1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
#
#
# Nim's Runtime Library
# (c) Copyright 2017 Nim Authors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements a series of low level methods for bit manipulation.
## By default, this module use compiler intrinsics to improve performance
## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``.
##
## The module will fallback to pure nim procs incase the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: ``Javascript``, ``Nimscript``
## as well as the ``compiletime VM``.
##
## As a result of using optimized function/intrinsics some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits`
## may return undefined and/or platform dependant value if given invalid input.
const useBuiltins = not defined(noIntrinsicsBitOpts)
const noUndefined = defined(noUndefinedBitOpts)
const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or defined(clang)) and useBuiltins
const useICC_builtins = defined(icc) and useBuiltins
const useVCC_builtins = defined(vcc) and useBuiltins
const arch64 = sizeof(int) == 8
# #### Pure Nim version ####
proc firstSetBit_nim(x: uint32): int {.inline, nosideeffect.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
var v = x.uint32
var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int
proc firstSetBit_nim(x: uint64): int {.inline, nosideeffect.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
var v = uint64(x)
var k = uint32(v and 0xFFFFFFFF'u32)
if k == 0:
k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
result = 32
result += firstSetBit_nim(k)
proc fastlog2_nim(x: uint32): int {.inline, nosideeffect.} =
## Quickly find the log base 2 of a 32-bit or less integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
var v = x.uint32
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
proc fastlog2_nim(x: uint64): int {.inline, nosideeffect.} =
## Quickly find the log base 2 of a 64-bit integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
var v = x.uint64
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
v = v or v shr 32
result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
proc countSetBits_nim(n: uint32): int {.inline, noSideEffect.} =
## Counts the set bits in integer. (also called Hamming weight.)
# generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
var v = uint32(n)
v = v - ((v shr 1) and 0x55555555)
v = (v and 0x33333333) + ((v shr 2) and 0x33333333)
result = (((v + (v shr 4) and 0xF0F0F0F) * 0x1010101) shr 24).int
proc countSetBits_nim(n: uint64): int {.inline, noSideEffect.} =
## Counts the set bits in integer. (also called Hamming weight.)
# generic formula is from: https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
var v = uint64(n)
v = v - ((v shr 1'u64) and 0x5555555555555555'u64)
v = (v and 0x3333333333333333'u64) + ((v shr 2'u64) and 0x3333333333333333'u64)
v = (v + (v shr 4'u64) and 0x0F0F0F0F0F0F0F0F'u64)
result = ((v * 0x0101010101010101'u64) shr 56'u64).int
template parity_impl[T](value: T): int =
# formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
var v = value
when sizeof(T) == 8:
v = v xor (v shr 32)
when sizeof(T) >= 4:
v = v xor (v shr 16)
when sizeof(T) >= 2:
v = v xor (v shr 8)
v = v xor (v shr 4)
v = v and 0xf
((0x6996'u shr v) and 1).int
when useGCC_builtins:
# Returns the number of set 1-bits in value.
proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.}
proc builtin_popcountll(x: culonglong): cint {.importc: "__builtin_popcountll", cdecl.}
# Returns the bit parity in value
proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}
# Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}
elif useVCC_builtins:
# Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer.
proc builtin_popcnt16(a2: uint16): uint16 {.importc: "__popcnt16" header: "<intrin.h>", nosideeffect.}
proc builtin_popcnt32(a2: uint32): uint32 {.importc: "__popcnt" header: "<intrin.h>", nosideeffect.}
proc builtin_popcnt64(a2: uint64): uint64 {.importc: "__popcnt64" header: "<intrin.h>", nosideeffect.}
# Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
proc bitScanReverse(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanReverse", header: "<intrin.h>", nosideeffect.}
proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanReverse64", header: "<intrin.h>", nosideeffect.}
# Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
proc bitScanForward(index: ptr culong, mask: culong): cuchar {.importc: "_BitScanForward", header: "<intrin.h>", nosideeffect.}
proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {.importc: "_BitScanForward64", header: "<intrin.h>", nosideeffect.}
template vcc_scan_impl(fnc: untyped; v: untyped): int =
var index: culong
discard fnc(index.addr, v)
index.int
elif useICC_builtins:
# Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm
# see also: https://software.intel.com/en-us/node/523362
# Count the number of bits set to 1 in an integer a, and return that count in dst.
proc builtin_popcnt32(a: cint): cint {.importc: "_popcnt" header: "<immintrin.h>", nosideeffect.}
proc builtin_popcnt64(a: uint64): cint {.importc: "_popcnt64" header: "<immintrin.h>", nosideeffect.}
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
proc bitScanForward(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanForward", header: "<immintrin.h>", nosideeffect.}
proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanForward64", header: "<immintrin.h>", nosideeffect.}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {.importc: "_BitScanReverse", header: "<immintrin.h>", nosideeffect.}
proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {.importc: "_BitScanReverse64", header: "<immintrin.h>", nosideeffect.}
template icc_scan_impl(fnc: untyped; v: untyped): int =
var index: uint32
discard fnc(index.addr, v)
index.int
proc countSetBits*(x: SomeInteger): int {.inline, nosideeffect.} =
## Counts the set bits in integer. (also called Hamming weight.)
# TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT.
# like GCC and MSVC
when nimvm:
when sizeof(x) <= 4: result = countSetBits_nim(x.uint32)
else: result = countSetBits_nim(x.uint64)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int
else: result = builtin_popcountll(x.culonglong).int
elif useVCC_builtins:
when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int
elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int
elif arch64: result = builtin_popcnt64(x.uint64).int
else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32 ).int +
builtin_popcnt32((x.uint64 shr 32'u64).uint32 ).int
elif useICC_builtins:
when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int
elif arch64: result = builtin_popcnt64(x.uint64).int
else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint ).int +
builtin_popcnt32((x.uint64 shr 32'u64).cint ).int
else:
when sizeof(x) <= 4: result = countSetBits_nim(x.uint32)
else: result = countSetBits_nim(x.uint64)
proc popcount*(x: SomeInteger): int {.inline, nosideeffect.} =
## Alias for for countSetBits (Hamming weight.)
result = countSetBits(x)
proc parityBits*(x: SomeInteger): int {.inline, nosideeffect.} =
## Calculate the bit parity in integer. If number of 1-bit
## is odd parity is 1, otherwise 0.
# Can be used a base if creating ASM version.
# https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
when nimvm:
when sizeof(x) <= 4: result = parity_impl(x.uint32)
else: result = parity_impl(x.uint64)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
else: result = builtin_parityll(x.uint64).int
else:
when sizeof(x) <= 4: result = parity_impl(x.uint32)
else: result = parity_impl(x.uint64)
proc firstSetBit*(x: SomeInteger): int {.inline, nosideeffect.} =
## Returns the 1-based index of the least significant set bit of x.
## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
## otherwise result is undefined.
# GCC builtin 'builtin_ffs' already handle zero input.
when nimvm:
when noUndefined:
if x == 0:
return 0
when sizeof(x) <= 4: result = firstSetBit_nim(x.uint32)
else: result = firstSetBit_nim(x.uint64)
else:
when noUndefined and not useGCC_builtins:
if x == 0:
return 0
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = 1 + vcc_scan_impl(bitScanForward, x.culong)
elif arch64:
result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBit_nim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = 1 + icc_scan_impl(bitScanForward, x.uint32)
elif arch64:
result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBit_nim(x.uint64)
else:
when sizeof(x) <= 4: result = firstSetBit_nim(x.uint32)
else: result = firstSetBit_nim(x.uint64)
proc fastLog2*(x: SomeInteger): int {.inline, nosideeffect.} =
## Quickly find the log base 2 of an integer.
## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1,
## otherwise result is undefined.
when noUndefined:
if x == 0:
return -1
when nimvm:
when sizeof(x) <= 4: result = fastlog2_nim(x.uint32)
else: result = fastlog2_nim(x.uint64)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
else: result = 63 - builtin_clzll(x.uint64).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = vcc_scan_impl(bitScanReverse, x.culong)
elif arch64:
result = vcc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2_nim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = icc_scan_impl(bitScanReverse, x.uint32)
elif arch64:
result = icc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2_nim(x.uint64)
else:
when sizeof(x) <= 4: result = fastlog2_nim(x.uint32)
else: result = fastlog2_nim(x.uint64)
proc countLeadingZeroBits*(x: SomeInteger): int {.inline, nosideeffect.} =
## Returns the number of leading zero bits in integer.
## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
## otherwise result is undefined.
when noUndefined:
if x == 0:
return 0
when nimvm:
when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint32)
else: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint64)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
else: result = builtin_clzll(x.uint64).int
else:
when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint32)
else: result = sizeof(x)*8 - 1 - fastlog2_nim(x.uint64)
proc countTrailingZeroBits*(x: SomeInteger): int {.inline, nosideeffect.} =
## Returns the number of trailing zeros in integer.
## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0,
## otherwise result is undefined.
when noUndefined:
if x == 0:
return 0
when nimvm:
result = firstSetBit(x) - 1
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
else: result = builtin_ctzll(x.uint64).int
else:
result = firstSetBit(x) - 1
proc rotateLeftBits*(value: uint8;
amount: range[0..8]): uint8 {.inline, noSideEffect.} =
## Left-rotate bits in a 8-bits value.
# using this form instead of the one below should handle any value
# out of range as well as negative values.
# result = (value shl amount) or (value shr (8 - amount))
# taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts
let amount = amount and 7
result = (value shl amount) or (value shr ( (-amount) and 7))
proc rotateLeftBits*(value: uint16;
amount: range[0..16]): uint16 {.inline, noSideEffect.} =
## Left-rotate bits in a 16-bits value.
let amount = amount and 15
result = (value shl amount) or (value shr ( (-amount) and 15))
proc rotateLeftBits*(value: uint32;
amount: range[0..32]): uint32 {.inline, noSideEffect.} =
## Left-rotate bits in a 32-bits value.
let amount = amount and 31
result = (value shl amount) or (value shr ( (-amount) and 31))
proc rotateLeftBits*(value: uint64;
amount: range[0..64]): uint64 {.inline, noSideEffect.} =
## Left-rotate bits in a 64-bits value.
let amount = amount and 63
result = (value shl amount) or (value shr ( (-amount) and 63))
proc rotateRightBits*(value: uint8;
amount: range[0..8]): uint8 {.inline, noSideEffect.} =
## Right-rotate bits in a 8-bits value.
let amount = amount and 7
result = (value shr amount) or (value shl ( (-amount) and 7))
proc rotateRightBits*(value: uint16;
amount: range[0..16]): uint16 {.inline, noSideEffect.} =
## Right-rotate bits in a 16-bits value.
let amount = amount and 15
result = (value shr amount) or (value shl ( (-amount) and 15))
proc rotateRightBits*(value: uint32;
amount: range[0..32]): uint32 {.inline, noSideEffect.} =
## Right-rotate bits in a 32-bits value.
let amount = amount and 31
result = (value shr amount) or (value shl ( (-amount) and 31))
proc rotateRightBits*(value: uint64;
amount: range[0..64]): uint64 {.inline, noSideEffect.} =
## Right-rotate bits in a 64-bits value.
let amount = amount and 63
result = (value shr amount) or (value shl ( (-amount) and 63))
|