDef, nnkConverterDef,
nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch,
nnkElifBranch, nnkExceptBranch, nnkElse,
nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt,
nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt,
nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection,
nnkConstDef, nnkTypeDef,
nnkYieldStmt, nnkTryStmt, nnkFinally, nnkRaiseStmt,
nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt,
nnkDiscardStmt, nnkStmtList,
nnkImportStmt,
nnkImportExceptStmt,
nnkExportStmt,
nnkExportExceptStmt,
nnkFromStmt,
nnkIncludeStmt,
nnkBindStmt, nnkMixinStmt,
nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr,
nnkStmtListType, nnkBlockType, nnkTypeOfExpr, nnkObjectTy,
nnkTupleTy, nnkRecList, nnkRecCase, nnkRecWhen,
nnkRefTy, nnkPtrTy, nnkVarTy,
nnkConstTy, nnkMutableTy,
nnkDistinctTy,
nnkProcTy,
nnkIteratorTy, # iterator type
nnkSharedTy, # 'shared T'
nnkEnumTy,
nnkEnumFieldDef,
nnkArglist, nnkPattern
nnkReturnToken
TNimNodeKinds* = set[TNimrodNodeKind]
TNimrodTypeKind* = enum
ntyNone, ntyBool, ntyChar, ntyEmpty,
ntyArrayConstr, ntyNil, ntyExpr, ntyStmt,
ntyTypeDesc, ntyGenericInvokation, ntyGenericBody, ntyGenericInst,
ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal,
ntyArray, ntyObject, ntyTuple, ntySet,
ntyRange, ntyPtr, ntyRef, ntyVar,
ntySequence, ntyProc, ntyPointer, ntyOpenArray,
ntyString, ntyCString, ntyForward, ntyInt,
ntyInt8, ntyInt16, ntyInt32, ntyInt64,
ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128
TNimTypeKinds* = set[TNimrodTypeKind]
TNimrodSymKind* = enum
nskUnknown, nskConditional, nskDynLib, nskParam,
nskGenericParam, nskTemp, nskType, nskConst,
nskVar, nskProc, nskMethod, nskIterator,
nskConverter, nskMacro, nskTemplate, nskField,
nskEnumField, nskForVar, nskModule, nskLabel,
nskStub
TNimSymKinds* = set[TNimrodSymKind]
type
TNimrodIdent* = object of TObject
## represents a Nimrod identifier in the AST
TNimrodSymbol {.final.} = object # hidden
PNimrodSymbol* {.compilerproc.} = ref TNimrodSymbol
## represents a Nimrod *symbol* in the compiler; a *symbol* is a looked-up
## *ident*.
const
nnkLiterals* = {nnkCharLit..nnkNilLit}
nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
nnkCallStrLit}
proc `[]`*(n: PNimrodNode, i: int): PNimrodNode {.magic: "NChild".}
## get `n`'s `i`'th child.
proc `[]=`*(n: PNimrodNode, i: int, child: PNimrodNode) {.magic: "NSetChild".}
## set `n`'s `i`'th child to `child`.
proc `!`*(s: string): TNimrodIdent {.magic: "StrToIdent".}
## constructs an identifier from the string `s`
proc `$`*(i: TNimrodIdent): string {.magic: "IdentToStr".}
## converts a Nimrod identifier to a string
proc `$`*(s: PNimrodSymbol): string {.magic: "IdentToStr".}
## converts a Nimrod symbol to a string
proc `==`*(a, b: TNimrodIdent): bool {.magic: "EqIdent", noSideEffect.}
## compares two Nimrod identifiers
proc `==`*(a, b: PNimrodNode): bool {.magic: "EqNimrodNode", noSideEffect.}
## compares two Nimrod nodes
proc len*(n: PNimrodNode): int {.magic: "NLen".}
## returns the number of children of `n`.
proc add*(father, child: PNimrodNode): PNimrodNode {.magic: "NAdd", discardable.}
## Adds the `child` to the `father` node. Returns the
## father node so that calls can be nested.
proc add*(father: PNimrodNode, children: varargs[PNimrodNode]): PNimrodNode {.
magic: "NAddMultiple", discardable.}
## Adds each child of `children` to the `father` node.
## Returns the `father` node so that calls can be nested.
proc del*(father: PNimrodNode, idx = 0, n = 1) {.magic: "NDel".}
## deletes `n` children of `father` starting at index `idx`.
proc kind*(n: PNimrodNode): TNimrodNodeKind {.magic: "NKind".}
## returns the `kind` of the node `n`.
proc intVal*(n: PNimrodNode): biggestInt {.magic: "NIntVal".}
proc floatVal*(n: PNimrodNode): biggestFloat {.magic: "NFloatVal".}
proc symbol*(n: PNimrodNode): PNimrodSymbol {.magic: "NSymbol".}
proc ident*(n: PNimrodNode): TNimrodIdent {.magic: "NIdent".}
proc typ*(n: PNimrodNode): typedesc {.magic: "NGetType".}
proc strVal*(n: PNimrodNode): string {.magic: "NStrVal".}
proc `intVal=`*(n: PNimrodNode, val: biggestInt) {.magic: "NSetIntVal".}
proc `floatVal=`*(n: PNimrodNode, val: biggestFloat) {.magic: "NSetFloatVal".}
proc `symbol=`*(n: PNimrodNode, val: PNimrodSymbol) {.magic: "NSetSymbol".}
proc `ident=`*(n: PNimrodNode, val: TNimrodIdent) {.magic: "NSetIdent".}
proc `typ=`*(n: PNimrodNode, typ: typedesc) {.magic: "NSetType".}
proc `strVal=`*(n: PNimrodNode, val: string) {.magic: "NSetStrVal".}
proc newNimNode*(kind: TNimrodNodeKind,
n: PNimrodNode=nil): PNimrodNode {.magic: "NNewNimNode".}
proc copyNimNode*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimNode".}
proc copyNimTree*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimTree".}
proc error*(msg: string) {.magic: "NError".}
## writes an error message at compile time
proc warning*(msg: string) {.magic: "NWarning".}
## writes a warning message at compile time
proc hint*(msg: string) {.magic: "NHint".}
## writes a hint message at compile time
proc newStrLitNode*(s: string): PNimrodNode {.compileTime.} =
## creates a string literal node from `s`
result = newNimNode(nnkStrLit)
result.strVal = s
proc newIntLitNode*(i: biggestInt): PNimrodNode {.compileTime.} =
## creates a int literal node from `i`
result = newNimNode(nnkIntLit)
result.intVal = i
proc newFloatLitNode*(f: biggestFloat): PNimrodNode {.compileTime.} =
## creates a float literal node from `f`
result = newNimNode(nnkFloatLit)
result.floatVal = f
proc newIdentNode*(i: TNimrodIdent): PNimrodNode {.compileTime.} =
## creates an identifier node from `i`
result = newNimNode(nnkIdent)
result.ident = i
proc newIdentNode*(i: string): PNimrodNode {.compileTime.} =
## creates an identifier node from `i`
result = newNimNode(nnkIdent)
result.ident = !i
type
TBindSymRule* = enum ## specifies how ``bindSym`` behaves
brClosed, ## only the symbols in current scope are bound
brOpen, ## open wrt overloaded symbols, but may be a single
## symbol if not ambiguous (the rules match that of
## binding in generics)
brForceOpen ## same as brOpen, but it will always be open even
## if not ambiguous (this cannot be achieved with
## any other means in the language currently)
proc bindSym*(ident: string, rule: TBindSymRule = brClosed): PNimrodNode {.
magic: "NBindSym".}
## creates a node that binds `ident` to a symbol node. The bound symbol
## may be an overloaded symbol.
## If ``rule == brClosed`` either an ``nkClosedSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brOpen`` either an ``nkOpenSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brForceOpen`` always an ``nkOpenSymChoice`` tree is
## returned even if the symbol is not ambiguous.
proc callsite*(): PNimrodNode {.magic: "NCallSite".}
## returns the AST if the invokation expression that invoked this macro.
proc toStrLit*(n: PNimrodNode): PNimrodNode {.compileTime.} =
## converts the AST `n` to the concrete Nimrod code and wraps that
## in a string literal node
return newStrLitNode(repr(n))
proc lineinfo*(n: PNimrodNode): string {.magic: "NLineInfo".}
## returns the position the node appears in the original source file
## in the form filename(line, col)
proc parseExpr*(s: string): PNimrodNode {.magic: "ParseExprToAst".}
## Compiles the passed string to its AST representation.
## Expects a single expression.
proc parseStmt*(s: string): PNimrodNode {.magic: "ParseStmtToAst".}
## Compiles the passed string to its AST representation.
## Expects one or more statements.
proc getAst*(macroOrTemplate: expr): PNimrodNode {.magic: "ExpandToAst".}
## Obtains the AST nodes returned from a macro or template invocation.
## Example:
##
## .. code-block:: nimrod
##
## macro FooMacro() =
## var ast = getAst(BarTemplate())
proc quote*(bl: stmt, op = "``"): PNimrodNode {.magic: "QuoteAst".}
## Quasi-quoting operator.
## Accepts an expression or a block and returns the AST that represents it.
## Within the quoted AST, you are able to interpolate PNimrodNode expressions
## from the surrounding scope. If no operator is given, quoting is done using
## backticks. Otherwise, the given operator must be used as a prefix operator
## for any interpolated expression. The original meaning of the interpolation
## operator may be obtained by escaping it (by prefixing it with itself):
## e.g. `@` is escaped as `@@`, `@@` is escaped as `@@@` and so on.
##
## Example:
##
## macro check(ex: expr): stmt =
## # this is a simplified version of the check macro from the
## # unittest module.
##
## # If there is a failed check, we want to make it easy for
## # the user to jump to the faulty line in the code, so we
## # get the line info here:
## var info = ex.lineinfo
##
## # We will also display the code string of the failed check:
## var expString = ex.toStrLit
##
## # Finally we compose the code to implement the check:
## result = quote do:
## if not `ex`:
## echo `info` & ": Check failed: " & `expString`
template emit*(e: expr[string]): stmt =
## accepts a single string argument and treats it as nimrod code
## that should be inserted verbatim in the program
## Example:
##
## emit("echo " & '"' & "hello world".toUpper & '"')
##
eval: result = e.parseStmt
proc expectKind*(n: PNimrodNode, k: TNimrodNodeKind) {.compileTime.} =
## checks that `n` is of kind `k`. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check the AST that is passed to them.
if n.kind != k: error("macro expects a node of kind: " & repr(k))
proc expectMinLen*(n: PNimrodNode, min: int) {.compileTime.} =
## checks that `n` has at least `min` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len < min: error("macro expects a node with " & $min & " children")
proc expectLen*(n: PNimrodNode, len: int) {.compileTime.} =
## checks that `n` has exactly `len` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len != len: error("macro expects a node with " & $len & " children")
proc newCall*(theProc: PNimrodNode,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(theProc)
result.add(args)
proc newCall*(theProc: TNimrodIdent,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
proc newCall*(theProc: string,
args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
proc nestList*(theProc: TNimrodIdent,
x: PNimrodNode): PNimrodNode {.compileTime.} =
## nests the list `x` into a tree of call expressions:
## ``[a, b, c]`` is transformed into ``theProc(a, theProc(c, d))``.
var L = x.len
result = newCall(theProc, x[L-2], x[L-1])
for i in countdown(L-3, 0):
# XXX the 'copyNimTree' here is necessary due to a bug in the evaluation
# engine that would otherwise create an endless loop here. :-(
# This could easily user code and so should be fixed in evals.nim somehow.
result = newCall(theProc, x[i], copyNimTree(result))
proc treeRepr*(n: PNimrodNode): string {.compileTime.} =
## Convert the AST `n` to a human-readable tree-like string.
##
## See also `repr` and `lispRepr`.
proc traverse(res: var string, level: int, n: PNimrodNode) =
for i in 0..level-1: res.add " "
res.add(($n.kind).substr(3))
case n.kind
of nnkEmpty: nil # same as nil node in this representation
of nnkNilLit: res.add(" nil")
of nnkCharLit..nnkInt64Lit: res.add(" " & $n.intVal)
of nnkFloatLit..nnkFloat64Lit: res.add(" " & $n.floatVal)
of nnkStrLit..nnkTripleStrLit: res.add(" " & $n.strVal)
of nnkIdent: res.add(" !\"" & $n.ident & '"')
of nnkSym: res.add(" \"" & $n.symbol & '"')
of nnkNone: assert false
else:
for j in 0..n.len-1:
res.add "\n"
traverse(res, level + 1, n[j])
result = ""
traverse(result, 0, n)
proc lispRepr*(n: PNimrodNode): string {.compileTime.} =
## Convert the AST `n` to a human-readable lisp-like string,
##
## See also `repr` and `treeRepr`.
result = ($n.kind).substr(3)
add(result, "(")
case n.kind
of nnkEmpty: nil # same as nil node in this representation
of nnkNilLit: add(result, "nil")
of nnkCharLit..nnkInt64Lit: add(result, $n.intVal)
of nnkFloatLit..nnkFloat64Lit: add(result, $n.floatVal)
of nnkStrLit..nnkTripleStrLit: add(result, $n.strVal)
of nnkIdent: add(result, "!\"" & $n.ident & '"')
of nnkSym, nnkNone: assert false
else:
add(result, lispRepr(n[0]))
for j in 1..n.len-1:
add(result, ", ")
add(result, lispRepr(n[j]))
add(result, ")")
macro dumpTree*(s: stmt): stmt = echo s.treeRepr
## Accepts a block of nimrod code and prints the parsed abstract syntax
## tree using the `toTree` function. Printing is done *at compile time*.
##
## You can use this as a tool to explore the Nimrod's abstract syntax
## tree and to discover what kind of nodes must be created to represent
## a certain expression/statement.
macro dumpLisp*(s: stmt): stmt = echo s.lispRepr
## Accepts a block of nimrod code and prints the parsed abstract syntax
## tree using the `toLisp` function. Printing is done *at compile time*.
##
## See `dumpTree`.
macro dumpTreeImm*(s: stmt): stmt {.immediate.} = echo s.treeRepr
## The ``immediate`` version of `dumpTree`.
macro dumpLispImm*(s: stmt): stmt {.immediate.} = echo s.lispRepr
## The ``immediate`` version of `dumpLisp`.