summary refs log tree commit diff stats
path: root/lib/pure/algorithm.nim
blob: a5b18ae5845e77c5d46b43f5b65cc3e72f365a68 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements some common generic algorithms.

type
  SortOrder* = enum
    Descending, Ascending

proc `*`*(x: int, order: SortOrder): int {.inline.} =
  ## flips ``x`` if ``order == Descending``.
  ## If ``order == Ascending`` then ``x`` is returned.
  ##
  ## ``x`` is supposed to be the result of a comparator, i.e.
  ## | ``< 0`` for *less than*,
  ## | ``== 0`` for *equal*,
  ## | ``> 0`` for *greater than*.
  var y = order.ord - 1
  result = (x xor y) - y

template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
  var x = first
  while x <= last:
    a[x] = value
    inc(x)

proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
  ## fills the slice ``a[first..last]`` with ``value``.
  runnableExamples:
      var a: array[6, int]
      a.fill(1, 3, 9)
      doAssert a == [0, 9, 9, 9, 0, 0]
  fillImpl(a, first, last, value)

proc fill*[T](a: var openArray[T], value: T) =
  ## fills the container ``a`` with ``value``.
  runnableExamples:
      var a: array[6, int]
      a.fill(9)
      doAssert a == [9, 9, 9, 9, 9, 9]
  fillImpl(a, 0, a.high, value)


proc reverse*[T](a: var openArray[T], first, last: Natural) =
  ## reverses the slice ``a[first..last]``.
  runnableExamples:
      var a = [1, 2, 3, 4, 5, 6]
      a.reverse(1, 3)
      doAssert a == [1, 4, 3, 2, 5, 6]
  var x = first
  var y = last
  while x < y:
    swap(a[x], a[y])
    dec(y)
    inc(x)

proc reverse*[T](a: var openArray[T]) =
  ## reverses the contents of the container ``a``.
  runnableExamples:
      var a = [1, 2, 3, 4, 5, 6]
      a.reverse()
      doAssert  a == [6, 5, 4, 3, 2, 1]
  reverse(a, 0, max(0, a.high))

proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
  ## returns the reverse of the slice ``a[first..last]``.
  runnableExamples:
      let
        a = [1, 2, 3, 4, 5, 6]
        b = reversed(a, 1, 3)
      doAssert b == @[4, 3, 2]
  assert last >= first-1
  var i = last - first
  var x = first.int
  result = newSeq[T](i + 1)
  while i >= 0:
    result[i] = a[x]
    dec(i)
    inc(x)

proc reversed*[T](a: openArray[T]): seq[T] =
  ## returns the reverse of the container ``a``.
  runnableExamples:
      let
        a = [1, 2, 3, 4, 5, 6]
        b = reversed(a)
      doAssert b == @[6, 5, 4, 3, 2, 1]
  reversed(a, 0, a.high)

proc binarySearch*[T, K](a: openArray[T], key: K,
              cmp: proc (x: T, y: K): int {.closure.}): int =
  ## Binary search for ``key`` in ``a``. Returns -1 if not found.
  ##
  ## ``cmp`` is the comparator function to use, the expected return values are
  ## the same as that of system.cmp.
  if a.len == 0:
    return -1

  let len = a.len

  if len == 1:
    if cmp(a[0], key) == 0:
      return 0
    else:
      return -1

  if (len and (len - 1)) == 0:
    # when `len` is a power of 2, a faster shr can be used.
    var step = len shr 1
    var cmpRes: int
    while step > 0:
      let i = result or step
      cmpRes = cmp(a[i], key)
      if cmpRes == 0:
        return i

      if cmpRes < 1:
        result = i
      step = step shr 1
    if cmp(a[result], key) != 0: result = -1
  else:
    var b = len
    var cmpRes: int
    while result < b:
      var mid = (result + b) shr 1
      cmpRes = cmp(a[mid], key)
      if cmpRes == 0:
        return mid

      if cmpRes < 0:
        result = mid + 1
      else:
        b = mid
    if result >= len or cmp(a[result], key) != 0: result = -1

proc binarySearch*[T](a: openArray[T], key: T): int =
  ## Binary search for ``key`` in ``a``. Returns -1 if not found.
  binarySearch(a, key, cmp[T])

proc smartBinarySearch*[T](a: openArray[T], key: T): int {.deprecated.} =
  ## **Deprecated since version 0.18.1**; Use ``binarySearch`` instead.
  binarySearch(a, key, cmp[T])

const
  onlySafeCode = true

proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
  ## returns a position to the first element in the ``a`` that is greater than
  ## ``key``, or last if no such element is found.
  ## In other words if you have a sorted sequence and you call
  ## ``insert(thing, elm, lowerBound(thing, elm))``
  ## the sequence will still be sorted.
  ##
  ## The first version uses ``cmp`` to compare the elements.
  ## The expected return values are the same as that of ``system.cmp``.
  ## The second version uses the default comparison function ``cmp``.
  ##
  ## .. code-block:: nim
  ##
  ##   var arr = @[1,2,3,5,6,7,8,9]
  ##   arr.insert(4, arr.lowerBound(4))
  ##   # after running the above arr is `[1,2,3,4,5,6,7,8,9]`
  result = a.low
  var count = a.high - a.low + 1
  var step, pos: int
  while count != 0:
    step = count shr 1
    pos = result + step
    if cmp(a[pos], key) < 0:
      result = pos + 1
      count -= step + 1
    else:
      count = step

proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])

proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
  ## returns a position to the first element in the ``a`` that is not less
  ## (i.e. greater or equal to) than ``key``, or last if no such element is found.
  ## In other words if you have a sorted sequence and you call
  ## ``insert(thing, elm, upperBound(thing, elm))``
  ## the sequence will still be sorted.
  ##
  ## The first version uses ``cmp`` to compare the elements. The expected
  ## return values are the same as that of ``system.cmp``.
  ## The second version uses the default comparison function ``cmp``.
  ##
  ## .. code-block:: nim
  ##
  ##   var arr = @[1,2,3,4,6,7,8,9]
  ##   arr.insert(5, arr.upperBound(4))
  ##   # after running the above arr is `[1,2,3,4,5,6,7,8,9]`
  result = a.low
  var count = a.high - a.low + 1
  var step, pos: int
  while count != 0:
    step = count shr 1
    pos = result + step
    if cmp(a[pos], key) <= 0:
      result = pos + 1
      count -= step + 1
    else:
      count = step

proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T])

template `<-` (a, b) =
  when false:
    a = b
  elif onlySafeCode:
    shallowCopy(a, b)
  else:
    copyMem(addr(a), addr(b), sizeof(T))

proc merge[T](a, b: var openArray[T], lo, m, hi: int,
              cmp: proc (x, y: T): int {.closure.}, order: SortOrder) =
  # optimization: If max(left) <= min(right) there is nothing to do!
  # 1 2 3 4  ## 5 6 7 8
  # -> O(n) for sorted arrays.
  # On random data this safes up to 40% of merge calls
  if cmp(a[m], a[m+1]) * order <= 0: return
  var j = lo
  # copy a[j..m] into b:
  assert j <= m
  when onlySafeCode:
    var bb = 0
    while j <= m:
      b[bb] <- a[j]
      inc(bb)
      inc(j)
  else:
    copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
    j = m+1
  var i = 0
  var k = lo
  # copy proper element back:
  while k < j and j <= hi:
    if cmp(b[i], a[j]) * order <= 0:
      a[k] <- b[i]
      inc(i)
    else:
      a[k] <- a[j]
      inc(j)
    inc(k)
  # copy rest of b:
  when onlySafeCode:
    while k < j:
      a[k] <- b[i]
      inc(k)
      inc(i)
  else:
    if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))

func sort*[T](a: var openArray[T],
              cmp: proc (x, y: T): int {.closure.},
              order = SortOrder.Ascending) =
  ## Default Nim sort (an implementation of merge sort). The sorting
  ## is guaranteed to be stable and the worst case is guaranteed to
  ## be O(n log n).
  ## The current implementation uses an iterative
  ## mergesort to achieve this. It uses a temporary sequence of
  ## length ``a.len div 2``. If you do not wish to provide your own
  ## ``cmp``, you may use ``system.cmp`` or instead call the overloaded
  ## version of ``sort``, which uses ``system.cmp``.
  ##
  ## .. code-block:: nim
  ##
  ##    sort(myIntArray, system.cmp[int])
  ##
  ##    # do not use cmp[string] here as we want to use the specialized
  ##    # overload:
  ##    sort(myStrArray, system.cmp)
  ##
  ## You can inline adhoc comparison procs with the `do notation
  ## <manual.html#procedures-do-notation>`_. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   people.sort do (x, y: Person) -> int:
  ##     result = cmp(x.surname, y.surname)
  ##     if result == 0:
  ##       result = cmp(x.name, y.name)
  var n = a.len
  var b: seq[T]
  newSeq(b, n div 2)
  var s = 1
  while s < n:
    var m = n-1-s
    while m >= 0:
      merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
      dec(m, s*2)
    s = s*2

proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a, system.cmp[T], order)
  ## Shortcut version of ``sort`` that uses ``system.cmp[T]`` as the comparison function.

proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
                order = SortOrder.Ascending): seq[T] =
  ## returns ``a`` sorted by ``cmp`` in the specified ``order``.
  runnableExamples:
      let
        a = [2, 3, 1, 5, 4]
        b = sorted(a, system.cmp)
        c = sorted(a, system.cmp, Descending)
      doAssert b == @[1, 2, 3, 4, 5]
      doAssert c == @[5, 4, 3, 2, 1]
  result = newSeq[T](a.len)
  for i in 0 .. a.high:
    result[i] = a[i]
  sort(result, cmp, order)

proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
  ## Shortcut version of ``sorted`` that uses ``system.cmp[T]`` as the comparison function.
  sorted[T](a, system.cmp[T], order)

template sortedByIt*(seq1, op: untyped): untyped =
  ## Convenience template around the ``sorted`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. Example:
  ##
  ## .. code-block:: nim
  ##
  ##   type Person = tuple[name: string, age: int]
  ##   var
  ##     p1: Person = (name: "p1", age: 60)
  ##     p2: Person = (name: "p2", age: 20)
  ##     p3: Person = (name: "p3", age: 30)
  ##     p4: Person = (name: "p4", age: 30)
  ##     people = @[p1,p2,p4,p3]
  ##
  ##   echo people.sortedByIt(it.name)
  ##
  ## Because the underlying ``cmp()`` is defined for tuples you can do
  ## a nested sort like in the following example:
  ##
  ## .. code-block:: nim
  ##
  ##   echo people.sortedByIt((it.age, it.name))
  ##
  var result = sorted(seq1, proc(x, y: type(seq1[0])): int =
    var it {.inject.} = x
    let a = op
    it = y
    let b = op
    result = cmp(a, b))
  result

func isSorted*[T](a: openArray[T],
                 cmp: proc(x, y: T): int {.closure.},
                 order = SortOrder.Ascending): bool =
  ## checks to see whether ``a`` is already sorted in ``order``
  ## using ``cmp`` for the comparison. Parameters identical
  ## to ``sort``.
  result = true
  for i in 0..<len(a)-1:
    if cmp(a[i],a[i+1]) * order > 0:
      return false

proc isSorted*[T](a: openarray[T], order = SortOrder.Ascending): bool =
  ## Shortcut version of ``isSorted`` that uses ``system.cmp[T]`` as the comparison function.
  isSorted(a, system.cmp[T], order)

proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
  ## produces the Cartesian product of the array. Warning: complexity
  ## may explode.
  result = newSeq[seq[T]]()
  if x.len == 0:
    return
  if x.len == 1:
    result = @x
    return
  var
    indexes = newSeq[int](x.len)
    initial = newSeq[int](x.len)
    index = 0
  var next = newSeq[T]()
  next.setLen(x.len)
  for i in 0..(x.len-1):
    if len(x[i]) == 0: return
    initial[i] = len(x[i])-1
  indexes = initial
  while true:
    while indexes[index] == -1:
      indexes[index] = initial[index]
      index += 1
      if index == x.len: return
      indexes[index] -= 1
    for ni, i in indexes:
      next[ni] = x[ni][i]
    var res: seq[T]
    shallowCopy(res, next)
    result.add(res)
    index = 0
    indexes[index] -= 1

proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
  ## calculates the next lexicographic permutation, directly modifying ``x``.
  ## The result is whether a permutation happened, otherwise we have reached
  ## the last-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  ##     v.nextPermutation()
  ##     echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
  if x.len < 2:
    return false

  var i = x.high
  while i > 0 and x[i-1] >= x[i]:
    dec i

  if i == 0:
    return false

  var j = x.high
  while j >= i and x[j] <= x[i-1]:
    dec j

  swap x[j], x[i-1]
  x.reverse(i, x.high)

  result = true

proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} =
  ## calculates the previous lexicographic permutation, directly modifying
  ## ``x``. The result is whether a permutation happened, otherwise we have
  ## reached the first-ordered permutation.
  ##
  ## .. code-block:: nim
  ##
  ##     var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
  ##     v.prevPermutation()
  ##     echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  if x.len < 2:
    return false

  var i = x.high
  while i > 0 and x[i-1] <= x[i]:
    dec i

  if i == 0:
    return false

  x.reverse(i, x.high)

  var j = x.high
  while j >= i and x[j-1] < x[i-1]:
    dec j

  swap x[i-1], x[j]

  result = true

when isMainModule:
  # Tests for lowerBound
  var arr = @[1,2,3,5,6,7,8,9]
  assert arr.lowerBound(0) == 0
  assert arr.lowerBound(4) == 3
  assert arr.lowerBound(5) == 3
  assert arr.lowerBound(10) == 8
  arr = @[1,5,10]
  assert arr.lowerBound(4) == 1
  assert arr.lowerBound(5) == 1
  assert arr.lowerBound(6) == 2
  # Tests for isSorted
  var srt1 = [1,2,3,4,4,4,4,5]
  var srt2 = ["iello","hello"]
  var srt3 = [1.0,1.0,1.0]
  var srt4: seq[int]
  assert srt1.isSorted(cmp) == true
  assert srt2.isSorted(cmp) == false
  assert srt3.isSorted(cmp) == true
  assert srt4.isSorted(cmp) == true
  var srtseq = newSeq[int]()
  assert srtseq.isSorted(cmp) == true
  # Tests for reversed
  var arr1 = @[0,1,2,3,4]
  assert arr1.reversed() == @[4,3,2,1,0]
  for i in 0 .. high(arr1):
    assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)]
    assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i]


proc rotateInternal[T](arg: var openarray[T]; first, middle, last: int): int =
  ## A port of std::rotate from c++. Ported from `this reference <http://www.cplusplus.com/reference/algorithm/rotate/>`_.
  result = first + last - middle

  if first == middle or middle == last:
    return

  assert first < middle
  assert middle < last

  # m prefix for mutable
  var
    mFirst = first
    mMiddle = middle
    next = middle

  swap(arg[mFirst], arg[next])
  mFirst += 1
  next += 1
  if mFirst == mMiddle:
    mMiddle = next

  while next != last:
    swap(arg[mFirst], arg[next])
    mFirst += 1
    next += 1
    if mFirst == mMiddle:
      mMiddle = next

  next = mMiddle
  while next != last:
    swap(arg[mFirst], arg[next])
    mFirst += 1
    next += 1
    if mFirst == mMiddle:
      mMiddle = next
    elif next == last:
      next = mMiddle

proc rotatedInternal[T](arg: openarray[T]; first, middle, last: int): seq[T] =
  result = newSeq[T](arg.len)
  for i in 0 ..< first:
    result[i] = arg[i]
  let N = last - middle
  let M = middle - first
  for i in 0 ..< N:
    result[first+i] = arg[middle+i]
  for i in 0 ..< M:
    result[first+N+i] = arg[first+i]
  for i in last ..< arg.len:
    result[i] = arg[i]

proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int {.discardable.} =
  ## performs a left rotation on a range of elements. If you want to rotate
  ## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates
  ## the elements at ``slice`` by ``dist`` positions.
  ##
  ## | The element at index ``slice.a + dist`` will be at index ``slice.a``.
  ## | The element at index ``slice.b`` will be at ``slice.a + dist -1``.
  ## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
  ## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
  ##
  ## Elements outside of ``slice`` will be left unchanged.
  ## The time complexity is linear to ``slice.b - slice.a + 1``.
  ##
  ## ``slice``
  ##   The indices of the element range that should be rotated.
  ##
  ## ``dist``
  ##   The distance in amount of elements that the data should be rotated.
  ##   Can be negative, can be any number.
  ##
  ## .. code-block:: nim
  ##
  ##   var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  ##   list.rotateLeft(1 .. 8, 3)
  ##   doAssert list == [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]
  let sliceLen = slice.b + 1 - slice.a
  let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
  arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1)

proc rotateLeft*[T](arg: var openarray[T]; dist: int): int {.discardable.} =
  ## Default arguments for slice, so that this procedure operates on the entire
  ## ``arg``, and not just on a part of it.
  runnableExamples:
      var a = [1, 2, 3, 4, 5]
      a.rotateLeft(2)
      doAssert a == [3, 4, 5, 1, 2]
  let arglen = arg.len
  let distLeft = ((dist mod arglen) + arglen) mod arglen
  arg.rotateInternal(0, distLeft, arglen)

proc rotatedLeft*[T](arg: openarray[T]; slice: HSlice[int, int], dist: int): seq[T] =
  ## Same as ``rotateLeft``, just with the difference that it does
  ## not modify the argument. It creates a new ``seq`` instead.
  let sliceLen = slice.b + 1 - slice.a
  let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
  arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1)

proc rotatedLeft*[T](arg: openarray[T]; dist: int): seq[T] =
  ## Same as ``rotateLeft``, just with the difference that it does
  ## not modify the argument. It creates a new ``seq`` instead.
  let arglen = arg.len
  let distLeft = ((dist mod arglen) + arglen) mod arglen
  arg.rotatedInternal(0, distLeft, arg.len)

when isMainModule:
  var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  let list2 = list.rotatedLeft(1 ..< 9, 3)
  let expected = [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]

  doAssert list.rotateLeft(1 ..< 9, 3) == 6
  doAssert list == expected
  doAssert list2 == @expected

  var s0,s1,s2,s3,s4,s5 = "xxxabcdefgxxx"

  doAssert s0.rotateLeft(3 ..< 10, 3) == 7
  doAssert s0 == "xxxdefgabcxxx"
  doAssert s1.rotateLeft(3 ..< 10, 2) == 8
  doAssert s1 == "xxxcdefgabxxx"
  doAssert s2.rotateLeft(3 ..< 10, 4) == 6
  doAssert s2 == "xxxefgabcdxxx"
  doAssert s3.rotateLeft(3 ..< 10, -3) == 6
  doAssert s3 == "xxxefgabcdxxx"
  doAssert s4.rotateLeft(3 ..< 10, -10) == 6
  doAssert s4 == "xxxefgabcdxxx"
  doAssert s5.rotateLeft(3 ..< 10, 11) == 6
  doAssert s5 == "xxxefgabcdxxx"

  block product:
    doAssert product(newSeq[seq[int]]()) == newSeq[seq[int]](), "empty input"
    doAssert product(@[newSeq[int](), @[], @[]]) == newSeq[seq[int]](), "bit more empty input"
    doAssert product(@[@[1,2]]) == @[@[1,2]], "a simple case of one element"
    doAssert product(@[@[1,2], @[3,4]]) == @[@[2,4],@[1,4],@[2,3],@[1,3]], "two elements"
    doAssert product(@[@[1,2], @[3,4], @[5,6]]) == @[@[2,4,6],@[1,4,6],@[2,3,6],@[1,3,6], @[2,4,5],@[1,4,5],@[2,3,5],@[1,3,5]], "three elements"
    doAssert product(@[@[1,2], @[]]) == newSeq[seq[int]](), "two elements, but one empty"

  block lowerBound:
    doAssert lowerBound([1,2,4], 3, system.cmp[int]) == 2
    doAssert lowerBound([1,2,2,3], 4, system.cmp[int]) == 4
    doAssert lowerBound([1,2,3,10], 11) == 4

  block upperBound:
    doAssert upperBound([1,2,4], 3, system.cmp[int]) == 2
    doAssert upperBound([1,2,2,3], 3, system.cmp[int]) == 4
    doAssert upperBound([1,2,3,5], 3) == 3

  block fillEmptySeq:
    var s = newSeq[int]()
    s.fill(0)

  block testBinarySearch:
    var noData: seq[int]
    doAssert binarySearch(noData, 7) == -1
    let oneData = @[1]
    doAssert binarySearch(oneData, 1) == 0
    doAssert binarySearch(onedata, 7) == -1
    let someData = @[1,3,4,7]
    doAssert binarySearch(someData, 1) == 0
    doAssert binarySearch(somedata, 7) == 3
    doAssert binarySearch(someData, -1) == -1
    doAssert binarySearch(someData, 5) == -1
    doAssert binarySearch(someData, 13) == -1
    let moreData = @[1,3,5,7,4711]
    doAssert binarySearch(moreData, -1) == -1
    doAssert binarySearch(moreData,  1) == 0
    doAssert binarySearch(moreData,  5) == 2
    doAssert binarySearch(moreData,  6) == -1
    doAssert binarySearch(moreData,  4711) == 4
    doAssert binarySearch(moreData,  4712) == -1