1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2008 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Memory manager. Based on:
# Two Levels Segregate Fit memory allocator (TLSF)
# Version 2.4.2
#
# Written by Miguel Masmano Tello <mimastel@doctor.upv.es>
#
# Thanks to Ismael Ripoll for his suggestions and reviews
#
# Copyright (C) 2008, 2007, 2006, 2005, 2004
#
# This code is released using a dual license strategy: GPL/LGPL
# You can choose the licence that better fits your requirements.
#
# Released under the terms of the GNU General Public License Version 2.0
# Released under the terms of the GNU Lesser General Public License Version 2.1
# Some IMPORTANT TLSF parameters
const
blockAlign = sizeof(pointer) * 2
maxFli = 30
maxLog2Sli = 5
maxSli = 1 shl maxLog2Sli
fliOffset = 6 # tlsf structure just will manage blocks bigger than 128 bytes
smallBlock = 128
realFli = MaxFli - fliOffset
type
TFreePtr {.final.} = object
prev, next: PBhdr
Pbhdr = ptr Tbhdr
Tbhdr {.final.} = object
prevHdr: Pbhdr # this is just valid if the first bit of size is set
size: int # the size is stored in bytes
# bit 0 indicates whether the block is used and
# bit 1 allows to know whether the previous block is free
freePtr: TFreePtr # at this offset bhdr.buffer starts (was a union in the
# C version)
TAreaInfo {.final.} = object # This structure is embedded at the beginning
# of each area, giving us enough information
# to cope with a set of areas
theEnd: Pbhdr
next: PAreaInfo
PAreaInfo = ptr TAreaInfo
TLSF {.final.} = object
tlsf_signature: int32 # the TLSF's structure signature
usedSize, maxSize: int
areaHead: PAreaInfo # A linked list holding all the existing areas
flBitmap: int32 # the first-level bitmap
# This array should have a size of REAL_FLI bits
slBitmap: array[0..realFli, int32] # the second-level bitmap
matrix: array [0..realFli, array[0..maxSli, PBhdr]]
const
minBlockSize = sizeof(TFreePtr)
bhdrOverhead = sizeof(Tbhdr) - minBlockSize
tlsfSignature = 0x2A59FA59
ptrMask = sizeof(pointer) - 1
blockSize = 0xFFFFFFFF - ptrMask
memAlign = blockAlign - 1
blockState = 0x1
prevState = 0x2
freeBlock = 0x1 # bit 0 of the block size
usedBlock = 0x0
prevFree = 0x2 # bit 1 of the block size
prevUsed = 0x0
defaultAreaSize = 64*1024 # 1024*10
pageSize = if defined(cpu32): 4096 else: 4096*2
proc getNextBlock(adr: pointer, r: int): PBhdr {.inline.} =
return cast[PBhdr](cast[TAddress](adr) +% r)
proc roundupSize(r: int): int = return (r +% memAlign) and not memAlign
proc rounddownSize(r: int): int = return r and not memAlign
proc roundup(x, v: int): int = return (((not x)+%1) and (v-%1)) +% x
proc addSize(s: PTLSF, b: Pbhdr) =
inc(s.usedSize, (b.size and blockSize) + bhdrOverhead)
s.maxSize = max(s.maxSize, s.usedSize)
proc removeSize(s: PTLSF, b: Pbhdr) =
dec(s.usedSize, (b.size and blockSize) + bhdrOverhead)
# ------------ platform specific code -----------------------------------------
when defined(posix):
const # XXX: make these variables for portability?
PROT_READ = 1 # page can be read
PROT_WRITE = 2 # page can be written
PROT_EXEC = 4 # page can be executed
PROT_NONE = 0 # page can not be accessed
MAP_SHARED = 1 # Share changes
MAP_PRIVATE = 2 # Changes are private
MAP_TYPE = 0xf # Mask for type of mapping
MAP_FIXED = 0x10 # Interpret addr exactly
MAP_ANONYMOUS = 0x20 # don't use a file
MAP_GROWSDOWN = 0x100 # stack-like segment
MAP_DENYWRITE = 0x800 # ETXTBSY
MAP_EXECUTABLE = 0x1000 # mark it as an executable
MAP_LOCKED = 0x2000 # pages are locked
MAP_NORESERVE = 0x4000 # don't check for reservations
proc mmap(adr: pointer, len: int, prot, flags, fildes: cint,
off: int): pointer {.header: "<sys/mman.h>".}
proc getNewArea(size: var int): pointer {.inline.} =
size = roundup(size, PageSize)
result = mmap(0, size, PROT_READ or PROT_WRITE,
MAP_PRIVATE or MAP_ANONYMOUS, -1, 0)
if result == nil or result == cast[pointer](-1):
raiseOutOfMem()
elif defined(windows):
const
MEM_RESERVE = 0x2000
MEM_COMMIT = 0x1000
MEM_TOP_DOWN = 0x100000
PAGE_READWRITE = 0x04
proc VirtualAlloc(lpAddress: pointer, dwSize: int, flAllocationType,
flProtect: int32): pointer {.
header: "<windows.h>", stdcall.}
proc getNewArea(size: var int): pointer {.inline.} =
size = roundup(size, PageSize)
result = VirtualAlloc(nil, size, MEM_RESERVE or MEM_COMMIT or MEM_TOP_DOWN,
PAGE_READWRITE)
if result == nil: raiseOutOfMem()
else:
{.warning: "Generic code for allocating pages is used".}
# generic implementation relying on malloc:
proc malloc(size: int): pointer {.nodecl, importc.}
proc getNewArea(size: var int): pointer {.inline.} =
size = roundup(size, PageSize)
result = malloc(size)
if result == nil: raiseOutOfMem()
# ---------------------------------------------------------------------------
# small fixed size allocator:
# Design: We manage pages. A page is of constant size, but not necessarily
# the OS's page size. Pages are managed in a hash table taking advantage of
# the fact that the OS is likely to give us pages with contingous numbers.
# A page contains either small fixed size objects of the same size or
# variable length objects. An object's size is always aligned at 16 byte
# boundary. Huge objects are dealt with the TLSF algorithm.
# The design supports iterating over any object in a fast way.
# A bitset contains any page that starts an allocated page. The page may be
# empty however. This bitset can be used to quickly determine if a given
# page belongs to the GC heap. The design of the memory allocator makes it
# simple to return unused pages back to the OS.
# Small bocks
# -----------
#
# If we use a list in the free object's space. Allocation and deallocation are
# O(1). Since any object is of the same size, iteration is quite efficient too.
# However, pointer detection is easy too: Just check if the type-field is nil.
# Deallocation sets it to nil.
# Algorithm:
# i = 0
# f = b.f # first free address
# while i < max:
# if a[i] == f: # not a valid block
# f = f.next # next free address
# else:
# a[i] is a valid object of size s
# inc(i)
# The zero count table is an array. Since we know that the RC is zero, we can
# use the bits for an index into this array. Thus multiple ZCT tables are not
# difficult to support and insertion and removal is O(1). We use negative
# indexes for this. This makes it even fast enough (and necessary!) to do a ZCT
# removal if the RC is incremented.
#
# Huge blocks
# -----------
#
# Huge blocks are always rounded up to a multiple of the page size. These are
# called *strides*. We also need to keep an index structure
# of (stridesize, pagelist).
#
const
MemAlign = 8
PageShift = if sizeof(int) == 4: 12 else: 13
PageSize = 1 shl PageShift
type
TFreeList {.final.} = object
next, prev: ptr TFreeList
TPageDesc {.final.} = object # the start of a stride always starts with this!
size: int # lowest bit is set, if it is a huge block
free: ptr TFreeList # only used if it manages multiple cells
snext, sprev: ptr TPageDesc # next and prev pagedescs with the same size
TCellArray {.final.} = object
i: int # length
d: ptr array [0..1000_000, TCell]
TPageManager = table[page, ptr TPageDesc]
TGcHeap {.final.} = object
# structure that manages the garbage collected heap
zct: TCellArray
stackCells: TCellArray
smallBlocks: array [PageSize div MemAlign, ptr TPageDesc]
freeLists: array [PageSize div MemAlign, ptr TFreeList]
pages: TPageManager
usedPages: TPageList
freePages: TPageList
# small blocks:
proc allocSmall(var h: TGcHeap, size: int): pointer =
var s = align(size)
var f = h.freeLists[s]
if f != nil:
f.prev = f.next # remove from list
f.next.prev = f.prev
return f
var p = h.smallBlocks[s]
if p == nil or p.free == nil:
p = newSmallBlock(s, p)
h.smallBlocks[s] = p
proc decRef(cell: PCell) {.inline.} =
assert(cell in ct.AT)
assert(cell.refcount > 0) # this should be the case!
assert(seqCheck(cell))
dec(cell.refcount)
if cell.refcount == 0:
# add to zero count table:
zct.d[zct.i] = cell
cell.recfcount = -zct.i
inc(zct.i)
proc incRef(cell: PCell) {.inline.} =
assert(seqCheck(cell))
if cell.refcount < 0:
# remove from zero count table:
zct.d[-cell.refcount] = zct.d[zct.i-1]
dec(zct.i)
cell.refcount = 1
else:
inc(cell.refcount)
proc asgnRef(dest: ppointer, src: pointer) =
# the code generator calls this proc!
assert(not isOnStack(dest))
# BUGFIX: first incRef then decRef!
if src != nil: incRef(usrToCell(src))
if dest^ != nil: decRef(usrToCell(dest^))
dest^ = src
# ----------------------------------------------------------------------------
# helpers
const
table: array[0..255, int8] = [
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7
]
proc ls_bit(i: int32): int {.inline.} =
var
a: int = 0
x: int = i and -i
if x <=% 0xffff:
if x <=% ff: a = 0
else: a = 8
elif x <=% 0xffffff: a = 16
else: a = 24
return table[x shr a] + a
proc ms_bit(i: int): int {.inline.} =
var
a = if i <=% 0xffff: (if i <=% 0xff: 0 else: 8) elif
i <=% 0xffffff: 16 else: 24
return table[i shr a] + a
proc set_bit[IX](nr: int, adr: var array[IX, int32]) {.inline.} =
adr[nr shr 5] = adr[nr shr 5] or (1 shl (nr and 0x1f))
proc clear_bit[IX](nr: int, adr: var array[IX, int32]) {.inline.} =
adr[nr shr 5] = adr[nr shr 5] and not (1 shl (nr and 0x1f))
proc mappingSearch(r, fl, sl: var int) {.inline.} =
if r < smallBlock:
fl = 0
sl = r div (smallBlock div maxSli)
else:
var t = (1 shl (ms_bit(r) - maxLog2Sli)) - 1
r = r + t
fl = ms_bit(r)
sl = (r shl (fl - maxLog2Sli)) - maxSli
fl = fl - fliOffset
r = r and not t
proc mappingInsert(r: int, fl, sl: var int) {.inline.} =
if r < smallBlock:
fl = 0
sl = r div (smallBlock div maxSli)
else:
fl = ms_bit(r)
sl = (r shr (fl - maxLog2Sli)) - maxSli
fl = fl - fliOffset
proc findSuitableBlock(t: var TLSF, fl, sl: var int): Pbhdr =
var tmp = t.slBitmap[fl] and ((not 0) shl sl)
if tmp != 0:
sl = ls_bit(tmp)
result = t.matrix[fl][sl]
else:
fl = ls_bit(t.flBitmap and (not 0 shl (fl + 1)))
if fl > 0: # likely
sl = ls_bit(t.slBitmap[fl])
result = t.matrix[fl][sl]
proc extractBlockHdr(b: Pbhdr, t: var TLSF, fl, sl: int) {.inline.} =
t.matrix[fl][sl] = b.freePtr.next
if t.matrix[fl][sl] != 0:
t.matrix[fl][sl].freePtr.prev = nil
else:
clear_bit(sl, t.slBitmap[fl])
if t.slBitmap[fl] == 0:
clear_bit(fl, t.flBitmap)
b.freePtr.prev = nil
b.freePtr.next = nil
proc extractBlock(b: Pbhdr, t: var TLSF, fl, sl: int) {.inline.} =
if b.freePtr.next != nil:
b.freePtr.next.freePtr.prev = b.freePtr.prev
if b.freePtr.prev != nil:
b.freePtr.prev.freePtr.next = b.freePtr.next
if t.matrix[fl][sl] == b:
t.matrix[fl][sl] = b.freePtr.next
if t.matrix[fl][sl] == nil:
clear_bit(sl, t.slBitmap[fl])
if t.slBitmap[fl] == 0:
clear_bit(fl, t.flBitmap)
b.freePtr.prev = nil
b.freePtr.next = nil
proc insertBlock(b: Pbhdr, t: var TLSF, fl, sl: int) {.inline.} =
b.freePtr.prev = nil
b.freePtr.next = t.matrix[fl][sl]
if t.matrix[fl][sl] != nil:
t.matrix[fl][sl].freePtr.prev = b
t.matrix[fl][sl] = b
set_bit(sl, t.slBitmap[fl])
set_bit(fl, t.flBitmap)
proc getBuffer(b: Pbhdr): pointer {.inline.} =
result = cast[pointer](addr(b.freePtr))
proc processArea(area: pointer, size: int): Pbhdr =
var
b, lb, ib: Pbhdr
ai: PAreaInfo
ib = cast[Pbhdr](area)
if sizeof(TAreaInfo) < minBlockSize:
ib.size = minBlockSize or usedBlock or prevUsed
else
ib.size = roundupSize(sizeof(TAreaInfo)) or usedBlock or prevUsed
b = getNextBlock(getBuffer(ib), ib.size and blockSize)
b.size = rounddownSize(size - 3 * bhdrOverhead - (ib.size and blockSize)) or
usedBlock or prevUsed
b.freePtr.prev = nil
b.freePtr.next = nil
lb = getNextBlock(getBuffer(b), b.size and blockSize)
lb.prevHdr = b
lb.size = 0 or usedBlock or prevFree
ai = cast[PAreaInfo](getBuffer(ib))
ai.next = nil
ai.theEnd = lb
return ib
# ----------------------------------------------------------------------------
# Begin of the allocator code
proc initMemoryPool(memPoolSize: int, memPool: pointer): int =
var
t: PLSF
b, ib: Pbhdr
if memPool == nil or memPoolSize < sizeof(TLSF) + bhdrOverhead * 8:
writeToStdErr("initMemoryPool(): memory_pool invalid\n")
return -1
if (cast[TAddress](memPool) and ptrMask) != 0:
writeToStdErr("initMemoryPool(): memPool must be aligned to a word\n")
return -1
t = cast[PLSF](memPool)
# Check if already initialised
if t.signature == tlsfSignature:
b = getNextBlock(memPool, roundupSize(sizeof(TLSF)))
return b.size and blockSize
zeroMem(memPool, sizeof(TLSF))
t.signature = tlsfSignature
ib = processArea(getNextBlock(memPool, roundupSize(sizeof(TLSF))),
rounddownSize(memPoolSize - sizeof(TLSF)))
b = getNextBlock(getBuffer(ib), ib.size and blockSize)
freeEx(getBuffer(b), t)
t.areaHead = cast[PAreaInfo](getBuffer(ib))
t.used_size = memPoolSize - (b.size and blockSize)
t.max_size = t.used_size
return b.size and blockSize
proc addNewArea(area: pointer, areaSize: int, t: var TLSF): int =
var
p, ptrPrev, ai: PAreaInfo
ib0, b0, lb0, ib1, b1, lb1, nextB: Pbhdr
zeroMem(area, areaSize)
p = t.areaHead
ptrPrev = 0
ib0 = processArea(area, areaSize)
b0 = getNextBlock(getBuffer(ib0), ib0.size and blockSize)
lb0 = getNextBlock(getBuffer(b0), b0.size and blockSize)
# Before inserting the new area, we have to merge this area with the
# already existing ones
while p != nil:
ib1 = cast[Pbhdr](cast[TAddress](p) -% bhdrOverhead)
b1 = getNextBlock(getBuffer(ib1), ib1.size and blockSize)
lb1 = p.theEnd
# Merging the new area with the next physically contigous one
if cast[TAddress](ib1) == cast[TAddress](lb0) +% bhdrOverhead:
if t.areaHead == p:
t.areaHead = p.next
p = p.next
else:
ptrPrev.next = p.next
p = p.next
b0.size = rounddownSize((b0.size and blockSize) +
(ib1.size and blockSize) + 2 * bhdrOverhead) or
usedBlock or prevUsed
b1.prevHdr = b0
lb0 = lb1
continue
# Merging the new area with the previous physically contigous one
if getBuffer(lb1) == pointer(ib0):
if t.areaHead == p:
t.areaHead = p.next
p = p.next
else:
ptrPrev.next = p.next
p = p.next
lb1->size = rounddownSize((b0.size and blockSize) +
(ib0.size and blockSize) + 2 * bhdrOverhead) or
usedBlock or (lb1.size and prevState)
nextB = getNextBlock(getBuffer(lb1), lb1.size and blockSize)
nextB.prevHdr = lb1
b0 = lb1
ib0 = ib1
continue
ptrPrev = p
p = p.next
# Inserting the area in the list of linked areas
ai = cast[PAreaInfo](getBuffer(ib0))
ai.next = t.areaHead
ai.theEnd = lb0
t.areaHead = ai
freeEx(getBuffer(b0), memPool)
return (b0.size and blockSize)
proc mallocEx(asize: int, t: var TLSF): pointer =
var
b, b2, nextB: Pbhdr
fl, sl, tmpSize, size: int
size = if asize < minBlockSize: minBlockSize else: roundupSize(asize)
# Rounding up the requested size and calculating fl and sl
mappingSearch(size, fl, sl)
# Searching a free block, recall that this function changes the values
# of fl and sl, so they are not longer valid when the function fails
b = findSuitableBlock(tlsf, fl, sl)
if b == nil:
# Growing the pool size when needed
# size plus enough room for the required headers:
var areaSize = max(size + bhdrOverhead * 8, defaultAreaSize)
var area = getNewArea(areaSize)
addNewArea(area, areaSize, t)
# Rounding up the requested size and calculating fl and sl
mappingSearch(size, fl, sl)
# Searching a free block
b = findSuitableBlock(t, fl, sl)
if b == nil:
raiseOutOfMem()
extractBlockHdr(b, t, fl, sl)
#-- found:
nextB = getNextBlock(getBuffer(b), b.size and blockSize)
# Should the block be split?
tmpSize = (b.size and blockSize) - size
if tmpSize >= sizeof(Tbhdr):
dec(tmpSize, bhdrOverhead)
b2 = getNextBlock(getBuffer(b), size)
b2.size = tmpSize or freeBlock or prevUsed
nextB.prevHdr = b2
mappingInsert(tmpSize, fl, sl)
insertBlock(b2, t, fl, sl)
b.size = size or (b.size and prevState)
else:
nextB.size = nextB.size and not prevFree
b.size = b.size and not freeBlock # Now it's used
addSize(t, b)
return getBuffer(b)
proc freeEx(p: pointer, t: var TLSF) =
var
fl = 0
sl = 0
b, tmpB: Pbhdr
assert(p != nil)
b = cast[Pbhdr](cast[TAddress](p) -% bhdrOverhead)
b.size = b.size or freeBlock
removeSize(t, b)
b.freePtr.prev = nil
b.freePtr.next = nil
tmpB = getNextBlock(getBuffer(b), b.size and blockSize)
if (tmpB.size and freeBlock) != 0:
mappingInsert(tmpB.size and blockSize, fl, sl)
extractBlock(tmpB, t, fl, sl)
inc(b.size, (tmpB.size and blockSize) + bhdrOverhead)
if (b.size and prevFree) != 0:
tmpB = b.prevHdr
mappingInsert(tmpB.size and blockSize, fl, sl)
extractBlock(tmpB, t, fl, sl)
inc(tmpB.size, (b.size and blockSize) + bhdrOverhead)
b = tmpB
mappingInsert(b.size and blockSize, fl, sl)
insertBlock(b, t, fl, sl)
tmpB = getNextBlock(getBuffer(b), b.size and blockSize)
tmpB.size = tmpB.size or prevFree
tmpB.prevHdr = b
proc reallocEx(p: pointer, newSize: int, t: var TLSF): pointer =
var
cpsize, fl, sl, tmpSize: int
b, tmpB, nextB: Pbhdr
assert(p != nil)
assert(newSize > 0)
b = cast[Pbhdr](cast[TAddress](p) -% bhdrOverhead)
nextB = getNextBlock(getBuffer(b), b.size and blockSize)
newSize = if newSize < minBlockSize: minBlockSize else: roundupSize(newSize)
tmpSize = b.size and blockSize
if newSize <= tmpSize:
removeSize(t, b)
if (nextB.size and freeBlock) != 0:
mappingInsert(nextB.size and blockSize, fl, sl)
extractBlock(nextB, t, fl, sl)
inc(tmpSize, (nextB.size and blockSize) + bhdrOverhead)
nextB = getNextBlock(getBuffer(nextB), nextB.size and blockSize)
# We always reenter this free block because tmpSize will
# be greater then sizeof(Tbhdr)
dec(tmpSize, newSize)
if tmpSize >= sizeof(Tbhdr):
dec(tmpSize, bhdrOverhead)
tmpB = getNextBlock(getBuffer(b), newSize)
tmpB.size = tmpSize or freeBlock or prevUsed
nextB.prevHdr = tmpB
nextB.size = nextB.size or prevFree
mappingInsert(tmpSize, fl, sl)
insertBlock(tmpB, t, fl, sl)
b.size = newSize or (b.size and prevState)
addSize(t, b)
return getBuffer(b)
if (nextB.size and freeBlock) != 0:
if newSize <= tmpSize + (nextB.size and blockSize):
removeSize(t, b)
mappingInsert(nextB.size and blockSize, fl, sl)
extractBlock(nextB, t, fl, sl)
inc(b.size, (nextB.size and blockSize) + bhdrOverhead)
nextB = getNextBlock(getBuffer(b), b.size and blockSize)
nextB.prevHdr = b
nextB.size = nextB.size and not prevFree
tmpSize = (b.size and blockSize) - newSize
if tmpSize >= sizeof(Tbhdr):
dec(tmpSize, bhdrOverhead)
tmpB = getNextBlock(getBuffer(b), newSize)
tmpB.size = tmpSize or freeBlock or prevUsed
nextB.prevHdr = tmpB
nextB.size = nextB.size or prevFree
mappingInsert(tmpSize, fl, sl)
insertBlock(tmpB, t, fl, sl)
b.size = newSize or (b.size and prevState)
addSize(t, b)
return getBuffer(b)
var ptrAux = mallocEx(newSize, t)
cpsize = if (b.size and blockSize) > newSize: newSize else:
(b.size and blockSize)
copyMem(ptrAux, p, cpsize)
freeEx(p, memPool)
return ptrAux
proc ansiCrealloc(p: pointer, newSize: int, t: var TLSF): pointer =
if p == nil:
if newSize > 0:
result = mallocEx(newSize, t)
else:
result = nil
elif newSize <= 0:
freeEx(p, t)
result = nil
else:
result = reallocEx(p, newSize, t)
proc InitTLSF(t: var TLSF) =
var areaSize = sizeof(TLSF) + BHDR_OVERHEAD * 8 # Just a safety constant
areaSize = max(areaSize, DEFAULT_areaSize)
var area = getNewArea(areaSize)
initMemoryPool(areaSize, area)
var
t: PLSF
b, ib: Pbhdr
t = cast[PLSF](memPool)
zeroMem(area, areaSize)
t.signature = tlsfSignature
var ib = processArea(getNextBlock(memPool, roundupSize(sizeof(TLSF))),
rounddownSize(memPoolSize - sizeof(TLSF)))
var b = getNextBlock(getBuffer(ib), ib.size and blockSize)
freeEx(getBuffer(b), t)
t.areaHead = cast[PAreaInfo](getBuffer(ib))
t.used_size = memPoolSize - (b.size and blockSize)
t.max_size = t.used_size
# XXX
|