summary refs log tree commit diff stats
path: root/lib/pure/bitops.nim
blob: 855289e8469f665ae8332880a04da1770562369b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#
#
#            Nim's Runtime Library
#        (c) Copyright 2017 Nim Authors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements a series of low level methods for bit manipulation.

## By default, this module use compiler intrinsics where possible to improve performance
## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``.
##
## The module will fallback to pure nim procs incase the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: ``Javascript``, ``Nimscript``
## as well as the ``compiletime VM``.
##
## As a result of using optimized function/intrinsics some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits`
## may return undefined and/or platform dependent value if given invalid input.

import macros
import std/private/since

proc bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI", noSideEffect.}
  ## Computes the `bitwise complement` of the integer `x`.

func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".}

func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".}

func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".}

macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise and` of all arguments collectively.
  let fn = bindSym("internalBitand")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)

macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise or` of all arguments collectively.
  let fn = bindSym("internalBitor")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)

macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise xor` of all arguments collectively.
  let fn = bindSym("internalBitxor")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)

const useBuiltins = not defined(noIntrinsicsBitOpts)
const noUndefined = defined(noUndefinedBitOpts)
const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or
                         defined(clang)) and useBuiltins
const useICC_builtins = defined(icc) and useBuiltins
const useVCC_builtins = defined(vcc) and useBuiltins
const arch64 = sizeof(int) == 8

template toUnsigned(x: int8): uint8 = cast[uint8](x)
template toUnsigned(x: int16): uint16 = cast[uint16](x)
template toUnsigned(x: int32): uint32 = cast[uint32](x)
template toUnsigned(x: int64): uint64 = cast[uint64](x)
template toUnsigned(x: int): uint = cast[uint](x)

template forwardImpl(impl, arg) {.dirty.} =
  when sizeof(x) <= 4:
    when x is SomeSignedInt:
      impl(cast[uint32](x.int32))
    else:
      impl(x.uint32)
  else:
    when x is SomeSignedInt:
      impl(cast[uint64](x.int64))
    else:
      impl(x.uint64)

when defined(nimHasalignOf):
  type BitsRange*[T] = range[0..sizeof(T)*8-1]
    ## A range with all bit positions for type ``T``

  func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Returns an extracted (and shifted) slice of bits from ``v``.
    runnableExamples:
      doAssert 0b10111.bitsliced(2 .. 4) == 0b101
      doAssert 0b11100.bitsliced(0 .. 2) == 0b100
      doAssert 0b11100.bitsliced(0 ..< 3) == 0b100

    let
      upmost = sizeof(T) * 8 - 1
      uv     = when v is SomeUnsignedInt: v else: v.toUnsigned
    (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T

  proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
    ## Mutates ``v`` into an extracted (and shifted) slice of bits from ``v``.
    runnableExamples:
      var x = 0b101110
      x.bitslice(2 .. 4)
      doAssert x == 0b011

    let
      upmost = sizeof(T) * 8 - 1
      uv     = when v is SomeUnsignedInt: v else: v.toUnsigned
    v = (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T

  func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Creates a bitmask based on a slice of bits.
    runnableExamples:
      doAssert toMask[int32](1 .. 3) == 0b1110'i32
      doAssert toMask[int32](0 .. 3) == 0b1111'i32

    let
      upmost = sizeof(T) * 8 - 1
      bitmask = when T is SomeUnsignedInt:
                  bitnot(0.T)
                else:
                  bitnot(0.T).toUnsigned
    (bitmask shl (upmost - slice.b + slice.a) shr (upmost - slice.b)).T

  proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with only the ``1`` bits from ``mask`` matching those of
    ## ``v`` set to 1.
    ##
    ## Effectively maps to a `bitand` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8

    bitand(v, mask)

  func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Mutates ``v``, with only the ``1`` bits in the range of ``slice``
    ## matching those of ``v`` set to 1.
    ##
    ## Effectively maps to a `bitand` operation.
    runnableExamples:
      var v = 0b0000_1011'u8
      doAssert v.masked(1 .. 3) == 0b0000_1010'u8

    bitand(v, toMask[T](slice))

  proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} =
    ## Mutates ``v``, with only the ``1`` bits from ``mask`` matching those of
    ## ``v`` set to 1.
    ##
    ## Effectively maps to a `bitand` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      v.mask(0b0000_1010'u8)
      doAssert v == 0b0000_0010'u8

    v = bitand(v, mask)

  proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
    ## Mutates ``v``, with only the ``1`` bits in the range of ``slice``
    ## matching those of ``v`` set to 1.
    ##
    ## Effectively maps to a `bitand` operation.
    runnableExamples:
      var v = 0b0000_1011'u8
      v.mask(1 .. 3)
      doAssert v == 0b0000_1010'u8

    v = bitand(v, toMask[T](slice))

  func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 1.
    ##
    ## Effectively maps to a `bitor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8

    bitor(v, mask)

  func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 1.
    ##
    ## Effectively maps to a `bitor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8

    bitor(v, toMask[T](slice))

  proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
    ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 1.
    ##
    ## Effectively maps to a `bitor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      v.setMask(0b0000_1010'u8)
      doAssert v == 0b0000_1011'u8

    v = bitor(v, mask)

  proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
    ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 1.
    ##
    ## Effectively maps to a `bitor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      v.setMask(2 .. 3)
      doAssert v == 0b0000_1111'u8

    v = bitor(v, toMask[T](slice))

  func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 0.
    ##
    ## Effectively maps to a `bitand` operation with an *inverted mask.*
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8

    bitand(v, bitnot(mask))

  func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 0.
    ##
    ## Effectively maps to a `bitand` operation with an *inverted mask.*
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8

    bitand(v, bitnot(toMask[T](slice)))

  proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
    ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 0.
    ##
    ## Effectively maps to a `bitand` operation with an *inverted mask.*
    runnableExamples:
      var v = 0b0000_0011'u8
      v.clearMask(0b0000_1010'u8)
      doAssert v == 0b0000_0001'u8

    v = bitand(v, bitnot(mask))

  proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
    ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 0.
    ##
    ## Effectively maps to a `bitand` operation with an *inverted mask.*
    runnableExamples:
      var v = 0b0000_0011'u8
      v.clearMask(1 .. 3)
      doAssert v == 0b0000_0001'u8

    v = bitand(v, bitnot(toMask[T](slice)))

  func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits from ``mask`` flipped.
    ##
    ## Effectively maps to a `bitxor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8

    bitxor(v, mask)

  func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
    ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` flipped.
    ##
    ## Effectively maps to a `bitxor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8

    bitxor(v, toMask[T](slice))

  proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
    ## Mutates ``v``, with all the ``1`` bits from ``mask`` flipped.
    ##
    ## Effectively maps to a `bitxor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      v.flipMask(0b0000_1010'u8)
      doAssert v == 0b0000_1001'u8

    v = bitxor(v, mask)

  proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
    ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` flipped.
    ##
    ## Effectively maps to a `bitxor` operation.
    runnableExamples:
      var v = 0b0000_0011'u8
      v.flipMask(1 .. 3)
      doAssert v == 0b0000_1101'u8

    v = bitxor(v, toMask[T](slice))

  proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
    ## Mutates ``v``, with the bit at position ``bit`` set to 1
    runnableExamples:
      var v = 0b0000_0011'u8
      v.setBit(5'u8)
      doAssert v == 0b0010_0011'u8

    v.setMask(1.T shl bit)

  proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
    ## Mutates ``v``, with the bit at position ``bit`` set to 0
    runnableExamples:
      var v = 0b0000_0011'u8
      v.clearBit(1'u8)
      doAssert v == 0b0000_0001'u8

    v.clearMask(1.T shl bit)

  proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
    ## Mutates ``v``, with the bit at position ``bit`` flipped
    runnableExamples:
      var v = 0b0000_0011'u8
      v.flipBit(1'u8)
      doAssert v == 0b0000_0001'u8

      v = 0b0000_0011'u8
      v.flipBit(2'u8)
      doAssert v == 0b0000_0111'u8

    v.flipMask(1.T shl bit)

  macro setBits*(v: typed; bits: varargs[typed]): untyped =
    ## Mutates ``v``, with the bits at positions ``bits`` set to 1
    runnableExamples:
      var v = 0b0000_0011'u8
      v.setBits(3, 5, 7)
      doAssert v == 0b1010_1011'u8

    bits.expectKind(nnkBracket)
    result = newStmtList()
    for bit in bits:
      result.add newCall("setBit", v, bit)

  macro clearBits*(v: typed; bits: varargs[typed]): untyped =
    ## Mutates ``v``, with the bits at positions ``bits`` set to 0
    runnableExamples:
      var v = 0b1111_1111'u8
      v.clearBits(1, 3, 5, 7)
      doAssert v == 0b0101_0101'u8

    bits.expectKind(nnkBracket)
    result = newStmtList()
    for bit in bits:
      result.add newCall("clearBit", v, bit)

  macro flipBits*(v: typed; bits: varargs[typed]): untyped =
    ## Mutates ``v``, with the bits at positions ``bits`` set to 0
    runnableExamples:
      var v = 0b0000_1111'u8
      v.flipBits(1, 3, 5, 7)
      doAssert v == 0b1010_0101'u8

    bits.expectKind(nnkBracket)
    result = newStmtList()
    for bit in bits:
      result.add newCall("flipBit", v, bit)


  proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} =
    ## Returns true if the bit in ``v`` at positions ``bit`` is set to 1
    runnableExamples:
      var v = 0b0000_1111'u8
      doAssert v.testBit(0)
      doAssert not v.testBit(7)

    let mask = 1.T shl bit
    return (v and mask) == mask

# #### Pure Nim version ####

proc firstSetBitNim(x: uint32): int {.inline, noSideEffect.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
    25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
  var v = x.uint32
  var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
  result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int

proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  var v = uint64(x)
  var k = uint32(v and 0xFFFFFFFF'u32)
  if k == 0:
    k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
    result = 32
  else:
    result = 0
  result += firstSetBitNim(k)

proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} =
  ## Quickly find the log base 2 of a 32-bit or less integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
    22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
  var v = x.uint32
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int

proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} =
  ## Quickly find the log base 2 of a 64-bit integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
    33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
    57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
    35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
  var v = x.uint64
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  v = v or v shr 32
  result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int

# sets.nim cannot import bitops, but bitops can use include
# system/sets to eliminate code duplication. sets.nim defines
# countBits32 and countBits64.
include system/sets

template countSetBitsNim(n: uint32): int = countBits32(n)
template countSetBitsNim(n: uint64): int = countBits64(n)

template parityImpl[T](value: T): int =
  # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
  var v = value
  when sizeof(T) == 8:
    v = v xor (v shr 32)
  when sizeof(T) >= 4:
    v = v xor (v shr 16)
  when sizeof(T) >= 2:
    v = v xor (v shr 8)
  v = v xor (v shr 4)
  v = v and 0xf
  ((0x6996'u shr v) and 1).int


when useGCC_builtins:
  # Returns the number of set 1-bits in value.
  proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.}
  proc builtin_popcountll(x: culonglong): cint {.
      importc: "__builtin_popcountll", cdecl.}

  # Returns the bit parity in value
  proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
  proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}

  # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
  proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
  proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
  proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}

  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
  proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}

elif useVCC_builtins:
  # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer.
  proc builtin_popcnt16(a2: uint16): uint16 {.
      importc: "__popcnt16", header: "<intrin.h>", noSideEffect.}
  proc builtin_popcnt32(a2: uint32): uint32 {.
      importc: "__popcnt", header: "<intrin.h>", noSideEffect.}
  proc builtin_popcnt64(a2: uint64): uint64 {.
      importc: "__popcnt64", header: "<intrin.h>", noSideEffect.}

  # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
  proc bitScanReverse(index: ptr culong, mask: culong): cuchar {.
      importc: "_BitScanReverse", header: "<intrin.h>", noSideEffect.}
  proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {.
      importc: "_BitScanReverse64", header: "<intrin.h>", noSideEffect.}

  # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
  proc bitScanForward(index: ptr culong, mask: culong): cuchar {.
      importc: "_BitScanForward", header: "<intrin.h>", noSideEffect.}
  proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {.
      importc: "_BitScanForward64", header: "<intrin.h>", noSideEffect.}

  template vcc_scan_impl(fnc: untyped; v: untyped): int =
    var index: culong
    discard fnc(index.addr, v)
    index.int

elif useICC_builtins:

  # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm
  # see also: https://software.intel.com/en-us/node/523362
  # Count the number of bits set to 1 in an integer a, and return that count in dst.
  proc builtin_popcnt32(a: cint): cint {.
      importc: "_popcnt", header: "<immintrin.h>", noSideEffect.}
  proc builtin_popcnt64(a: uint64): cint {.
      importc: "_popcnt64", header: "<immintrin.h>", noSideEffect.}

  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  proc bitScanForward(p: ptr uint32, b: uint32): cuchar {.
      importc: "_BitScanForward", header: "<immintrin.h>", noSideEffect.}
  proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {.
      importc: "_BitScanForward64", header: "<immintrin.h>", noSideEffect.}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {.
      importc: "_BitScanReverse", header: "<immintrin.h>", noSideEffect.}
  proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {.
      importc: "_BitScanReverse64", header: "<immintrin.h>", noSideEffect.}

  template icc_scan_impl(fnc: untyped; v: untyped): int =
    var index: uint32
    discard fnc(index.addr, v)
    index.int


proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Counts the set bits in integer. (also called `Hamming weight`:idx:.)
  runnableExamples:
    doAssert countSetBits(0b0000_0011'u8) == 2
    doAssert countSetBits(0b1010_1010'u8) == 4

  # TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT.
  # like GCC and MSVC
  when x is SomeSignedInt:
    let x = x.toUnsigned
  when nimvm:
    result = forwardImpl(countSetBitsNim, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int
      else: result = builtin_popcountll(x.culonglong).int
    elif useVCC_builtins:
      when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int
      elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int
      elif arch64: result = builtin_popcnt64(x.uint64).int
      else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32).int +
                     builtin_popcnt32((x.uint64 shr 32'u64).uint32).int
    elif useICC_builtins:
      when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int
      elif arch64: result = builtin_popcnt64(x.uint64).int
      else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint).int +
                     builtin_popcnt32((x.uint64 shr 32'u64).cint).int
    else:
      when sizeof(x) <= 4: result = countSetBitsNim(x.uint32)
      else: result = countSetBitsNim(x.uint64)

proc popcount*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Alias for for `countSetBits <#countSetBits,SomeInteger>`_. (Hamming weight.)
  result = countSetBits(x)

proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Calculate the bit parity in integer. If number of 1-bit
  ## is odd parity is 1, otherwise 0.
  runnableExamples:
    doAssert parityBits(0b0000_0000'u8) == 0
    doAssert parityBits(0b0101_0001'u8) == 1
    doAssert parityBits(0b0110_1001'u8) == 0
    doAssert parityBits(0b0111_1111'u8) == 1

  # Can be used a base if creating ASM version.
  # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
  when x is SomeSignedInt:
    let x = x.toUnsigned
  when nimvm:
    result = forwardImpl(parityImpl, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
      else: result = builtin_parityll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = parityImpl(x.uint32)
      else: result = parityImpl(x.uint64)

proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Returns the 1-based index of the least significant set bit of x.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  runnableExamples:
    doAssert firstSetBit(0b0000_0001'u8) == 1
    doAssert firstSetBit(0b0000_0010'u8) == 2
    doAssert firstSetBit(0b0000_0100'u8) == 3
    doAssert firstSetBit(0b0000_1000'u8) == 4
    doAssert firstSetBit(0b0000_1111'u8) == 1

  # GCC builtin 'builtin_ffs' already handle zero input.
  when x is SomeSignedInt:
    let x = x.toUnsigned
  when nimvm:
    when noUndefined:
      if x == 0:
        return 0
    result = forwardImpl(firstSetBitNim, x)
  else:
    when noUndefined and not useGCC_builtins:
      if x == 0:
        return 0
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
      else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = 1 + vcc_scan_impl(bitScanForward, x.culong)
      elif arch64:
        result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBitNim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = 1 + icc_scan_impl(bitScanForward, x.uint32)
      elif arch64:
        result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBitNim(x.uint64)
    else:
      when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
      else: result = firstSetBitNim(x.uint64)

proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Quickly find the log base 2 of an integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1,
  ## otherwise result is undefined.
  runnableExamples:
    doAssert fastLog2(0b0000_0001'u8) == 0
    doAssert fastLog2(0b0000_0010'u8) == 1
    doAssert fastLog2(0b0000_0100'u8) == 2
    doAssert fastLog2(0b0000_1000'u8) == 3
    doAssert fastLog2(0b0000_1111'u8) == 3

  when x is SomeSignedInt:
    let x = x.toUnsigned
  when noUndefined:
    if x == 0:
      return -1
  when nimvm:
    result = forwardImpl(fastlog2Nim, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
      else: result = 63 - builtin_clzll(x.uint64).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = vcc_scan_impl(bitScanReverse, x.culong)
      elif arch64:
        result = vcc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2Nim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = icc_scan_impl(bitScanReverse, x.uint32)
      elif arch64:
        result = icc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2Nim(x.uint64)
    else:
      when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
      else: result = fastlog2Nim(x.uint64)

proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Returns the number of leading zero bits in integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  ##
  ## See also:
  ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_
  runnableExamples:
    doAssert countLeadingZeroBits(0b0000_0001'u8) == 7
    doAssert countLeadingZeroBits(0b0000_0010'u8) == 6
    doAssert countLeadingZeroBits(0b0000_0100'u8) == 5
    doAssert countLeadingZeroBits(0b0000_1000'u8) == 4
    doAssert countLeadingZeroBits(0b0000_1111'u8) == 4

  when x is SomeSignedInt:
    let x = x.toUnsigned
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
    result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
      else: result = builtin_clzll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
      else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)

proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} =
  ## Returns the number of trailing zeros in integer.
  ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
  ## otherwise result is undefined.
  ##
  ## See also:
  ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_
  runnableExamples:
    doAssert countTrailingZeroBits(0b0000_0001'u8) == 0
    doAssert countTrailingZeroBits(0b0000_0010'u8) == 1
    doAssert countTrailingZeroBits(0b0000_0100'u8) == 2
    doAssert countTrailingZeroBits(0b0000_1000'u8) == 3
    doAssert countTrailingZeroBits(0b0000_1111'u8) == 0

  when x is SomeSignedInt:
    let x = x.toUnsigned
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
    result = firstSetBit(x) - 1
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
      else: result = builtin_ctzll(x.uint64).int
    else:
      result = firstSetBit(x) - 1


proc rotateLeftBits*(value: uint8;
           amount: range[0..8]): uint8 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 8-bits value.
  runnableExamples:
    doAssert rotateLeftBits(0b0000_0001'u8, 1) == 0b0000_0010'u8
    doAssert rotateLeftBits(0b0000_0001'u8, 2) == 0b0000_0100'u8
    doAssert rotateLeftBits(0b0100_0001'u8, 1) == 0b1000_0010'u8
    doAssert rotateLeftBits(0b0100_0001'u8, 2) == 0b0000_0101'u8

  # using this form instead of the one below should handle any value
  # out of range as well as negative values.
  # result = (value shl amount) or (value shr (8 - amount))
  # taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts
  let amount = amount and 7
  result = (value shl amount) or (value shr ( (-amount) and 7))

proc rotateLeftBits*(value: uint16;
           amount: range[0..16]): uint16 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 16-bits value.
  ##
  ## See also:
  ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_
  let amount = amount and 15
  result = (value shl amount) or (value shr ( (-amount) and 15))

proc rotateLeftBits*(value: uint32;
           amount: range[0..32]): uint32 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 32-bits value.
  ##
  ## See also:
  ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_
  let amount = amount and 31
  result = (value shl amount) or (value shr ( (-amount) and 31))

proc rotateLeftBits*(value: uint64;
           amount: range[0..64]): uint64 {.inline, noSideEffect.} =
  ## Left-rotate bits in a 64-bits value.
  ##
  ## See also:
  ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_
  let amount = amount and 63
  result = (value shl amount) or (value shr ( (-amount) and 63))


proc rotateRightBits*(value: uint8;
            amount: range[0..8]): uint8 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 8-bits value.
  runnableExamples:
    doAssert rotateRightBits(0b0000_0001'u8, 1) == 0b1000_0000'u8
    doAssert rotateRightBits(0b0000_0001'u8, 2) == 0b0100_0000'u8
    doAssert rotateRightBits(0b0100_0001'u8, 1) == 0b1010_0000'u8
    doAssert rotateRightBits(0b0100_0001'u8, 2) == 0b0101_0000'u8

  let amount = amount and 7
  result = (value shr amount) or (value shl ( (-amount) and 7))

proc rotateRightBits*(value: uint16;
            amount: range[0..16]): uint16 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 16-bits value.
  ##
  ## See also:
  ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_
  let amount = amount and 15
  result = (value shr amount) or (value shl ( (-amount) and 15))

proc rotateRightBits*(value: uint32;
            amount: range[0..32]): uint32 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 32-bits value.
  ##
  ## See also:
  ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_
  let amount = amount and 31
  result = (value shr amount) or (value shl ( (-amount) and 31))

proc rotateRightBits*(value: uint64;
            amount: range[0..64]): uint64 {.inline, noSideEffect.} =
  ## Right-rotate bits in a 64-bits value.
  ##
  ## See also:
  ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_
  let amount = amount and 63
  result = (value shr amount) or (value shl ( (-amount) and 63))

proc repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T {.
  noSideEffect.} =
  result = x
  var i = 1
  while i != (sizeof(T) div sizeof(x)):
    result = (result shl (sizeof(x)*8*i)) or result
    i *= 2

proc reverseBits*[T: SomeUnsignedInt](x: T): T {.noSideEffect.} =
  ## Return the bit reversal of x.
  runnableExamples:
    doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
    doAssert reverseBits(0xdd'u8) == 0xbb'u8
    doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
    doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32

  template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)

  result = x
  result =
    ((repeat(0x55u8) and result) shl 1) or
    ((repeat(0xaau8) and result) shr 1)
  result =
    ((repeat(0x33u8) and result) shl 2) or
    ((repeat(0xccu8) and result) shr 2)
  when sizeof(T) == 1:
    result = (result shl 4) or (result shr 4)
  when sizeof(T) >= 2:
    result =
      ((repeat(0x0fu8) and result) shl 4) or
      ((repeat(0xf0u8) and result) shr 4)
  when sizeof(T) == 2:
    result = (result shl 8) or (result shr 8)
  when sizeof(T) >= 4:
    result =
      ((repeat(0x00ffu16) and result) shl 8) or
      ((repeat(0xff00u16) and result) shr 8)
  when sizeof(T) == 4:
    result = (result shl 16) or (result shr 16)
  when sizeof(T) == 8:
    result =
      ((repeat(0x0000ffffu32) and result) shl 16) or
      ((repeat(0xffff0000u32) and result) shr 16)
    result = (result shl 32) or (result shr 32)