summary refs log tree commit diff stats
path: root/lib/pure/basic3d.nim
blob: f7a9c237cee7f5bd648063a42b4b72b9c0704cfd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16<
discard """
  errormsg: "type mismatch: got <int literal(3)>"
  file: "tinout.nim"
  line: 12
"""
# Test in out checking for parameters

proc abc(x: var int) =
    x = 0

proc b() =
    abc(3) #ERROR

b()
> 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
#
#
#            Nim's Runtime Library
#        (c) Copyright 2013 Robert Persson
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

import math
import strutils
import times


## Basic 3d support with vectors, points, matrices and some basic utilities.
## Vectors are implemented as direction vectors, ie. when transformed with a matrix
## the translation part of matrix is ignored. The coordinate system used is
## right handed, because its compatible with 2d coordinate system (rotation around
## zaxis equals 2d rotation).
## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented
## for vectors and scalars.
##
##
## Quick start example:
##
## .. code-block:: nim
##
##   # Create a matrix which first rotates, then scales and at last translates
##
##   var m:Matrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
##
##   # Create a 3d point at (100,150,200) and a vector (5,2,3)
##
##   var pt:Point3d=point3d(100.0,150.0,200.0)
##
##   var vec:Vector3d=vector3d(5.0,2.0,3.0)
##
##
##   pt &= m # transforms pt in place
##
##   var pt2:Point3d=pt & m #concatenates pt with m and returns a new point
##
##   var vec2:Vector3d=vec & m #concatenates vec with m and returns a new vector



type
  Matrix3d* =object
    ## Implements a row major 3d matrix, which means
    ## transformations are applied the order they are concatenated.
    ## This matrix is stored as an 4x4 matrix:
    ## [ ax ay az aw ]
    ## [ bx by bz bw ]
    ## [ cx cy cz cw ]
    ## [ tx ty tz tw ]
    ax*,ay*,az*,aw*,  bx*,by*,bz*,bw*,  cx*,cy*,cz*,cw*,  tx*,ty*,tz*,tw*:float
  Point3d* = object
    ## Implements a non-homogeneous 3d point stored as
    ## an `x` , `y` and `z` coordinate.
    x*,y*,z*:float
  Vector3d* = object
    ## Implements a 3d **direction vector** stored as
    ## an `x` , `y` and `z` coordinate. Direction vector means,
    ## that when transforming a vector with a matrix, the translational
    ## part of the matrix is ignored.
    x*,y*,z*:float
{.deprecated: [TMatrix3d: Matrix3d, TPoint3d: Point3d, TVector3d: Vector3d].}


# Some forward declarations
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d {.noInit.}
  ## Creates a new 4x4 3d transformation matrix.
  ## `ax` , `ay` , `az` is the local x axis.
  ## `bx` , `by` , `bz` is the local y axis.
  ## `cx` , `cy` , `cz` is the local z axis.
  ## `tx` , `ty` , `tz` is the translation.
proc vector3d*(x,y,z:float):Vector3d {.noInit,inline.}
  ## Returns a new 3d vector (`x`,`y`,`z`)
proc point3d*(x,y,z:float):Point3d {.noInit,inline.}
  ## Returns a new 4d point (`x`,`y`,`z`)
proc tryNormalize*(v:var Vector3d):bool
  ## Modifies `v` to have a length of 1.0, keeping its angle.
  ## If `v` has zero length (and thus no angle), it is left unmodified and false is
  ## returned, otherwise true is returned.



let
  IDMATRIX*:Matrix3d=matrix3d(
    1.0,0.0,0.0,0.0,
    0.0,1.0,0.0,0.0,
    0.0,0.0,1.0,0.0,
    0.0,0.0,0.0,1.0)
    ## Quick access to a 3d identity matrix
  ORIGO*:Point3d=point3d(0.0,0.0,0.0)
    ## Quick access to point (0,0)
  XAXIS*:Vector3d=vector3d(1.0,0.0,0.0)
    ## Quick access to an 3d x-axis unit vector
  YAXIS*:Vector3d=vector3d(0.0,1.0,0.0)
    ## Quick access to an 3d y-axis unit vector
  ZAXIS*:Vector3d=vector3d(0.0,0.0,1.0)
    ## Quick access to an 3d z-axis unit vector



# ***************************************
#     Private utils
# ***************************************

proc rtos(val:float):string=
  return formatFloat(val,ffDefault,0)

proc safeArccos(v:float):float=
  ## assumes v is in range 0.0-1.0, but clamps
  ## the value to avoid out of domain errors
  ## due to rounding issues
  return arccos(clamp(v,-1.0,1.0))

template makeBinOpVector(s:expr)=
  proc s*(a,b:Vector3d):Vector3d {.inline,noInit.} =
    vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
  proc s*(a:Vector3d,b:float):Vector3d {.inline,noInit.}  =
    vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
  proc s*(a:float,b:Vector3d):Vector3d {.inline,noInit.}  =
    vector3d(s(a,b.x),s(a,b.y),s(a,b.z))

template makeBinOpAssignVector(s:expr)=
  proc s*(a:var Vector3d,b:Vector3d) {.inline.} =
    s(a.x,b.x); s(a.y,b.y); s(a.z,b.z)
  proc s*(a:var Vector3d,b:float) {.inline.} =
    s(a.x,b); s(a.y,b); s(a.z,b)



# ***************************************
#     Matrix3d implementation
# ***************************************

proc setElements*(t:var Matrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
  ## Sets arbitrary elements in an exisitng matrix.
  t.ax=ax
  t.ay=ay
  t.az=az
  t.aw=aw
  t.bx=bx
  t.by=by
  t.bz=bz
  t.bw=bw
  t.cx=cx
  t.cy=cy
  t.cz=cz
  t.cw=cw
  t.tx=tx
  t.ty=ty
  t.tz=tz
  t.tw=tw

proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):Matrix3d =
  result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw)

proc `&`*(a,b:Matrix3d):Matrix3d {.noinit.} =
  ## Concatenates matrices returning a new matrix.
  result.setElements(
    a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax,
    a.aw*b.ty+a.az*b.cy+a.ay*b.by+a.ax*b.ay,
    a.aw*b.tz+a.az*b.cz+a.ay*b.bz+a.ax*b.az,
    a.aw*b.tw+a.az*b.cw+a.ay*b.bw+a.ax*b.aw,

    a.bw*b.tx+a.bz*b.cx+a.by*b.bx+a.bx*b.ax,
    a.bw*b.ty+a.bz*b.cy+a.by*b.by+a.bx*b.ay,
    a.bw*b.tz+a.bz*b.cz+a.by*b.bz+a.bx*b.az,
    a.bw*b.tw+a.bz*b.cw+a.by*b.bw+a.bx*b.aw,

    a.cw*b.tx+a.cz*b.cx+a.cy*b.bx+a.cx*b.ax,
    a.cw*b.ty+a.cz*b.cy+a.cy*b.by+a.cx*b.ay,
    a.cw*b.tz+a.cz*b.cz+a.cy*b.bz+a.cx*b.az,
    a.cw*b.tw+a.cz*b.cw+a.cy*b.bw+a.cx*b.aw,

    a.tw*b.tx+a.tz*b.cx+a.ty*b.bx+a.tx*b.ax,
    a.tw*b.ty+a.tz*b.cy+a.ty*b.by+a.tx*b.ay,
    a.tw*b.tz+a.tz*b.cz+a.ty*b.bz+a.tx*b.az,
    a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw)


proc scale*(s:float):Matrix3d {.noInit.} =
  ## Returns a new scaling matrix.
  result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1)

proc scale*(s:float,org:Point3d):Matrix3d {.noInit.} =
  ## Returns a new scaling matrix using, `org` as scale origin.
  result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0,
    org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0)

proc stretch*(sx,sy,sz:float):Matrix3d {.noInit.} =
  ## Returns new a stretch matrix, which is a
  ## scale matrix with non uniform scale in x,y and z.
  result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1)

proc stretch*(sx,sy,sz:float,org:Point3d):Matrix3d {.noInit.} =
  ## Returns a new stretch matrix, which is a
  ## scale matrix with non uniform scale in x,y and z.
  ## `org` is used as stretch origin.
  result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1)

proc move*(dx,dy,dz:float):Matrix3d {.noInit.} =
  ## Returns a new translation matrix.
  result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1)

proc move*(v:Vector3d):Matrix3d {.noInit.} =
  ## Returns a new translation matrix from a vector.
  result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1)


proc rotate*(angle:float,axis:Vector3d):Matrix3d {.noInit.}=
  ## Creates a rotation matrix that rotates `angle` radians over
  ## `axis`, which passes through origo.

  # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
  # for how this is computed

  var normax=axis
  if not normax.tryNormalize: #simplifies matrix computation below a lot
    raise newException(DivByZeroError,"Cannot rotate around zero length axis")

  let
    cs=cos(angle)
    si=sin(angle)
    omc=1.0-cs
    usi=normax.x*si
    vsi=normax.y*si
    wsi=normax.z*si
    u2=normax.x*normax.x
    v2=normax.y*normax.y
    w2=normax.z*normax.z
    uvomc=normax.x*normax.y*omc
    uwomc=normax.x*normax.z*omc
    vwomc=normax.y*normax.z*omc

  result.setElements(
    u2+(1.0-u2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
    uvomc-wsi, v2+(1.0-v2)*cs, vwomc+usi, 0.0,
    uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
    0.0,0.0,0.0,1.0)

proc rotate*(angle:float,org:Point3d,axis:Vector3d):Matrix3d {.noInit.}=
  ## Creates a rotation matrix that rotates `angle` radians over
  ## `axis`, which passes through `org`.

  # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
  # for how this is computed

  var normax=axis
  if not normax.tryNormalize: #simplifies matrix computation below a lot
    raise newException(DivByZeroError,"Cannot rotate around zero length axis")

  let
    u=normax.x
    v=normax.y
    w=normax.z
    u2=u*u
    v2=v*v
    w2=w*w
    cs=cos(angle)
    omc=1.0-cs
    si=sin(angle)
    a=org.x
    b=org.y
    c=org.z
    usi=u*si
    vsi=v*si
    wsi=w*si
    uvomc=normax.x*normax.y*omc
    uwomc=normax.x*normax.z*omc
    vwomc=normax.y*normax.z*omc

  result.setElements(
    u2+(v2+w2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
    uvomc-wsi, v2+(u2+w2)*cs, vwomc+usi, 0.0,
    uwomc+vsi, vwomc-usi, w2+(u2+v2)*cs, 0.0,
    (a*(v2+w2)-u*(b*v+c*w))*omc+(b*w-c*v)*si,
    (b*(u2+w2)-v*(a*u+c*w))*omc+(c*u-a*w)*si,
    (c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0)


proc rotateX*(angle:float):Matrix3d {.noInit.}=
  ## Creates a matrix that rotates around the x-axis with `angle` radians,
  ## which is also called a 'roll' matrix.
  let
    c=cos(angle)
    s=sin(angle)
  result.setElements(
    1,0,0,0,
    0,c,s,0,
    0,-s,c,0,
    0,0,0,1)

proc rotateY*(angle:float):Matrix3d {.noInit.}=
  ## Creates a matrix that rotates around the y-axis with `angle` radians,
  ## which is also called a 'pitch' matrix.
  let
    c=cos(angle)
    s=sin(angle)
  result.setElements(
    c,0,-s,0,
    0,1,0,0,
    s,0,c,0,
    0,0,0,1)

proc rotateZ*(angle:float):Matrix3d {.noInit.}=
  ## Creates a matrix that rotates around the z-axis with `angle` radians,
  ## which is also called a 'yaw' matrix.
  let
    c=cos(angle)
    s=sin(angle)
  result.setElements(
    c,s,0,0,
    -s,c,0,0,
    0,0,1,0,
    0,0,0,1)

proc isUniform*(m:Matrix3d,tol=1.0e-6):bool=
  ## Checks if the transform is uniform, that is
  ## perpendicular axes of equal length, which means (for example)
  ## it cannot transform a sphere into an ellipsoid.
  ## `tol` is used as tolerance for both equal length comparison
  ## and perpendicular comparison.

  #dot product=0 means perpendicular coord. system, check xaxis vs yaxis and  xaxis vs zaxis
  if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and # x vs y
    abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol and #x vs z
    abs(m.bx*m.cx+m.by*m.cy+m.bz*m.cz)<=tol: #y vs z

    #subtract squared lengths of axes to check if uniform scaling:
    let
      sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az)
      sqylen=(m.bx*m.bx+m.by*m.by+m.bz*m.bz)
      sqzlen=(m.cx*m.cx+m.cy*m.cy+m.cz*m.cz)
    if abs(sqxlen-sqylen)<=tol and abs(sqxlen-sqzlen)<=tol:
      return true
  return false



proc mirror*(planeperp:Vector3d):Matrix3d {.noInit.}=
  ## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
  ## and passes through origo. `planeperp` does not need to be normalized.

  # https://en.wikipedia.org/wiki/Transformation_matrix
  var n=planeperp
  if not n.tryNormalize:
    raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")

  let
    a=n.x
    b=n.y
    c=n.z
    ab=a*b
    ac=a*c
    bc=b*c

  result.setElements(
    1-2*a*a , -2*ab,-2*ac,0,
    -2*ab , 1-2*b*b, -2*bc, 0,
    -2*ac, -2*bc, 1-2*c*c,0,
    0,0,0,1)


proc mirror*(org:Point3d,planeperp:Vector3d):Matrix3d {.noInit.}=
  ## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
  ## and passes through `org`. `planeperp` does not need to be normalized.

  # constructs a mirror M like the simpler mirror matrix constructor
  # above but premultiplies with the inverse traslation of org
  # and postmultiplies with the translation of org.
  # With some fiddling this becomes reasonably simple:
  var n=planeperp
  if not n.tryNormalize:
    raise newException(DivByZeroError,"Cannot mirror over a plane with a zero length normal")

  let
    a=n.x
    b=n.y
    c=n.z
    ab=a*b
    ac=a*c
    bc=b*c
    aa=a*a
    bb=b*b
    cc=c*c
    tx=org.x
    ty=org.y
    tz=org.z

  result.setElements(
    1-2*aa , -2*ab,-2*ac,0,
    -2*ab , 1-2*bb, -2*bc, 0,
    -2*ac, -2*bc, 1-2*cc,0,
    2*(ac*tz+ab*ty+aa*tx),
    2*(bc*tz+bb*ty+ab*tx),
    2*(cc*tz+bc*ty+ac*tx) ,1)


proc determinant*(m:Matrix3d):float=
  ## Computes the determinant of matrix `m`.

  # This computation is gotten from ratsimp(optimize(determinant(m)))
  # in maxima CAS
  let
    O1=m.cx*m.tw-m.cw*m.tx
    O2=m.cy*m.tw-m.cw*m.ty
    O3=m.cx*m.ty-m.cy*m.tx
    O4=m.cz*m.tw-m.cw*m.tz
    O5=m.cx*m.tz-m.cz*m.tx
    O6=m.cy*m.tz-m.cz*m.ty

  return (O1*m.ay-O2*m.ax-O3*m.aw)*m.bz+
    (-O1*m.az+O4*m.ax+O5*m.aw)*m.by+
    (O2*m.az-O4*m.ay-O6*m.aw)*m.bx+
    (O3*m.az-O5*m.ay+O6*m.ax)*m.bw


proc inverse*(m:Matrix3d):Matrix3d {.noInit.}=
  ## Computes the inverse of matrix `m`. If the matrix
  ## determinant is zero, thus not invertible, a EDivByZero
  ## will be raised.

  # this computation comes from optimize(invert(m)) in maxima CAS

  let
    det=m.determinant
    O2=m.cy*m.tw-m.cw*m.ty
    O3=m.cz*m.tw-m.cw*m.tz
    O4=m.cy*m.tz-m.cz*m.ty
    O5=m.by*m.tw-m.bw*m.ty
    O6=m.bz*m.tw-m.bw*m.tz
    O7=m.by*m.tz-m.bz*m.ty
    O8=m.by*m.cw-m.bw*m.cy
    O9=m.bz*m.cw-m.bw*m.cz
    O10=m.by*m.cz-m.bz*m.cy
    O11=m.cx*m.tw-m.cw*m.tx
    O12=m.cx*m.tz-m.cz*m.tx
    O13=m.bx*m.tw-m.bw*m.tx
    O14=m.bx*m.tz-m.bz*m.tx
    O15=m.bx*m.cw-m.bw*m.cx
    O16=m.bx*m.cz-m.bz*m.cx
    O17=m.cx*m.ty-m.cy*m.tx
    O18=m.bx*m.ty-m.by*m.tx
    O19=m.bx*m.cy-m.by*m.cx

  if det==0.0:
    raise newException(DivByZeroError,"Cannot normalize zero length vector")

  result.setElements(
    (m.bw*O4+m.by*O3-m.bz*O2)/det    , (-m.aw*O4-m.ay*O3+m.az*O2)/det,
    (m.aw*O7+m.ay*O6-m.az*O5)/det    , (-m.aw*O10-m.ay*O9+m.az*O8)/det,
    (-m.bw*O12-m.bx*O3+m.bz*O11)/det , (m.aw*O12+m.ax*O3-m.az*O11)/det,
    (-m.aw*O14-m.ax*O6+m.az*O13)/det , (m.aw*O16+m.ax*O9-m.az*O15)/det,
    (m.bw*O17+m.bx*O2-m.by*O11)/det  , (-m.aw*O17-m.ax*O2+m.ay*O11)/det,
    (m.aw*O18+m.ax*O5-m.ay*O13)/det  , (-m.aw*O19-m.ax*O8+m.ay*O15)/det,
    (-m.bx*O4+m.by*O12-m.bz*O17)/det , (m.ax*O4-m.ay*O12+m.az*O17)/det,
    (-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det)


proc equals*(m1:Matrix3d,m2:Matrix3d,tol=1.0e-6):bool=
  ## Checks if all elements of `m1`and `m2` is equal within
  ## a given tolerance `tol`.
  return
    abs(m1.ax-m2.ax)<=tol and
    abs(m1.ay-m2.ay)<=tol and
    abs(m1.az-m2.az)<=tol and
    abs(m1.aw-m2.aw)<=tol and
    abs(m1.bx-m2.bx)<=tol and
    abs(m1.by-m2.by)<=tol and
    abs(m1.bz-m2.bz)<=tol and
    abs(m1.bw-m2.bw)<=tol and
    abs(m1.cx-m2.cx)<=tol and
    abs(m1.cy-m2.cy)<=tol and
    abs(m1.cz-m2.cz)<=tol and
    abs(m1.cw-m2.cw)<=tol and
    abs(m1.tx-m2.tx)<=tol and
    abs(m1.ty-m2.ty)<=tol and
    abs(m1.tz-m2.tz)<=tol and
    abs(m1.tw-m2.tw)<=tol

proc `=~`*(m1,m2:Matrix3d):bool=
  ## Checks if `m1` and `m2` is approximately equal, using a
  ## tolerance of 1e-6.
  equals(m1,m2)

proc transpose*(m:Matrix3d):Matrix3d {.noInit.}=
  ## Returns the transpose of `m`
  result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw)

proc getXAxis*(m:Matrix3d):Vector3d {.noInit.}=
  ## Gets the local x axis of `m`
  result.x=m.ax
  result.y=m.ay
  result.z=m.az

proc getYAxis*(m:Matrix3d):Vector3d {.noInit.}=
  ## Gets the local y axis of `m`
  result.x=m.bx
  result.y=m.by
  result.z=m.bz

proc getZAxis*(m:Matrix3d):Vector3d {.noInit.}=
  ## Gets the local y axis of `m`
  result.x=m.cx
  result.y=m.cy
  result.z=m.cz


proc `$`*(m:Matrix3d):string=
  ## String representation of `m`
  return rtos(m.ax) & "," & rtos(m.ay) & "," & rtos(m.az) & "," & rtos(m.aw) &
    "\n" & rtos(m.bx) & "," & rtos(m.by) & "," & rtos(m.bz) & "," & rtos(m.bw) &
    "\n" & rtos(m.cx) & "," & rtos(m.cy) & "," & rtos(m.cz) & "," & rtos(m.cw) &
    "\n" & rtos(m.tx) & "," & rtos(m.ty) & "," & rtos(m.tz) & "," & rtos(m.tw)

proc apply*(m:Matrix3d, x,y,z:var float, translate=false)=
  ## Applies transformation `m` onto `x` , `y` , `z` , optionally
  ## using the translation part of the matrix.
  let
    oldx=x
    oldy=y
    oldz=z

  x=m.cx*oldz+m.bx*oldy+m.ax*oldx
  y=m.cy*oldz+m.by*oldy+m.ay*oldx
  z=m.cz*oldz+m.bz*oldy+m.az*oldx

  if translate:
    x+=m.tx
    y+=m.ty
    z+=m.tz

# ***************************************
#     Vector3d implementation
# ***************************************
proc vector3d*(x,y,z:float):Vector3d=
  result.x=x
  result.y=y
  result.z=z

proc len*(v:Vector3d):float=
  ## Returns the length of the vector `v`.
  sqrt(v.x*v.x+v.y*v.y+v.z*v.z)

proc `len=`*(v:var Vector3d,newlen:float) {.noInit.} =
  ## Sets the length of the vector, keeping its direction.
  ## If the vector has zero length before changing it's length,
  ## an arbitrary vector of the requested length is returned.

  let fac=newlen/v.len

  if newlen==0.0:
    v.x=0.0
    v.y=0.0
    v.z=0.0
    return

  if fac==Inf or fac==NegInf:
    #to short for float accuracy
    #do as good as possible:
    v.x=newlen
    v.y=0.0
    v.z=0.0
  else:
    v.x*=fac
    v.y*=fac
    v.z*=fac


proc sqrLen*(v:Vector3d):float {.inline.}=
  ## Computes the squared length of the vector, which is
  ## faster than computing the absolute length.
  return v.x*v.x+v.y*v.y+v.z*v.z

proc `$` *(v:Vector3d):string=
  ## String representation of `v`
  result=rtos(v.x)
  result.add(",")
  result.add(rtos(v.y))
  result.add(",")
  result.add(rtos(v.z))

proc `&` *(v:Vector3d,m:Matrix3d):Vector3d {.noInit.} =
  ## Concatenate vector `v` with a transformation matrix.
  ## Transforming a vector ignores the translational part
  ## of the matrix.

  #               | AX AY AZ AW |
  # | X Y Z 1 | * | BX BY BZ BW |
  #               | CX CY CZ CW |
  #               | 0  0  0  1 |
  let
    newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
    newy=m.cy*v.z+m.by*v.y+m.ay*v.x
  result.z=m.cz*v.z+m.bz*v.y+m.az*v.x
  result.y=newy
  result.x=newx


proc `&=` *(v:var Vector3d,m:Matrix3d) {.noInit.} =
  ## Applies transformation `m` onto `v` in place.
  ## Transforming a vector ignores the translational part
  ## of the matrix.

  #               | AX AY AZ AW |
  # | X Y Z 1 | * | BX BY BZ BW |
  #               | CX CY CZ CW |
  #               | 0  0  0  1  |

  let
    newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
    newy=m.cy*v.z+m.by*v.y+m.ay*v.x
  v.z=m.cz*v.z+m.bz*v.y+m.az*v.x
  v.y=newy
  v.x=newx

proc transformNorm*(v:var Vector3d,m:Matrix3d)=
  ## Applies a normal direction transformation `m` onto `v` in place.
  ## The resulting vector is *not* normalized.  Transforming a vector ignores the
  ## translational part of the matrix. If the matrix is not invertible
  ## (determinant=0), an EDivByZero will be raised.

  # transforming a normal is done by transforming
  # by the transpose of the inverse of the original matrix

  # Major reason this simple function is here is that this function can be optimized in the future,
  # (possibly by hardware) as well as having a consistent API with the 2d version.
  v&=transpose(inverse(m))

proc transformInv*(v:var Vector3d,m:Matrix3d)=
  ## Applies the inverse of `m` on vector `v`. Transforming a vector ignores
  ## the translational part of the matrix.  Transforming a vector ignores the
  ## translational part of the matrix.
  ## If the matrix is not invertible (determinant=0), an EDivByZero
  ## will be raised.

  # Major reason this simple function is here is that this function can be optimized in the future,
  # (possibly by hardware) as well as having a consistent API with the 2d version.
  v&=m.inverse

proc transformNormInv*(vec:var Vector3d,m:Matrix3d)=
  ## Applies an inverse normal direction transformation `m` onto `v` in place.
  ## This is faster than creating an inverse
  ## matrix and transformNorm(...) it. Transforming a vector ignores the
  ## translational part of the matrix.

  # see vector2d:s equivalent for a deeper look how/why this works
  vec&=m.transpose

proc tryNormalize*(v:var Vector3d):bool=
  ## Modifies `v` to have a length of 1.0, keeping its angle.
  ## If `v` has zero length (and thus no angle), it is left unmodified and false is
  ## returned, otherwise true is returned.
  let mag=v.len

  if mag==0.0:
    return false

  v.x/=mag
  v.y/=mag
  v.z/=mag

  return true

proc normalize*(v:var Vector3d) {.inline.}=
  ## Modifies `v` to have a length of 1.0, keeping its angle.
  ## If  `v` has zero length, an EDivByZero will be raised.
  if not tryNormalize(v):
    raise newException(DivByZeroError,"Cannot normalize zero length vector")

proc rotate*(vec:var Vector3d,angle:float,axis:Vector3d)=
  ## Rotates `vec` in place, with `angle` radians over `axis`, which passes
  ## through origo.

  # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
  # for how this is computed

  var normax=axis
  if not normax.tryNormalize:
    raise newException(DivByZeroError,"Cannot rotate around zero length axis")

  let
    cs=cos(angle)
    si=sin(angle)
    omc=1.0-cs
    u=normax.x
    v=normax.y
    w=normax.z
    x=vec.x
    y=vec.y
    z=vec.z
    uxyzomc=(u*x+v*y+w*z)*omc

  vec.x=u*uxyzomc+x*cs+(v*z-w*y)*si
  vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si
  vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si

proc scale*(v:var Vector3d,s:float)=
  ## Scales the vector in place with factor `s`
  v.x*=s
  v.y*=s
  v.z*=s

proc stretch*(v:var Vector3d,sx,sy,sz:float)=
  ## Scales the vector non uniformly with factors `sx` , `sy` , `sz`
  v.x*=sx
  v.y*=sy
  v.z*=sz

proc mirror*(v:var Vector3d,planeperp:Vector3d)=
  ## Computes the mirrored vector of `v` over the plane
  ## that has `planeperp` as normal direction.
  ## `planeperp` does not need to be normalized.

  var n=planeperp
  n.normalize

  let
    x=v.x
    y=v.y
    z=v.z
    a=n.x
    b=n.y
    c=n.z
    ac=a*c
    ab=a*b
    bc=b*c

  v.x= -2*(ac*z+ab*y+a*a*x)+x
  v.y= -2*(bc*z+b*b*y+ab*x)+y
  v.z= -2*(c*c*z+bc*y+ac*x)+z


proc `-` *(v:Vector3d):Vector3d=
  ## Negates a vector
  result.x= -v.x
  result.y= -v.y
  result.z= -v.z

# declare templated binary operators
makeBinOpVector(`+`)
makeBinOpVector(`-`)
makeBinOpVector(`*`)
makeBinOpVector(`/`)
makeBinOpAssignVector(`+=`)
makeBinOpAssignVector(`-=`)
makeBinOpAssignVector(`*=`)
makeBinOpAssignVector(`/=`)

proc dot*(v1,v2:Vector3d):float {.inline.}=
  ## Computes the dot product of two vectors.
  ## Returns 0.0 if the vectors are perpendicular.
  return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z

proc cross*(v1,v2:Vector3d):Vector3d {.inline.}=
  ## Computes the cross product of two vectors.
  ## The result is a vector which is perpendicular
  ## to the plane of `v1` and `v2`, which means
  ## cross(xaxis,yaxis)=zaxis. The magnitude of the result is
  ## zero if the vectors are colinear.
  result.x = (v1.y * v2.z) - (v2.y * v1.z)
  result.y = (v1.z * v2.x) - (v2.z * v1.x)
  result.z = (v1.x * v2.y) - (v2.x * v1.y)

proc equals*(v1,v2:Vector3d,tol=1.0e-6):bool=
  ## Checks if two vectors approximately equals with a tolerance.
  return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol

proc `=~` *(v1,v2:Vector3d):bool=
  ## Checks if two vectors approximately equals with a
  ## hardcoded tolerance 1e-6
  equals(v1,v2)

proc angleTo*(v1,v2:Vector3d):float=
  ## Returns the smallest angle between v1 and v2,
  ## which is in range 0-PI
  var
    nv1=v1
    nv2=v2
  if not nv1.tryNormalize or not nv2.tryNormalize:
    return 0.0 # zero length vector has zero angle to any other vector
  return safeArccos(dot(nv1,nv2))

proc arbitraryAxis*(norm:Vector3d):Matrix3d {.noInit.}=
  ## Computes the rotation matrix that would transform
  ## world z vector into `norm`. The inverse of this matrix
  ## is useful to transform a planar 3d object to 2d space.
  ## This is the same algorithm used to interpret DXF and DWG files.
  const lim=1.0/64.0
  var ax,ay,az:Vector3d
  if abs(norm.x)<lim and abs(norm.y)<lim:
    ax=cross(YAXIS,norm)
  else:
    ax=cross(ZAXIS,norm)

  ax.normalize()
  ay=cross(norm,ax)
  ay.normalize()
  az=cross(ax,ay)

  result.setElements(
    ax.x,ax.y,ax.z,0.0,
    ay.x,ay.y,ay.z,0.0,
    az.x,az.y,az.z,0.0,
    0.0,0.0,0.0,1.0)

proc bisect*(v1,v2:Vector3d):Vector3d {.noInit.}=
  ## Computes the bisector between v1 and v2 as a normalized vector.
  ## If one of the input vectors has zero length, a normalized version
  ## of the other is returned. If both input vectors has zero length,
  ## an arbitrary normalized vector `v1` is returned.
  var
    vmag1=v1.len
    vmag2=v2.len

  # zero length vector equals arbitrary vector, just change
  # magnitude to one to avoid zero division
  if vmag1==0.0:
    if vmag2==0: #both are zero length return any normalized vector
      return XAXIS
    vmag1=1.0
  if vmag2==0.0: vmag2=1.0

  let
    x1=v1.x/vmag1
    y1=v1.y/vmag1
    z1=v1.z/vmag1
    x2=v2.x/vmag2
    y2=v2.y/vmag2
    z2=v2.z/vmag2

  result.x=(x1 + x2) * 0.5
  result.y=(y1 + y2) * 0.5
  result.z=(z1 + z2) * 0.5

  if not result.tryNormalize():
    # This can happen if vectors are colinear. In this special case
    # there are actually inifinitely many bisectors, we select just
    # one of them.
    result=v1.cross(XAXIS)
    if result.sqrLen<1.0e-9:
      result=v1.cross(YAXIS)
      if result.sqrLen<1.0e-9:
        result=v1.cross(ZAXIS) # now we should be guaranteed to have succeeded
    result.normalize



# ***************************************
#     Point3d implementation
# ***************************************
proc point3d*(x,y,z:float):Point3d=
  result.x=x
  result.y=y
  result.z=z

proc sqrDist*(a,b:Point3d):float=
  ## Computes the squared distance between `a`and `b`
  let dx=b.x-a.x
  let dy=b.y-a.y
  let dz=b.z-a.z
  result=dx*dx+dy*dy+dz*dz

proc dist*(a,b:Point3d):float {.inline.}=
  ## Computes the absolute distance between `a`and `b`
  result=sqrt(sqrDist(a,b))

proc `$` *(p:Point3d):string=
  ## String representation of `p`
  result=rtos(p.x)
  result.add(",")
  result.add(rtos(p.y))
  result.add(",")
  result.add(rtos(p.z))

proc `&`*(p:Point3d,m:Matrix3d):Point3d=
  ## Concatenates a point `p` with a transform `m`,
  ## resulting in a new, transformed point.
  result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz
  result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty
  result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx

proc `&=` *(p:var Point3d,m:Matrix3d)=
  ## Applies transformation `m` onto `p` in place.
  let
    x=p.x
    y=p.y
    z=p.z
  p.x=m.cx*z+m.bx*y+m.ax*x+m.tx
  p.y=m.cy*z+m.by*y+m.ay*x+m.ty
  p.z=m.cz*z+m.bz*y+m.az*x+m.tz

proc transformInv*(p:var Point3d,m:Matrix3d)=
  ## Applies the inverse of transformation `m` onto `p` in place.
  ## If the matrix is not invertable (determinant=0) , EDivByZero will
  ## be raised.

  # can possibly be more optimized in the future so use this function when possible
  p&=inverse(m)


proc `+`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
  ## Adds a vector `v` to a point `p`, resulting
  ## in a new point.
  result.x=p.x+v.x
  result.y=p.y+v.y
  result.z=p.z+v.z

proc `+=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
  ## Adds a vector `v` to a point `p` in place.
  p.x+=v.x
  p.y+=v.y
  p.z+=v.z

proc `-`*(p:Point3d,v:Vector3d):Point3d {.noInit,inline.} =
  ## Subtracts a vector `v` from a point `p`, resulting
  ## in a new point.
  result.x=p.x-v.x
  result.y=p.y-v.y
  result.z=p.z-v.z

proc `-`*(p1,p2:Point3d):Vector3d {.noInit,inline.} =
  ## Subtracts `p2`from `p1` resulting in a difference vector.
  result.x=p1.x-p2.x
  result.y=p1.y-p2.y
  result.z=p1.z-p2.z

proc `-=`*(p:var Point3d,v:Vector3d) {.noInit,inline.} =
  ## Subtracts a vector `v` from a point `p` in place.
  p.x-=v.x
  p.y-=v.y
  p.z-=v.z

proc equals(p1,p2:Point3d,tol=1.0e-6):bool {.inline.}=
  ## Checks if two points approximately equals with a tolerance.
  return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol

proc `=~`*(p1,p2:Point3d):bool {.inline.}=
  ## Checks if two vectors approximately equals with a
  ## hardcoded tolerance 1e-6
  equals(p1,p2)

proc rotate*(p:var Point3d,rad:float,axis:Vector3d)=
  ## Rotates point `p` in place `rad` radians about an axis
  ## passing through origo.

  var v=vector3d(p.x,p.y,p.z)
  v.rotate(rad,axis) # reuse this code here since doing the same thing and quite complicated
  p.x=v.x
  p.y=v.y
  p.z=v.z

proc rotate*(p:var Point3d,angle:float,org:Point3d,axis:Vector3d)=
  ## Rotates point `p` in place `rad` radians about an axis
  ## passing through `org`

  # see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
  # for how this is computed

  var normax=axis
  normax.normalize

  let
    cs=cos(angle)
    omc=1.0-cs
    si=sin(angle)
    u=normax.x
    v=normax.y
    w=normax.z
    a=org.x
    b=org.y
    c=org.z
    x=p.x
    y=p.y
    z=p.z
    uu=u*u
    vv=v*v
    ww=w*w
    ux=u*p.x
    vy=v*p.y
    wz=w*p.z
    au=a*u
    bv=b*v
    cw=c*w
    uxmvymwz=ux-vy-wz

  p.x=(a*(vv+ww)-u*(bv+cw-uxmvymwz))*omc + x*cs + (b*w+v*z-c*v-w*y)*si
  p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si
  p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si

proc scale*(p:var Point3d,fac:float) {.inline.}=
  ## Scales a point in place `fac` times with world origo as origin.
  p.x*=fac
  p.y*=fac
  p.z*=fac

proc scale*(p:var Point3d,fac:float,org:Point3d){.inline.}=
  ## Scales the point in place `fac` times with `org` as origin.
  p.x=(p.x - org.x) * fac + org.x
  p.y=(p.y - org.y) * fac + org.y
  p.z=(p.z - org.z) * fac + org.z

proc stretch*(p:var Point3d,facx,facy,facz:float){.inline.}=
  ## Scales a point in place non uniformly `facx` , `facy` , `facz` times
  ## with world origo as origin.
  p.x*=facx
  p.y*=facy
  p.z*=facz

proc stretch*(p:var Point3d,facx,facy,facz:float,org:Point3d){.inline.}=
  ## Scales the point in place non uniformly `facx` , `facy` , `facz` times
  ## with `org` as origin.
  p.x=(p.x - org.x) * facx + org.x
  p.y=(p.y - org.y) * facy + org.y
  p.z=(p.z - org.z) * facz + org.z


proc move*(p:var Point3d,dx,dy,dz:float){.inline.}=
  ## Translates a point `dx` , `dy` , `dz` in place.
  p.x+=dx
  p.y+=dy
  p.z+=dz

proc move*(p:var Point3d,v:Vector3d){.inline.}=
  ## Translates a point with vector `v` in place.
  p.x+=v.x
  p.y+=v.y
  p.z+=v.z

proc area*(a,b,c:Point3d):float {.inline.}=
  ## Computes the area of the triangle thru points `a` , `b` and `c`

  # The area of a planar 3d quadliteral is the magnitude of the cross
  # product of two edge vectors. Taking this time 0.5 gives the triangle area.
  return cross(b-a,c-a).len*0.5