1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
include "system/inclrtl"
## This module contains the interface to the compiler's abstract syntax
## tree (`AST`:idx:). Macros operate on this tree.
##
## See also:
## * `macros tutorial <https://nim-lang.github.io/Nim/tut3.html>`_
## * `macros section in Nim manual <https://nim-lang.github.io/Nim/manual.html#macros>`_
## .. include:: ../../doc/astspec.txt
# If you look for the implementation of the magic symbol
# ``{.magic: "Foo".}``, search for `mFoo` and `opcFoo`.
type
NimNodeKind* = enum
nnkNone, nnkEmpty, nnkIdent, nnkSym,
nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit,
nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit,
nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit,
nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit,
nnkTripleStrLit, nnkNilLit, nnkComesFrom, nnkDotCall,
nnkCommand, nnkCall, nnkCallStrLit, nnkInfix,
nnkPrefix, nnkPostfix, nnkHiddenCallConv,
nnkExprEqExpr,
nnkExprColonExpr, nnkIdentDefs, nnkVarTuple,
nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr,
nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange,
nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr,
nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted,
nnkTableConstr, nnkBind,
nnkClosedSymChoice,
nnkOpenSymChoice,
nnkHiddenStdConv,
nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr,
nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv,
nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange,
nnkStringToCString, nnkCStringToString, nnkAsgn,
nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit,
nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef,
nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch,
nnkElifBranch, nnkExceptBranch, nnkElse,
nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt,
nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt,
nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection,
nnkConstDef, nnkTypeDef,
nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt,
nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt,
nnkDiscardStmt, nnkStmtList,
nnkImportStmt,
nnkImportExceptStmt,
nnkExportStmt,
nnkExportExceptStmt,
nnkFromStmt,
nnkIncludeStmt,
nnkBindStmt, nnkMixinStmt, nnkUsingStmt,
nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr,
nnkStmtListType, nnkBlockType,
nnkWith, nnkWithout,
nnkTypeOfExpr, nnkObjectTy,
nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy,
nnkRecList, nnkRecCase, nnkRecWhen,
nnkRefTy, nnkPtrTy, nnkVarTy,
nnkConstTy, nnkMutableTy,
nnkDistinctTy,
nnkProcTy,
nnkIteratorTy, # iterator type
nnkSharedTy, # 'shared T'
nnkEnumTy,
nnkEnumFieldDef,
nnkArglist, nnkPattern
nnkHiddenTryStmt,
nnkClosure,
nnkGotoState,
nnkState,
nnkBreakState,
nnkFuncDef,
nnkTupleConstr
NimNodeKinds* = set[NimNodeKind]
NimTypeKind* = enum # some types are no longer used, see ast.nim
ntyNone, ntyBool, ntyChar, ntyEmpty,
ntyAlias, ntyNil, ntyExpr, ntyStmt,
ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst,
ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal,
ntyArray, ntyObject, ntyTuple, ntySet,
ntyRange, ntyPtr, ntyRef, ntyVar,
ntySequence, ntyProc, ntyPointer, ntyOpenArray,
ntyString, ntyCString, ntyForward, ntyInt,
ntyInt8, ntyInt16, ntyInt32, ntyInt64,
ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128,
ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64,
ntyUnused0, ntyUnused1, ntyUnused2,
ntyVarargs,
ntyUncheckedArray,
ntyError,
ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst,
ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot,
ntyAnything, ntyStatic, ntyFromExpr, ntyOpt, ntyVoid
TNimTypeKinds* {.deprecated.} = set[NimTypeKind]
NimSymKind* = enum
nskUnknown, nskConditional, nskDynLib, nskParam,
nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet,
nskConst, nskResult,
nskProc, nskFunc, nskMethod, nskIterator,
nskConverter, nskMacro, nskTemplate, nskField,
nskEnumField, nskForVar, nskLabel,
nskStub
TNimSymKinds* {.deprecated.} = set[NimSymKind]
type
NimIdent* {.deprecated.} = object of RootObj
## represents a Nim identifier in the AST. **Note**: This is only
## rarely useful, for identifier construction from a string
## use ``ident"abc"``.
NimSymObj = object # hidden
NimSym* {.deprecated.} = ref NimSymObj
## represents a Nim *symbol* in the compiler; a *symbol* is a looked-up
## *ident*.
const
nnkLiterals* = {nnkCharLit..nnkNilLit}
nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
nnkCallStrLit}
nnkPragmaCallKinds = {nnkExprColonExpr, nnkCall, nnkCallStrLit}
{.push warnings: off.}
proc `!`*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
"Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
## constructs an identifier from the string `s`
proc toNimIdent*(s: string): NimIdent {.magic: "StrToIdent", noSideEffect, deprecated:
"Deprecated since version 0.18.0: Use 'ident' or 'newIdentNode' instead.".}
## constructs an identifier from the string `s`
proc `==`*(a, b: NimIdent): bool {.magic: "EqIdent", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Use '==' on 'NimNode' instead.".}
## compares two Nim identifiers
proc `==`*(a, b: NimNode): bool {.magic: "EqNimrodNode", noSideEffect.}
## compares two Nim nodes
proc `==`*(a, b: NimSym): bool {.magic: "EqNimrodNode", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Use '==(NimNode, NimNode)' instead.".}
## compares two Nim symbols
{.pop.}
proc sameType*(a, b: NimNode): bool {.magic: "SameNodeType", noSideEffect.} =
## compares two Nim nodes' types. Return true if the types are the same,
## eg. true when comparing alias with original type.
discard
proc len*(n: NimNode): int {.magic: "NLen", noSideEffect.}
## returns the number of children of `n`.
proc `[]`*(n: NimNode, i: int): NimNode {.magic: "NChild", noSideEffect.}
## get `n`'s `i`'th child.
proc `[]`*(n: NimNode, i: BackwardsIndex): NimNode = n[n.len - i.int]
## get `n`'s `i`'th child.
template `^^`(n: NimNode, i: untyped): untyped =
(when i is BackwardsIndex: n.len - int(i) else: int(i))
proc `[]`*[T, U](n: NimNode, x: HSlice[T, U]): seq[NimNode] =
## slice operation for NimNode.
## returns a seq of child of `n` who inclusive range [n[x.a], n[x.b]].
let xa = n ^^ x.a
let L = (n ^^ x.b) - xa + 1
result = newSeq[NimNode](L)
for i in 0..<L:
result[i] = n[i + xa]
proc `[]=`*(n: NimNode, i: int, child: NimNode) {.magic: "NSetChild",
noSideEffect.}
## set `n`'s `i`'th child to `child`.
proc `[]=`*(n: NimNode, i: BackwardsIndex, child: NimNode) =
## set `n`'s `i`'th child to `child`.
n[n.len - i.int] = child
template `or`*(x, y: NimNode): NimNode =
## Evaluate ``x`` and when it is not an empty node, return
## it. Otherwise evaluate to ``y``. Can be used to chain several
## expressions to get the first expression that is not empty.
##
## .. code-block:: nim
##
## let node = mightBeEmpty() or mightAlsoBeEmpty() or fallbackNode
let arg = x
if arg != nil and arg.kind != nnkEmpty:
arg
else:
y
proc add*(father, child: NimNode): NimNode {.magic: "NAdd", discardable,
noSideEffect, locks: 0.}
## Adds the `child` to the `father` node. Returns the
## father node so that calls can be nested.
proc add*(father: NimNode, children: varargs[NimNode]): NimNode {.
magic: "NAddMultiple", discardable, noSideEffect, locks: 0.}
## Adds each child of `children` to the `father` node.
## Returns the `father` node so that calls can be nested.
proc del*(father: NimNode, idx = 0, n = 1) {.magic: "NDel", noSideEffect.}
## deletes `n` children of `father` starting at index `idx`.
proc kind*(n: NimNode): NimNodeKind {.magic: "NKind", noSideEffect.}
## returns the `kind` of the node `n`.
proc intVal*(n: NimNode): BiggestInt {.magic: "NIntVal", noSideEffect.}
## Returns an integer value from any integer literal or enum field symbol.
proc floatVal*(n: NimNode): BiggestFloat {.magic: "NFloatVal", noSideEffect.}
## Returns a float from any floating point literal.
{.push warnings: off.}
proc ident*(n: NimNode): NimIdent {.magic: "NIdent", noSideEffect, deprecated:
"Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}
proc symbol*(n: NimNode): NimSym {.magic: "NSymbol", noSideEffect, deprecated:
"Deprecated since version 0.18.1; All functionality is defined on 'NimNode'.".}
proc getImpl*(s: NimSym): NimNode {.magic: "GetImpl", noSideEffect, deprecated: "use `getImpl: NimNode -> NimNode` instead".}
when defined(nimSymKind):
proc symKind*(symbol: NimNode): NimSymKind {.magic: "NSymKind", noSideEffect.}
proc getImpl*(symbol: NimNode): NimNode {.magic: "GetImpl", noSideEffect.}
proc strVal*(n: NimNode): string {.magic: "NStrVal", noSideEffect.}
## retrieve the implementation of `symbol`. `symbol` can be a
## routine or a const.
proc `$`*(i: NimIdent): string {.magic: "NStrVal", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Use 'strVal' instead.".}
## converts a Nim identifier to a string
proc `$`*(s: NimSym): string {.magic: "NStrVal", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Use 'strVal' instead.".}
## converts a Nim symbol to a string
else: # bootstrapping substitute
proc getImpl*(symbol: NimNode): NimNode =
symbol.symbol.getImpl
proc strValOld(n: NimNode): string {.magic: "NStrVal", noSideEffect.}
proc `$`*(s: NimSym): string {.magic: "IdentToStr", noSideEffect.}
proc `$`*(i: NimIdent): string {.magic: "IdentToStr", noSideEffect.}
proc strVal*(n: NimNode): string =
if n.kind == nnkIdent:
$n.ident
elif n.kind == nnkSym:
$n.symbol
else:
n.strValOld
{.pop.}
when defined(nimSymImplTransform):
proc getImplTransformed*(symbol: NimNode): NimNode {.magic: "GetImplTransf", noSideEffect.}
## for a typed proc returns the AST after transformation pass
when defined(nimHasSymOwnerInMacro):
proc owner*(sym: NimNode): NimNode {.magic: "SymOwner", noSideEffect.}
## accepts node of kind nnkSym and returns its owner's symbol.
## result is also mnde of kind nnkSym if owner exists otherwise
## nnkNilLit is returned
when defined(nimHasInstantiationOfInMacro):
proc isInstantiationOf*(instanceProcSym, genProcSym: NimNode): bool {.magic: "SymIsInstantiationOf", noSideEffect.}
## check if proc symbol is instance of the generic proc symbol
## useful to check proc symbols against generic symbols
## returned by `bindSym`
proc getType*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.}
## with 'getType' you can access the node's `type`:idx:. A Nim type is
## mapped to a Nim AST too, so it's slightly confusing but it means the same
## API can be used to traverse types. Recursive types are flattened for you
## so there is no danger of infinite recursions during traversal. To
## resolve recursive types, you have to call 'getType' again. To see what
## kind of type it is, call `typeKind` on getType's result.
proc getType*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
## Returns the Nim type node for given type. This can be used to turn macro
## typedesc parameter into proper NimNode representing type, since typedesc
## are an exception in macro calls - they are not mapped implicitly to
## NimNode like any other arguments.
proc typeKind*(n: NimNode): NimTypeKind {.magic: "NGetType", noSideEffect.}
## Returns the type kind of the node 'n' that should represent a type, that
## means the node should have been obtained via ``getType``.
proc getTypeInst*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
## Returns the `type`:idx: of a node in a form matching the way the
## type instance was declared in the code.
runnableExamples:
type
Vec[N: static[int], T] = object
arr: array[N, T]
Vec4[T] = Vec[4, T]
Vec4f = Vec4[float32]
var a: Vec4f
var b: Vec4[float32]
var c: Vec[4, float32]
macro dumpTypeInst(x: typed): untyped =
newLit(x.getTypeInst.repr)
doAssert(dumpTypeInst(a) == "Vec4f")
doAssert(dumpTypeInst(b) == "Vec4[float32]")
doAssert(dumpTypeInst(c) == "Vec[4, float32]")
proc getTypeInst*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
## Version of ``getTypeInst`` which takes a ``typedesc``.
proc getTypeImpl*(n: NimNode): NimNode {.magic: "NGetType", noSideEffect.} =
## Returns the `type`:idx: of a node in a form matching the implementation
## of the type. Any intermediate aliases are expanded to arrive at the final
## type implementation. You can instead use ``getImpl`` on a symbol if you
## want to find the intermediate aliases.
runnableExamples:
type
Vec[N: static[int], T] = object
arr: array[N, T]
Vec4[T] = Vec[4, T]
Vec4f = Vec4[float32]
var a: Vec4f
var b: Vec4[float32]
var c: Vec[4, float32]
macro dumpTypeImpl(x: typed): untyped =
newLit(x.getTypeImpl.repr)
let t = """
object
arr: array[0 .. 3, float32]
"""
doAssert(dumpTypeImpl(a) == t)
doAssert(dumpTypeImpl(b) == t)
doAssert(dumpTypeImpl(c) == t)
when defined(nimHasSignatureHashInMacro):
proc signatureHash*(n: NimNode): string {.magic: "NSigHash", noSideEffect.}
## Returns a stable identifier derived from the signature of a symbol.
## The signature combines many factors such as the type of the symbol,
## the owning module of the symbol and others. The same identifier is
## used in the back-end to produce the mangled symbol name.
proc symBodyHash*(s: NimNode): string {.noSideEffect.} =
## Returns a stable digest for symbols derived not only from type signature
## and owning module, but also implementation body. All procs/varibles used in
## the implementation of this symbol are hashed recursively as well, including
## magics from system module.
discard
proc getTypeImpl*(n: typedesc): NimNode {.magic: "NGetType", noSideEffect.}
## Version of ``getTypeImpl`` which takes a ``typedesc``.
proc `intVal=`*(n: NimNode, val: BiggestInt) {.magic: "NSetIntVal", noSideEffect.}
proc `floatVal=`*(n: NimNode, val: BiggestFloat) {.magic: "NSetFloatVal", noSideEffect.}
{.push warnings: off.}
proc `symbol=`*(n: NimNode, val: NimSym) {.magic: "NSetSymbol", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Generate a new 'NimNode' with 'genSym' instead.".}
proc `ident=`*(n: NimNode, val: NimIdent) {.magic: "NSetIdent", noSideEffect, deprecated:
"Deprecated since version 0.18.1; Generate a new 'NimNode' with 'ident(string)' instead.".}
{.pop.}
#proc `typ=`*(n: NimNode, typ: typedesc) {.magic: "NSetType".}
# this is not sound! Unfortunately forbidding 'typ=' is not enough, as you
# can easily do:
# let bracket = semCheck([1, 2])
# let fake = semCheck(2.0)
# bracket[0] = fake # constructs a mixed array with ints and floats!
proc `strVal=`*(n: NimNode, val: string) {.magic: "NSetStrVal", noSideEffect.}
proc newNimNode*(kind: NimNodeKind,
lineInfoFrom: NimNode = nil): NimNode
{.magic: "NNewNimNode", noSideEffect.}
## Creates a new AST node of the specified kind.
##
## The ``lineInfoFrom`` parameter is used for line information when the
## produced code crashes. You should ensure that it is set to a node that
## you are transforming.
proc copyNimNode*(n: NimNode): NimNode {.magic: "NCopyNimNode", noSideEffect.}
proc copyNimTree*(n: NimNode): NimNode {.magic: "NCopyNimTree", noSideEffect.}
proc error*(msg: string, n: NimNode = nil) {.magic: "NError", benign.}
## writes an error message at compile time. The optional ``n: NimNode``
## parameter is used as the source for file and line number information in
## the compilation error message.
proc warning*(msg: string, n: NimNode = nil) {.magic: "NWarning", benign.}
## writes a warning message at compile time
proc hint*(msg: string, n: NimNode = nil) {.magic: "NHint", benign.}
## writes a hint message at compile time
proc newStrLitNode*(s: string): NimNode {.compileTime, noSideEffect.} =
## creates a string literal node from `s`
result = newNimNode(nnkStrLit)
result.strVal = s
proc newCommentStmtNode*(s: string): NimNode {.compileTime, noSideEffect.} =
## creates a comment statement node
result = newNimNode(nnkCommentStmt)
result.strVal = s
proc newIntLitNode*(i: BiggestInt): NimNode {.compileTime.} =
## creates a int literal node from `i`
result = newNimNode(nnkIntLit)
result.intVal = i
proc newFloatLitNode*(f: BiggestFloat): NimNode {.compileTime.} =
## creates a float literal node from `f`
result = newNimNode(nnkFloatLit)
result.floatVal = f
{.push warnings: off.}
proc newIdentNode*(i: NimIdent): NimNode {.compileTime, deprecated.} =
## creates an identifier node from `i`
result = newNimNode(nnkIdent)
result.ident = i
{.pop.}
proc newIdentNode*(i: string): NimNode {.magic: "StrToIdent", noSideEffect, compilerproc.}
## creates an identifier node from `i`. It is simply an alias for
## ``ident(string)``. Use that, it's shorter.
type
BindSymRule* = enum ## specifies how ``bindSym`` behaves
brClosed, ## only the symbols in current scope are bound
brOpen, ## open wrt overloaded symbols, but may be a single
## symbol if not ambiguous (the rules match that of
## binding in generics)
brForceOpen ## same as brOpen, but it will always be open even
## if not ambiguous (this cannot be achieved with
## any other means in the language currently)
proc bindSym*(ident: string | NimNode, rule: BindSymRule = brClosed): NimNode {.
magic: "NBindSym", noSideEffect.}
## creates a node that binds `ident` to a symbol node. The bound symbol
## may be an overloaded symbol.
## if `ident` is a NimNode, it must have nkIdent kind.
## If ``rule == brClosed`` either an ``nkClosedSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brOpen`` either an ``nkOpenSymChoice`` tree is
## returned or ``nkSym`` if the symbol is not ambiguous.
## If ``rule == brForceOpen`` always an ``nkOpenSymChoice`` tree is
## returned even if the symbol is not ambiguous.
##
## experimental feature:
## use {.experimental: "dynamicBindSym".} to activate it
## if called from template / regular code, `ident` and `rule` must be
## constant expression / literal value.
## if called from macros / compile time procs / static blocks,
## `ident` and `rule` can be VM computed value.
proc genSym*(kind: NimSymKind = nskLet; ident = ""): NimNode {.
magic: "NGenSym", noSideEffect.}
## generates a fresh symbol that is guaranteed to be unique. The symbol
## needs to occur in a declaration context.
proc callsite*(): NimNode {.magic: "NCallSite", benign, deprecated:
"Deprecated since v0.18.1; use varargs[untyped] in the macro prototype instead".}
## returns the AST of the invocation expression that invoked this macro.
proc toStrLit*(n: NimNode): NimNode {.compileTime.} =
## converts the AST `n` to the concrete Nim code and wraps that
## in a string literal node
return newStrLitNode(repr(n))
type
LineInfo* = object
filename*: string
line*,column*: int
proc `$`*(arg: LineInfo): string =
# BUG: without `result = `, gives compile error
result = arg.filename & "(" & $arg.line & ", " & $arg.column & ")"
#proc lineinfo*(n: NimNode): LineInfo {.magic: "NLineInfo", noSideEffect.}
## returns the position the node appears in the original source file
## in the form filename(line, col)
proc getLine(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
proc getColumn(arg: NimNode): int {.magic: "NLineInfo", noSideEffect.}
proc getFile(arg: NimNode): string {.magic: "NLineInfo", noSideEffect.}
proc copyLineInfo*(arg: NimNode, info: NimNode) {.magic: "NLineInfo", noSideEffect.}
## copy lineinfo from info node
proc lineInfoObj*(n: NimNode): LineInfo {.compileTime.} =
## returns ``LineInfo`` of ``n``, using absolute path for ``filename``
result.filename = n.getFile
result.line = n.getLine
result.column = n.getColumn
proc lineInfo*(arg: NimNode): string {.compileTime.} =
$arg.lineInfoObj
proc internalParseExpr(s: string): NimNode {.
magic: "ParseExprToAst", noSideEffect.}
proc internalParseStmt(s: string): NimNode {.
magic: "ParseStmtToAst", noSideEffect.}
proc internalErrorFlag*(): string {.magic: "NError", noSideEffect.}
## Some builtins set an error flag. This is then turned into a proper
## exception. **Note**: Ordinary application code should not call this.
proc parseExpr*(s: string): NimNode {.noSideEffect, compileTime.} =
## Compiles the passed string to its AST representation.
## Expects a single expression. Raises ``ValueError`` for parsing errors.
result = internalParseExpr(s)
let x = internalErrorFlag()
if x.len > 0: raise newException(ValueError, x)
proc parseStmt*(s: string): NimNode {.noSideEffect, compileTime.} =
## Compiles the passed string to its AST representation.
## Expects one or more statements. Raises ``ValueError`` for parsing errors.
result = internalParseStmt(s)
let x = internalErrorFlag()
if x.len > 0: raise newException(ValueError, x)
proc getAst*(macroOrTemplate: untyped): NimNode {.magic: "ExpandToAst", noSideEffect.}
## Obtains the AST nodes returned from a macro or template invocation.
## Example:
##
## .. code-block:: nim
##
## macro FooMacro() =
## var ast = getAst(BarTemplate())
proc quote*(bl: typed, op = "``"): NimNode {.magic: "QuoteAst", noSideEffect.}
## Quasi-quoting operator.
## Accepts an expression or a block and returns the AST that represents it.
## Within the quoted AST, you are able to interpolate NimNode expressions
## from the surrounding scope. If no operator is given, quoting is done using
## backticks. Otherwise, the given operator must be used as a prefix operator
## for any interpolated expression.
##
## Example:
##
## .. code-block:: nim
##
## macro check(ex: untyped) =
## # this is a simplified version of the check macro from the
## # unittest module.
##
## # If there is a failed check, we want to make it easy for
## # the user to jump to the faulty line in the code, so we
## # get the line info here:
## var info = ex.lineinfo
##
## # We will also display the code string of the failed check:
## var expString = ex.toStrLit
##
## # Finally we compose the code to implement the check:
## result = quote do:
## if not `ex`:
## echo `info` & ": Check failed: " & `expString`
proc expectKind*(n: NimNode, k: NimNodeKind) {.compileTime.} =
## checks that `n` is of kind `k`. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check the AST that is passed to them.
if n.kind != k: error("Expected a node of kind " & $k & ", got " & $n.kind, n)
proc expectMinLen*(n: NimNode, min: int) {.compileTime.} =
## checks that `n` has at least `min` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len < min: error("macro expects a node with " & $min & " children", n)
proc expectLen*(n: NimNode, len: int) {.compileTime.} =
## checks that `n` has exactly `len` children. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check its number of arguments.
if n.len != len: error("macro expects a node with " & $len & " children", n)
proc expectLen*(n: NimNode, min, max: int) {.compileTime.} =
## checks that `n` has a number of children in the range ``min..max``.
## If this is not the case, compilation aborts with an error message.
## This is useful for writing macros that check its number of arguments.
if n.len < min or n.len > max:
error("macro expects a node with " & $min & ".." & $max & " children", n)
proc newTree*(kind: NimNodeKind,
children: varargs[NimNode]): NimNode {.compileTime.} =
## produces a new node with children.
result = newNimNode(kind)
result.add(children)
proc newCall*(theProc: NimNode,
args: varargs[NimNode]): NimNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(theProc)
result.add(args)
{.push warnings: off.}
proc newCall*(theProc: NimIdent, args: varargs[NimNode]): NimNode {.compileTime, deprecated:
"Deprecated since v0.18.1; use 'newCall(string, ...)' or 'newCall(NimNode, ...)' instead".} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
{.pop.}
proc newCall*(theProc: string,
args: varargs[NimNode]): NimNode {.compileTime.} =
## produces a new call node. `theProc` is the proc that is called with
## the arguments ``args[0..]``.
result = newNimNode(nnkCall)
result.add(newIdentNode(theProc))
result.add(args)
proc newLit*(c: char): NimNode {.compileTime.} =
## produces a new character literal node.
result = newNimNode(nnkCharLit)
result.intVal = ord(c)
proc newLit*(i: int): NimNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkIntLit)
result.intVal = i
proc newLit*(i: int8): NimNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkInt8Lit)
result.intVal = i
proc newLit*(i: int16): NimNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkInt16Lit)
result.intVal = i
proc newLit*(i: int32): NimNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkInt32Lit)
result.intVal = i
proc newLit*(i: int64): NimNode {.compileTime.} =
## produces a new integer literal node.
result = newNimNode(nnkInt64Lit)
result.intVal = i
proc newLit*(i: uint): NimNode {.compileTime.} =
## produces a new unsigned integer literal node.
result = newNimNode(nnkUIntLit)
result.intVal = BiggestInt(i)
proc newLit*(i: uint8): NimNode {.compileTime.} =
## produces a new unsigned integer literal node.
result = newNimNode(nnkUInt8Lit)
result.intVal = BiggestInt(i)
proc newLit*(i: uint16): NimNode {.compileTime.} =
## produces a new unsigned integer literal node.
result = newNimNode(nnkUInt16Lit)
result.intVal = BiggestInt(i)
proc newLit*(i: uint32): NimNode {.compileTime.} =
## produces a new unsigned integer literal node.
result = newNimNode(nnkUInt32Lit)
result.intVal = BiggestInt(i)
proc newLit*(i: uint64): NimNode {.compileTime.} =
## produces a new unsigned integer literal node.
result = newNimNode(nnkUInt64Lit)
result.intVal = BiggestInt(i)
proc newLit*(b: bool): NimNode {.compileTime.} =
## produces a new boolean literal node.
result = if b: bindSym"true" else: bindSym"false"
when false:
# the float type is not really a distinct type as described in https://github.com/nim-lang/Nim/issues/5875
proc newLit*(f: float): NimNode {.compileTime.} =
## produces a new float literal node.
result = newNimNode(nnkFloatLit)
result.floatVal = f
proc newLit*(f: float32): NimNode {.compileTime.} =
## produces a new float literal node.
result = newNimNode(nnkFloat32Lit)
result.floatVal = f
proc newLit*(f: float64): NimNode {.compileTime.} =
## produces a new float literal node.
result = newNimNode(nnkFloat64Lit)
result.floatVal = f
when declared(float128):
proc newLit*(f: float128): NimNode {.compileTime.} =
## produces a new float literal node.
result = newNimNode(nnkFloat128Lit)
result.floatVal = f
proc newLit*(arg: enum): NimNode {.compileTime.} =
result = newCall(
arg.type.getTypeInst[1],
newLit(int(arg))
)
proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.}
proc newLit*[T](arg: seq[T]): NimNode {.compileTime.}
proc newLit*[T](s: set[T]): NimNode {.compileTime.}
proc newLit*(arg: tuple): NimNode {.compileTime.}
proc newLit*(arg: object): NimNode {.compileTime.} =
result = nnkObjConstr.newTree(arg.type.getTypeInst[1])
for a, b in arg.fieldPairs:
result.add nnkExprColonExpr.newTree( newIdentNode(a), newLit(b) )
proc newLit*[N,T](arg: array[N,T]): NimNode {.compileTime.} =
result = nnkBracket.newTree
for x in arg:
result.add newLit(x)
proc newLit*[T](arg: seq[T]): NimNode {.compileTime.} =
let bracket = nnkBracket.newTree
for x in arg:
bracket.add newLit(x)
result = nnkPrefix.newTree(
bindSym"@",
bracket
)
if arg.len == 0:
# add type cast for empty seq
var typ = getTypeInst(typeof(arg))[1]
result = newCall(typ,result)
proc newLit*[T](s: set[T]): NimNode {.compileTime.} =
result = nnkCurly.newTree
for x in s:
result.add newLit(x)
proc newLit*(arg: tuple): NimNode {.compileTime.} =
result = nnkPar.newTree
for a,b in arg.fieldPairs:
result.add nnkExprColonExpr.newTree(newIdentNode(a), newLit(b))
proc newLit*(s: string): NimNode {.compileTime.} =
## produces a new string literal node.
result = newNimNode(nnkStrLit)
result.strVal = s
proc nestList*(op: NimNode; pack: NimNode): NimNode {.compileTime.} =
## nests the list `pack` into a tree of call expressions:
## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
## This is also known as fold expression.
if pack.len < 1:
error("`nestList` expects a node with at least 1 child")
result = pack[^1]
for i in countdown(pack.len - 2, 0):
result = newCall(op, pack[i], result)
proc nestList*(op: NimNode; pack: NimNode; init: NimNode): NimNode {.compileTime.} =
## nests the list `pack` into a tree of call expressions:
## ``[a, b, c]`` is transformed into ``op(a, op(c, d))``.
## This is also known as fold expression.
result = init
for i in countdown(pack.len - 1, 0):
result = newCall(op, pack[i], result)
{.push warnings: off.}
proc nestList*(theProc: NimIdent, x: NimNode): NimNode {.compileTime, deprecated:
"Deprecated since v0.18.1; use one of 'nestList(NimNode, ...)' instead.".} =
nestList(newIdentNode(theProc), x)
{.pop.}
proc treeTraverse(n: NimNode; res: var string; level = 0; isLisp = false, indented = false) {.benign.} =
if level > 0:
if indented:
res.add("\n")
for i in 0 .. level-1:
if isLisp:
res.add(" ") # dumpLisp indentation
else:
res.add(" ") # dumpTree indentation
else:
res.add(" ")
if isLisp:
res.add("(")
res.add(($n.kind).substr(3))
case n.kind
of nnkEmpty, nnkNilLit:
discard # same as nil node in this representation
of nnkCharLit .. nnkInt64Lit:
res.add(" " & $n.intVal)
of nnkFloatLit .. nnkFloat64Lit:
res.add(" " & $n.floatVal)
of nnkStrLit .. nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
res.add(" " & $n.strVal.newLit.repr)
of nnkNone:
assert false
else:
for j in 0 .. n.len-1:
n[j].treeTraverse(res, level+1, isLisp, indented)
if isLisp:
res.add(")")
proc treeRepr*(n: NimNode): string {.compileTime, benign.} =
## Convert the AST `n` to a human-readable tree-like string.
##
## See also `repr`, `lispRepr`, and `astGenRepr`.
n.treeTraverse(result, isLisp = false, indented = true)
proc lispRepr*(n: NimNode; indented = false): string {.compileTime, benign.} =
## Convert the AST ``n`` to a human-readable lisp-like string.
##
## See also ``repr``, ``treeRepr``, and ``astGenRepr``.
n.treeTraverse(result, isLisp = true, indented = indented)
proc astGenRepr*(n: NimNode): string {.compileTime, benign.} =
## Convert the AST ``n`` to the code required to generate that AST.
##
## See also ``repr``, ``treeRepr``, and ``lispRepr``.
const
NodeKinds = {nnkEmpty, nnkIdent, nnkSym, nnkNone, nnkCommentStmt}
LitKinds = {nnkCharLit..nnkInt64Lit, nnkFloatLit..nnkFloat64Lit, nnkStrLit..nnkTripleStrLit}
proc traverse(res: var string, level: int, n: NimNode) {.benign.} =
for i in 0..level-1: res.add " "
if n.kind in NodeKinds:
res.add("new" & ($n.kind).substr(3) & "Node(")
elif n.kind in LitKinds:
res.add("newLit(")
elif n.kind == nnkNilLit:
res.add("newNilLit()")
else:
res.add($n.kind)
case n.kind
of nnkEmpty, nnkNilLit: discard
of nnkCharLit: res.add("'" & $chr(n.intVal) & "'")
of nnkIntLit..nnkInt64Lit: res.add($n.intVal)
of nnkFloatLit..nnkFloat64Lit: res.add($n.floatVal)
of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym:
res.add(n.strVal.newLit.repr)
of nnkNone: assert false
else:
res.add(".newTree(")
for j in 0..<n.len:
res.add "\n"
traverse(res, level + 1, n[j])
if j != n.len-1:
res.add(",")
res.add("\n")
for i in 0..level-1: res.add " "
res.add(")")
if n.kind in NodeKinds+LitKinds:
res.add(")")
result = ""
traverse(result, 0, n)
macro dumpTree*(s: untyped): untyped = echo s.treeRepr
## Accepts a block of nim code and prints the parsed abstract syntax
## tree using the ``treeRepr`` proc. Printing is done *at compile time*.
##
## You can use this as a tool to explore the Nim's abstract syntax
## tree and to discover what kind of nodes must be created to represent
## a certain expression/statement.
##
## For example:
##
## .. code-block:: nim
## dumpTree:
## echo "Hello, World!"
##
## Outputs:
##
## .. code-block::
## StmtList
## Command
## Ident "echo"
## StrLit "Hello, World!"
##
## Also see ``dumpAstGen`` and ``dumpLisp``.
macro dumpLisp*(s: untyped): untyped = echo s.lispRepr(indented = true)
## Accepts a block of nim code and prints the parsed abstract syntax
## tree using the ``lispRepr`` proc. Printing is done *at compile time*.
##
## You can use this as a tool to explore the Nim's abstract syntax
## tree and to discover what kind of nodes must be created to represent
## a certain expression/statement.
##
## For example:
##
## .. code-block:: nim
## dumpLisp:
## echo "Hello, World!"
##
## Outputs:
##
## .. code-block::
## (StmtList
## (Command
## (Ident "echo")
## (StrLit "Hello, World!")))
##
## Also see ``dumpAstGen`` and ``dumpTree``.
macro dumpAstGen*(s: untyped): untyped = echo s.astGenRepr
## Accepts a block of nim code and prints the parsed abstract syntax
## tree using the ``astGenRepr`` proc. Printing is done *at compile time*.
##
## You can use this as a tool to write macros quicker by writing example
## outputs and then copying the snippets into the macro for modification.
##
## For example:
##
## .. code-block:: nim
## dumpAstGen:
## echo "Hello, World!"
##
## Outputs:
##
## .. code-block:: nim
## nnkStmtList.newTree(
## nnkCommand.newTree(
## newIdentNode("echo"),
## newLit("Hello, World!")
## )
## )
##
## Also see ``dumpTree`` and ``dumpLisp``.
macro dumpTreeImm*(s: untyped): untyped {.deprecated.} = echo s.treeRepr
## Deprecated. Use `dumpTree` instead.
macro dumpLispImm*(s: untyped): untyped {.deprecated.} = echo s.lispRepr
## Deprecated. Use `dumpLisp` instead.
proc newEmptyNode*(): NimNode {.compileTime, noSideEffect.} =
## Create a new empty node
result = newNimNode(nnkEmpty)
proc newStmtList*(stmts: varargs[NimNode]): NimNode {.compileTime.}=
## Create a new statement list
result = newNimNode(nnkStmtList).add(stmts)
proc newPar*(exprs: varargs[NimNode]): NimNode {.compileTime.}=
## Create a new parentheses-enclosed expression
newNimNode(nnkPar).add(exprs)
proc newBlockStmt*(label, body: NimNode): NimNode {.compileTime.} =
## Create a new block statement with label
return newNimNode(nnkBlockStmt).add(label, body)
proc newBlockStmt*(body: NimNode): NimNode {.compileTime.} =
## Create a new block: stmt
return newNimNode(nnkBlockStmt).add(newEmptyNode(), body)
proc newVarStmt*(name, value: NimNode): NimNode {.compileTime.} =
## Create a new var stmt
return newNimNode(nnkVarSection).add(
newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
proc newLetStmt*(name, value: NimNode): NimNode {.compileTime.} =
## Create a new let stmt
return newNimNode(nnkLetSection).add(
newNimNode(nnkIdentDefs).add(name, newNimNode(nnkEmpty), value))
proc newConstStmt*(name, value: NimNode): NimNode {.compileTime.} =
## Create a new const stmt
newNimNode(nnkConstSection).add(
newNimNode(nnkConstDef).add(name, newNimNode(nnkEmpty), value))
proc newAssignment*(lhs, rhs: NimNode): NimNode {.compileTime.} =
return newNimNode(nnkAsgn).add(lhs, rhs)
proc newDotExpr*(a, b: NimNode): NimNode {.compileTime.} =
## Create new dot expression
## a.dot(b) -> `a.b`
return newNimNode(nnkDotExpr).add(a, b)
proc newColonExpr*(a, b: NimNode): NimNode {.compileTime.} =
## Create new colon expression
## newColonExpr(a, b) -> `a: b`
newNimNode(nnkExprColonExpr).add(a, b)
proc newIdentDefs*(name, kind: NimNode;
default = newEmptyNode()): NimNode {.compileTime.} =
## Creates a new ``nnkIdentDefs`` node of a specific kind and value.
##
## ``nnkIdentDefs`` need to have at least three children, but they can have
## more: first comes a list of identifiers followed by a type and value
## nodes. This helper proc creates a three node subtree, the first subnode
## being a single identifier name. Both the ``kind`` node and ``default``
## (value) nodes may be empty depending on where the ``nnkIdentDefs``
## appears: tuple or object definitions will have an empty ``default`` node,
## ``let`` or ``var`` blocks may have an empty ``kind`` node if the
## identifier is being assigned a value. Example:
##
## .. code-block:: nim
##
## var varSection = newNimNode(nnkVarSection).add(
## newIdentDefs(ident("a"), ident("string")),
## newIdentDefs(ident("b"), newEmptyNode(), newLit(3)))
## # --> var
## # a: string
## # b = 3
##
## If you need to create multiple identifiers you need to use the lower level
## ``newNimNode``:
##
## .. code-block:: nim
##
## result = newNimNode(nnkIdentDefs).add(
## ident("a"), ident("b"), ident("c"), ident("string"),
## newStrLitNode("Hello"))
newNimNode(nnkIdentDefs).add(name, kind, default)
proc newNilLit*(): NimNode {.compileTime.} =
## New nil literal shortcut
result = newNimNode(nnkNilLit)
proc last*(node: NimNode): NimNode {.compileTime.} = node[node.len-1]
## Return the last item in nodes children. Same as `node[^1]`
const
RoutineNodes* = {nnkProcDef, nnkFuncDef, nnkMethodDef, nnkDo, nnkLambda,
nnkIteratorDef, nnkTemplateDef, nnkConverterDef}
AtomicNodes* = {nnkNone..nnkNilLit}
CallNodes* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand,
nnkCallStrLit, nnkHiddenCallConv}
proc expectKind*(n: NimNode; k: set[NimNodeKind]) {.compileTime.} =
## checks that `n` is of kind `k`. If this is not the case,
## compilation aborts with an error message. This is useful for writing
## macros that check the AST that is passed to them.
if n.kind notin k: error("Expected one of " & $k & ", got " & $n.kind, n)
proc newProc*(name = newEmptyNode();
params: openArray[NimNode] = [newEmptyNode()];
body: NimNode = newStmtList();
procType = nnkProcDef;
pragmas: NimNode = newEmptyNode()): NimNode {.compileTime.} =
## shortcut for creating a new proc
##
## The ``params`` array must start with the return type of the proc,
## followed by a list of IdentDefs which specify the params.
if procType notin RoutineNodes:
error("Expected one of " & $RoutineNodes & ", got " & $procType)
pragmas.expectKind({nnkEmpty, nnkPragma})
result = newNimNode(procType).add(
name,
newEmptyNode(),
newEmptyNode(),
newNimNode(nnkFormalParams).add(params),
pragmas,
newEmptyNode(),
body)
proc newIfStmt*(branches: varargs[tuple[cond, body: NimNode]]):
NimNode {.compileTime.} =
## Constructor for ``if`` statements.
##
## .. code-block:: nim
##
## newIfStmt(
## (Ident, StmtList),
## ...
## )
##
result = newNimNode(nnkIfStmt)
if len(branches) < 1:
error("If statement must have at least one branch")
for i in branches:
result.add(newTree(nnkElifBranch, i.cond, i.body))
proc newEnum*(name: NimNode, fields: openArray[NimNode],
public, pure: bool): NimNode {.compileTime.} =
## Creates a new enum. `name` must be an ident. Fields are allowed to be
## either idents or EnumFieldDef
##
## .. code-block:: nim
##
## newEnum(
## name = ident("Colors"),
## fields = [ident("Blue"), ident("Red")],
## public = true, pure = false)
##
## # type Colors* = Blue Red
##
expectKind name, nnkIdent
if len(fields) < 1:
error("Enum must contain at least one field")
for field in fields:
expectKind field, {nnkIdent, nnkEnumFieldDef}
let enumBody = newNimNode(nnkEnumTy).add(newEmptyNode()).add(fields)
var typeDefArgs = [name, newEmptyNode(), enumBody]
if public:
let postNode = newNimNode(nnkPostfix).add(
newIdentNode("*"), typeDefArgs[0])
typeDefArgs[0] = postNode
if pure:
let pragmaNode = newNimNode(nnkPragmaExpr).add(
typeDefArgs[0],
add(newNimNode(nnkPragma), newIdentNode("pure")))
typeDefArgs[0] = pragmaNode
let
typeDef = add(newNimNode(nnkTypeDef), typeDefArgs)
typeSect = add(newNimNode(nnkTypeSection), typeDef)
return typeSect
proc copyChildrenTo*(src, dest: NimNode) {.compileTime.}=
## Copy all children from `src` to `dest`
for i in 0 ..< src.len:
dest.add src[i].copyNimTree
template expectRoutine(node: NimNode) =
expectKind(node, RoutineNodes)
proc name*(someProc: NimNode): NimNode {.compileTime.} =
someProc.expectRoutine
result = someProc[0]
if result.kind == nnkPostfix:
if result[1].kind == nnkAccQuoted:
result = result[1][0]
else:
result = result[1]
elif result.kind == nnkAccQuoted:
result = result[0]
proc `name=`*(someProc: NimNode; val: NimNode) {.compileTime.} =
someProc.expectRoutine
if someProc[0].kind == nnkPostfix:
someProc[0][1] = val
else: someProc[0] = val
proc params*(someProc: NimNode): NimNode {.compileTime.} =
someProc.expectRoutine
result = someProc[3]
proc `params=`* (someProc: NimNode; params: NimNode) {.compileTime.}=
someProc.expectRoutine
expectKind(params, nnkFormalParams)
someProc[3] = params
proc pragma*(someProc: NimNode): NimNode {.compileTime.} =
## Get the pragma of a proc type
## These will be expanded
if someProc.kind == nnkProcTy:
result = someProc[1]
else:
someProc.expectRoutine
result = someProc[4]
proc `pragma=`*(someProc: NimNode; val: NimNode) {.compileTime.}=
## Set the pragma of a proc type
expectKind(val, {nnkEmpty, nnkPragma})
if someProc.kind == nnkProcTy:
someProc[1] = val
else:
someProc.expectRoutine
someProc[4] = val
proc addPragma*(someProc, pragma: NimNode) {.compileTime.} =
## Adds pragma to routine definition
someProc.expectKind(RoutineNodes + {nnkProcTy})
var pragmaNode = someProc.pragma
if pragmaNode.isNil or pragmaNode.kind == nnkEmpty:
pragmaNode = newNimNode(nnkPragma)
someProc.pragma = pragmaNode
pragmaNode.add(pragma)
template badNodeKind(n, f) =
error("Invalid node kind " & $n.kind & " for macros.`" & $f & "`", n)
proc body*(someProc: NimNode): NimNode {.compileTime.} =
case someProc.kind:
of RoutineNodes:
return someProc[6]
of nnkBlockStmt, nnkWhileStmt:
return someProc[1]
of nnkForStmt:
return someProc.last
else:
badNodeKind someProc, "body"
proc `body=`*(someProc: NimNode, val: NimNode) {.compileTime.} =
case someProc.kind
of RoutineNodes:
someProc[6] = val
of nnkBlockStmt, nnkWhileStmt:
someProc[1] = val
of nnkForStmt:
someProc[len(someProc)-1] = val
else:
badNodeKind someProc, "body="
proc basename*(a: NimNode): NimNode {.compileTime, benign.}
proc `$`*(node: NimNode): string {.compileTime.} =
## Get the string of an identifier node
case node.kind
of nnkPostfix:
result = node.basename.strVal & "*"
of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkSym, nnkIdent:
result = node.strVal
of nnkOpenSymChoice, nnkClosedSymChoice:
result = $node[0]
of nnkAccQuoted:
result = $node[0]
else:
badNodeKind node, "$"
proc ident*(name: string): NimNode {.magic: "StrToIdent", noSideEffect.}
## Create a new ident node from a string
iterator items*(n: NimNode): NimNode {.inline.} =
## Iterates over the children of the NimNode ``n``.
for i in 0 ..< n.len:
yield n[i]
iterator pairs*(n: NimNode): (int, NimNode) {.inline.} =
## Iterates over the children of the NimNode ``n`` and its indices.
for i in 0 ..< n.len:
yield (i, n[i])
iterator children*(n: NimNode): NimNode {.inline.} =
## Iterates over the children of the NimNode ``n``.
for i in 0 ..< n.len:
yield n[i]
template findChild*(n: NimNode; cond: untyped): NimNode {.dirty.} =
## Find the first child node matching condition (or nil).
##
## .. code-block:: nim
## var res = findChild(n, it.kind == nnkPostfix and
## it.basename.ident == toNimIdent"foo")
block:
var res: NimNode
for it in n.children:
if cond:
res = it
break
res
proc insert*(a: NimNode; pos: int; b: NimNode) {.compileTime.} =
## Insert node B into A at pos
if len(a)-1 < pos:
## add some empty nodes first
for i in len(a)-1..pos-2:
a.add newEmptyNode()
a.add b
else:
## push the last item onto the list again
## and shift each item down to pos up one
a.add(a[a.len-1])
for i in countdown(len(a) - 3, pos):
a[i + 1] = a[i]
a[pos] = b
proc basename*(a: NimNode): NimNode =
## Pull an identifier from prefix/postfix expressions
case a.kind
of nnkIdent: return a
of nnkPostfix, nnkPrefix: return a[1]
else:
error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
repr(a), a)
proc `basename=`*(a: NimNode; val: string) {.compileTime.}=
case a.kind
of nnkIdent:
a.strVal = val
of nnkPostfix, nnkPrefix:
a[1] = ident(val)
else:
error("Do not know how to get basename of (" & treeRepr(a) & ")\n" &
repr(a), a)
proc postfix*(node: NimNode; op: string): NimNode {.compileTime.} =
newNimNode(nnkPostfix).add(ident(op), node)
proc prefix*(node: NimNode; op: string): NimNode {.compileTime.} =
newNimNode(nnkPrefix).add(ident(op), node)
proc infix*(a: NimNode; op: string;
b: NimNode): NimNode {.compileTime.} =
newNimNode(nnkInfix).add(ident(op), a, b)
proc unpackPostfix*(node: NimNode): tuple[node: NimNode; op: string] {.
compileTime.} =
node.expectKind nnkPostfix
result = (node[1], $node[0])
proc unpackPrefix*(node: NimNode): tuple[node: NimNode; op: string] {.
compileTime.} =
node.expectKind nnkPrefix
result = (node[1], $node[0])
proc unpackInfix*(node: NimNode): tuple[left: NimNode; op: string;
right: NimNode] {.compileTime.} =
expectKind(node, nnkInfix)
result = (node[1], $node[0], node[2])
proc copy*(node: NimNode): NimNode {.compileTime.} =
## An alias for copyNimTree().
return node.copyNimTree()
when defined(nimVmEqIdent):
proc eqIdent*(a: string; b: string): bool {.magic: "EqIdent", noSideEffect.}
## Style insensitive comparison.
proc eqIdent*(a: NimNode; b: string): bool {.magic: "EqIdent", noSideEffect.}
## Style insensitive comparison.
## ``a`` can be an identifier or a symbol.
proc eqIdent*(a: string; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
## Style insensitive comparison.
## ``b`` can be an identifier or a symbol.
proc eqIdent*(a: NimNode; b: NimNode): bool {.magic: "EqIdent", noSideEffect.}
## Style insensitive comparison.
## ``a`` and ``b`` can be an identifier or a symbol.
else:
# this procedure is optimized for native code, it should not be compiled to nimVM bytecode.
proc cmpIgnoreStyle(a, b: cstring): int {.noSideEffect.} =
proc toLower(c: char): char {.inline.} =
if c in {'A'..'Z'}: result = chr(ord(c) + (ord('a') - ord('A')))
else: result = c
var i = 0
var j = 0
# first char is case sensitive
if a[0] != b[0]: return 1
while true:
while a[i] == '_': inc(i)
while b[j] == '_': inc(j) # BUGFIX: typo
var aa = toLower(a[i])
var bb = toLower(b[j])
result = ord(aa) - ord(bb)
if result != 0 or aa == '\0': break
inc(i)
inc(j)
proc eqIdent*(a, b: string): bool = cmpIgnoreStyle(a, b) == 0
## Check if two idents are identical.
proc eqIdent*(node: NimNode; s: string): bool {.compileTime.} =
## Check if node is some identifier node (``nnkIdent``, ``nnkSym``, etc.)
## is the same as ``s``. Note that this is the preferred way to check! Most
## other ways like ``node.ident`` are much more error-prone, unfortunately.
case node.kind
of nnkSym, nnkIdent:
result = eqIdent(node.strVal, s)
of nnkOpenSymChoice, nnkClosedSymChoice:
result = eqIdent($node[0], s)
else:
result = false
proc hasArgOfName*(params: NimNode; name: string): bool {.compileTime.}=
## Search nnkFormalParams for an argument.
expectKind(params, nnkFormalParams)
for i in 1 ..< params.len:
template node: untyped = params[i]
if name.eqIdent( $ node[0]):
return true
proc addIdentIfAbsent*(dest: NimNode, ident: string) {.compileTime.} =
## Add ident to dest if it is not present. This is intended for use
## with pragmas.
for node in dest.children:
case node.kind
of nnkIdent:
if ident.eqIdent($node): return
of nnkExprColonExpr:
if ident.eqIdent($node[0]): return
else: discard
dest.add(ident(ident))
proc boolVal*(n: NimNode): bool {.compileTime, noSideEffect.} =
if n.kind == nnkIntLit: n.intVal != 0
else: n == bindSym"true" # hacky solution for now
macro expandMacros*(body: typed): untyped =
## Expands one level of macro - useful for debugging.
## Can be used to inspect what happens when a macro call is expanded,
## without altering its result.
##
## For instance,
##
## .. code-block:: nim
## import future, macros
##
## let
## x = 10
## y = 20
## expandMacros:
## dump(x + y)
##
## will actually dump `x + y`, but at the same time will print at
## compile time the expansion of the ``dump`` macro, which in this
## case is ``debugEcho ["x + y", " = ", x + y]``.
echo body.toStrLit
result = body
proc customPragmaNode(n: NimNode): NimNode =
expectKind(n, {nnkSym, nnkDotExpr, nnkBracketExpr, nnkTypeOfExpr, nnkCheckedFieldExpr})
let
typ = n.getTypeInst()
if typ.kind == nnkBracketExpr and typ.len > 1 and typ[1].kind == nnkProcTy:
return typ[1][1]
elif typ.typeKind == ntyTypeDesc:
let impl = typ[1].getImpl()
if impl[0].kind == nnkPragmaExpr:
return impl[0][1]
else:
return impl[0] # handle types which don't have macro at all
if n.kind == nnkSym: # either an variable or a proc
let impl = n.getImpl()
if impl.kind in RoutineNodes:
return impl.pragma
elif impl.kind == nnkIdentDefs and impl[0].kind == nnkPragmaExpr:
return impl[0][1]
else:
let timpl = typ.getImpl()
if timpl.len>0 and timpl[0].len>1:
return timpl[0][1]
else:
return timpl
if n.kind in {nnkDotExpr, nnkCheckedFieldExpr}:
let name = $(if n.kind == nnkCheckedFieldExpr: n[0][1] else: n[1])
let typInst = getTypeInst(if n.kind == nnkCheckedFieldExpr or n[0].kind == nnkHiddenDeref: n[0][0] else: n[0])
var typDef = getImpl(if typInst.kind == nnkVarTy: typInst[0] else: typInst)
while typDef != nil:
typDef.expectKind(nnkTypeDef)
let typ = typDef[2]
typ.expectKind({nnkRefTy, nnkPtrTy, nnkObjectTy})
let isRef = typ.kind in {nnkRefTy, nnkPtrTy}
if isRef and typ[0].kind in {nnkSym, nnkBracketExpr}: # defines ref type for another object(e.g. X = ref X)
typDef = getImpl(typ[0])
else: # object definition, maybe an object directly defined as a ref type
let
obj = (if isRef: typ[0] else: typ)
var identDefsStack = newSeq[NimNode](obj[2].len)
for i in 0..<identDefsStack.len: identDefsStack[i] = obj[2][i]
while identDefsStack.len > 0:
var identDefs = identDefsStack.pop()
if identDefs.kind == nnkRecCase:
identDefsStack.add(identDefs[0])
for i in 1..<identDefs.len:
let varNode = identDefs[i]
# if it is and empty branch, skip
if varNode[0].kind == nnkNilLit: continue
if varNode[1].kind == nnkIdentDefs:
identDefsStack.add(varNode[1])
else: # nnkRecList
for j in 0 ..< varNode[1].len:
identDefsStack.add(varNode[1][j])
else:
for i in 0 .. identDefs.len - 3:
let varNode = identDefs[i]
if varNode.kind == nnkPragmaExpr:
var varName = varNode[0]
if varName.kind == nnkPostfix:
# This is a public field. We are skipping the postfix *
varName = varName[1]
if eqIdent($varName, name):
return varNode[1]
if obj[1].kind == nnkOfInherit: # explore the parent object
typDef = getImpl(obj[1][0])
else:
typDef = nil
macro hasCustomPragma*(n: typed, cp: typed{nkSym}): untyped =
## Expands to `true` if expression `n` which is expected to be `nnkDotExpr`
## (if checking a field), a proc or a type has custom pragma `cp`.
##
## See also `getCustomPragmaVal`.
##
## .. code-block:: nim
## template myAttr() {.pragma.}
## type
## MyObj = object
## myField {.myAttr.}: int
##
## proc myProc() {.myAttr.} = discard
##
## var o: MyObj
## assert(o.myField.hasCustomPragma(myAttr))
## assert(myProc.hasCustomPragma(myAttr))
let pragmaNode = customPragmaNode(n)
for p in pragmaNode:
if (p.kind == nnkSym and p == cp) or
(p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp):
return newLit(true)
return newLit(false)
macro getCustomPragmaVal*(n: typed, cp: typed{nkSym}): untyped =
## Expands to value of custom pragma `cp` of expression `n` which is expected
## to be `nnkDotExpr`, a proc or a type.
##
## See also `hasCustomPragma`
##
## .. code-block:: nim
## template serializationKey(key: string) {.pragma.}
## type
## MyObj {.serializationKey: "mo".} = object
## myField {.serializationKey: "mf".}: int
## var o: MyObj
## assert(o.myField.getCustomPragmaVal(serializationKey) == "mf")
## assert(o.getCustomPragmaVal(serializationKey) == "mo")
## assert(MyObj.getCustomPragmaVal(serializationKey) == "mo")
let pragmaNode = customPragmaNode(n)
for p in pragmaNode:
if p.kind in nnkPragmaCallKinds and p.len > 0 and p[0].kind == nnkSym and p[0] == cp:
if p.len == 2:
result = p[1]
else:
let def = p[0].getImpl[3]
result = newTree(nnkPar)
for i in 1 ..< def.len:
let key = def[i][0]
let val = p[i]
result.add newTree(nnkExprColonExpr, key, val)
break
if result.kind == nnkEmpty:
error(n.repr & " doesn't have a pragma named " & cp.repr()) # returning an empty node results in most cases in a cryptic error,
when not defined(booting):
template emit*(e: static[string]): untyped {.deprecated.} =
## accepts a single string argument and treats it as nim code
## that should be inserted verbatim in the program
## Example:
##
## .. code-block:: nim
## emit("echo " & '"' & "hello world".toUpper & '"')
##
## Deprecated since version 0.15 since it's so rarely useful.
macro payload: untyped {.gensym.} =
result = parseStmt(e)
payload()
macro unpackVarargs*(callee: untyped; args: varargs[untyped]): untyped =
result = newCall(callee)
for i in 0 ..< args.len:
result.add args[i]
proc getProjectPath*(): string = discard
## Returns the path to the currently compiling project, not to
## be confused with ``system.currentSourcePath`` which returns
## the path of the current module.
when defined(nimMacrosSizealignof):
proc getSize*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
## Returns the same result as ``system.sizeof`` if the size is
## known by the Nim compiler. Returns a negative value if the Nim
## compiler does not know the size.
proc getAlign*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
## Returns the same result as ``system.alignof`` if the alignment
## is known by the Nim compiler. It works on ``NimNode`` for use
## in macro context. Returns a negative value if the Nim compiler
## does not know the alignment.
proc getOffset*(arg: NimNode): int {.magic: "NSizeOf", noSideEffect.} =
## Returns the same result as ``system.offsetof`` if the offset is
## known by the Nim compiler. It expects a resolved symbol node
## from a field of a type. Therefore it only requires one argument
## instead of two. Returns a negative value if the Nim compiler
## does not know the offset.
proc isExported*(n: NimNode): bool {.noSideEffect.} =
## Returns whether the symbol is exported or not.
|