summary refs log tree commit diff stats
path: root/lib/pure/bitops.nim
blob: a518c25d27bd143273780e983cc3c3a0ee833a9a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
/*=========================================================================*\
* Serial stream
* LuaSocket toolkit
\*=========================================================================*/
#include "luasocket.h"

#include "auxiliar.h"
#include "socket.h"
#include "options.h"
#include "unix.h"

#include <string.h>
#include <sys/un.h>

/*
Reuses userdata definition from unix.h, since it is useful for all
stream-like objects.

If we stored the serial path for use in error messages or userdata
printing, we might need our own userdata definition.

Group usage is semi-inherited from unix.c, but unnecessary since we
have only one object type.
*/

/*=========================================================================*\
* Internal function prototypes
\*=========================================================================*/
static int global_create(lua_State *L);
static int meth_send(lua_State *L);
static int meth_receive(lua_State *L);
static int meth_close(lua_State *L);
static int meth_settimeout(lua_State *L);
static int meth_getfd(lua_State *L);
static int meth_setfd(lua_State *L);
static int meth_dirty(lua_State *L);
static int meth_getstats(lua_State *L);
static int meth_setstats(lua_State *L);

/* serial object methods */
static luaL_Reg serial_methods[] = {
    {"__gc",        meth_close},
    {"__tostring",  auxiliar_tostring},
    {"close",       meth_close},
    {"dirty",       meth_dirty},
    {"getfd",       meth_getfd},
    {"getstats",    meth_getstats},
    {"setstats",    meth_setstats},
    {"receive",     meth_receive},
    {"send",        meth_send},
    {"setfd",       meth_setfd},
    {"settimeout",  meth_settimeout},
    {NULL,          NULL}
};

/*-------------------------------------------------------------------------*\
* Initializes module
\*-------------------------------------------------------------------------*/
LUASOCKET_API int luaopen_socket_serial(lua_State *L) {
    /* create classes */
    auxiliar_newclass(L, "serial{client}", serial_methods);
    /* create class groups */
    auxiliar_add2group(L, "serial{client}", "serial{any}");
    lua_pushcfunction(L, global_create);
    return 1;
}

/*=========================================================================*\
* Lua methods
\*=========================================================================*/
/*-------------------------------------------------------------------------*\
* Just call buffered IO methods
\*-------------------------------------------------------------------------*/
static int meth_send(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkclass(L, "serial{client}", 1);
    return buffer_meth_send(L, &un->buf);
}

static int meth_receive(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkclass(L, "serial{client}", 1);
    return buffer_meth_receive(L, &un->buf);
}

static int meth_getstats(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkclass(L, "serial{client}", 1);
    return buffer_meth_getstats(L, &un->buf);
}

static int meth_setstats(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkclass(L, "serial{client}", 1);
    return buffer_meth_setstats(L, &un->buf);
}

/*-------------------------------------------------------------------------*\
* Select support methods
\*-------------------------------------------------------------------------*/
static int meth_getfd(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkgroup(L, "serial{any}", 1);
    lua_pushnumber(L, (int) un->sock);
    return 1;
}

/* this is very dangerous, but can be handy for those that are brave enough */
static int meth_setfd(lua_State *L) {
    p_unix un = (p_unix) auxiliar_checkgroup(L, "serial{any}", 1);
    un->sock = (t_socket) luaL_checknumber(L, 2);
    return 0;
}

static int meth_dirty(lua_State *L) {
    p_unix un = pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#
#
#            Nim's Runtime Library
#        (c) Copyright 2017 Nim Authors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements a series of low level methods for bit manipulation.
##
## By default, compiler intrinsics are used where possible to improve performance
## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`.
##
## The module will fallback to pure nim procs in case the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: `JavaScript`, `NimScript`
## as well as the `compiletime VM`.
##
## As a result of using optimized functions/intrinsics, some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits`
## may return undefined and/or platform dependent values if given invalid input.

import macros
import std/private/since
from std/private/bitops_utils import forwardImpl, castToUnsigned

func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".}
  ## Computes the `bitwise complement` of the integer `x`.

func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".}

func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".}

func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".}

macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise and` of all arguments collectively.
  let fn = bindSym("internalBitand")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)

macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise or` of all arguments collectively.
  let fn = bindSym("internalBitor")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)

macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
  ## Computes the `bitwise xor` of all arguments collectively.
  let fn = bindSym("internalBitxor")
  result = newCall(fn, x, y)
  for extra in z:
    result = newCall(fn, result, extra)


type BitsRange*[T] = range[0..sizeof(T)*8-1]
  ## A range with all bit positions for type `T`.

func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Returns an extracted (and shifted) slice of bits from `v`.
  runnableExamples:
    doAssert 0b10111.bitsliced(2 .. 4) == 0b101
    doAssert 0b11100.bitsliced(0 .. 2) == 0b100
    doAssert 0b11100.bitsliced(0 ..< 3) == 0b100

  let
    upmost = sizeof(T) * 8 - 1
    uv     = v.castToUnsigned
  (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T

proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
  ## Mutates `v` into an extracted (and shifted) slice of bits from `v`.
  runnableExamples:
    var x = 0b101110
    x.bitslice(2 .. 4)
    doAssert x == 0b011

  let
    upmost = sizeof(T) * 8 - 1
    uv     = v.castToUnsigned
  v = (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T

func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Creates a bitmask based on a slice of bits.
  runnableExamples:
    doAssert toMask[int32](1 .. 3) == 0b1110'i32
    doAssert toMask[int32](0 .. 3) == 0b1111'i32

  let
    upmost = sizeof(T) * 8 - 1
    bitmask = bitnot(0.T).castToUnsigned
  (bitmask shl (upmost - slice.b + slice.a) shr (upmost - slice.b)).T

proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
  ## Returns `v`, with only the `1` bits from `mask` matching those of
  ## `v` set to 1.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8

  bitand(v, mask)

func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Returns `v`, with only the `1` bits in the range of `slice`
  ## matching those of `v` set to 1.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_1011'u8
    doAssert v.masked(1 .. 3) == 0b0000_1010'u8

  bitand(v, toMask[T](slice))

proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} =
  ## Mutates `v`, with only the `1` bits from `mask` matching those of
  ## `v` set to 1.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.mask(0b0000_1010'u8)
    doAssert v == 0b0000_0010'u8

  v = bitand(v, mask)

proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
  ## Mutates `v`, with only the `1` bits in the range of `slice`
  ## matching those of `v` set to 1.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_1011'u8
    v.mask(1 .. 3)
    doAssert v == 0b0000_1010'u8

  v = bitand(v, toMask[T](slice))

func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits from `mask` set to 1.
  ##
  ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8

  bitor(v, mask)

func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits in the range of `slice` set to 1.
  ##
  ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8

  bitor(v, toMask[T](slice))

proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
  ## Mutates `v`, with all the `1` bits from `mask` set to 1.
  ##
  ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.setMask(0b0000_1010'u8)
    doAssert v == 0b0000_1011'u8

  v = bitor(v, mask)

proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
  ## Mutates `v`, with all the `1` bits in the range of `slice` set to 1.
  ##
  ## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.setMask(2 .. 3)
    doAssert v == 0b0000_1111'u8

  v = bitor(v, toMask[T](slice))

func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits from `mask` set to 0.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
  ## with an *inverted mask*.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8

  bitand(v, bitnot(mask))

func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits in the range of `slice` set to 0.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
  ## with an *inverted mask*.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8

  bitand(v, bitnot(toMask[T](slice)))

proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
  ## Mutates `v`, with all the `1` bits from `mask` set to 0.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
  ## with an *inverted mask*.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.clearMask(0b0000_1010'u8)
    doAssert v == 0b0000_0001'u8

  v = bitand(v, bitnot(mask))

proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
  ## Mutates `v`, with all the `1` bits in the range of `slice` set to 0.
  ##
  ## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
  ## with an *inverted mask*.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.clearMask(1 .. 3)
    doAssert v == 0b0000_0001'u8

  v = bitand(v, bitnot(toMask[T](slice)))

func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits from `mask` flipped.
  ##
  ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8

  bitxor(v, mask)

func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
  ## Returns `v`, with all the `1` bits in the range of `slice` flipped.
  ##
  ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    let v = 0b0000_0011'u8
    doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8

  bitxor(v, toMask[T](slice))

proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
  ## Mutates `v`, with all the `1` bits from `mask` flipped.
  ##
  ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.flipMask(0b0000_1010'u8)
    doAssert v == 0b0000_1001'u8

  v = bitxor(v, mask)

proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
  ## Mutates `v`, with all the `1` bits in the range of `slice` flipped.
  ##
  ## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.flipMask(1 .. 3)
    doAssert v == 0b0000_1101'u8

  v = bitxor(v, toMask[T](slice))

proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
  ## Mutates `v`, with the bit at position `bit` set to 1.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.setBit(5'u8)
    doAssert v == 0b0010_0011'u8

  v.setMask(1.T shl bit)

proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
  ## Mutates `v`, with the bit at position `bit` set to 0.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.clearBit(1'u8)
    doAssert v == 0b0000_0001'u8

  v.clearMask(1.T shl bit)

proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
  ## Mutates `v`, with the bit at position `bit` flipped.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.flipBit(1'u8)
    doAssert v == 0b0000_0001'u8

    v = 0b0000_0011'u8
    v.flipBit(2'u8)
    doAssert v == 0b0000_0111'u8

  v.flipMask(1.T shl bit)

macro setBits*(v: typed; bits: varargs[typed]): untyped =
  ## Mutates `v`, with the bits at positions `bits` set to 1.
  runnableExamples:
    var v = 0b0000_0011'u8
    v.setBits(3, 5, 7)
    doAssert v == 0b1010_1011'u8

  bits.expectKind(nnkBracket)
  result = newStmtList()
  for bit in bits:
    result.add newCall("setBit", v, bit)

macro clearBits*(v: typed; bits: varargs[typed]): untyped =
  ## Mutates `v`, with the bits at positions `bits` set to 0.
  runnableExamples:
    var v = 0b1111_1111'u8
    v.clearBits(1, 3, 5, 7)
    doAssert v == 0b0101_0101'u8

  bits.expectKind(nnkBracket)
  result = newStmtList()
  for bit in bits:
    result.add newCall("clearBit", v, bit)

macro flipBits*(v: typed; bits: varargs[typed]): untyped =
  ## Mutates `v`, with the bits at positions `bits` set to 0.
  runnableExamples:
    var v = 0b0000_1111'u8
    v.flipBits(1, 3, 5, 7)
    doAssert v == 0b1010_0101'u8

  bits.expectKind(nnkBracket)
  result = newStmtList()
  for bit in bits:
    result.add newCall("flipBit", v, bit)


proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} =
  ## Returns true if the bit in `v` at positions `bit` is set to 1.
  runnableExamples:
    let v = 0b0000_1111'u8
    doAssert v.testBit(0)
    doAssert not v.testBit(7)

  let mask = 1.T shl bit
  return (v and mask) == mask

# #### Pure Nim version ####

func firstSetBitNim(x: uint32): int {.inline.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
    25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
  let v = x.uint32
  let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
  result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int

func firstSetBitNim(x: uint64): int {.inline.} =
  ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
  let v = uint64(x)
  var k = uint32(v and 0xFFFFFFFF'u32)
  if k == 0:
    k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
    result = 32
  else:
    result = 0
  result += firstSetBitNim(k)

func fastlog2Nim(x: uint32): int {.inline.} =
  ## Quickly find the log base 2 of a 32-bit or less integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
    22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
  var v = x.uint32
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int

func fastlog2Nim(x: uint64): int {.inline.} =
  ## Quickly find the log base 2 of a 64-bit integer.
  # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
  # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
  const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
    33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
    57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
    35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
  var v = x.uint64
  v = v or v shr 1 # first round down to one less than a power of 2
  v = v or v shr 2
  v = v or v shr 4
  v = v or v shr 8
  v = v or v shr 16
  v = v or v shr 32
  result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int

import system/countbits_impl

const useBuiltinsRotate = (defined(amd64) or defined(i386)) and
                          (defined(gcc) or defined(clang) or defined(vcc) or
                           (defined(icl) and not defined(cpp))) and useBuiltins

template parityImpl[T](value: T): int =
  # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
  var v = value
  when sizeof(T) == 8:
    v = v xor (v shr 32)
  when sizeof(T) >= 4:
    v = v xor (v shr 16)
  when sizeof(T) >= 2:
    v = v xor (v shr 8)
  v = v xor (v shr 4)
  v = v and 0xf
  ((0x6996'u shr v) and 1).int


when useGCC_builtins:
  # Returns the bit parity in value
  proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
  proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}

  # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
  proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
  proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
  proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}

  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
  proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}

elif useVCC_builtins:
  # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
  func bitScanReverse(index: ptr culong, mask: culong): uint8 {.
      importc: "_BitScanReverse", header: "<intrin.h>".}
  func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {.
      importc: "_BitScanReverse64", header: "<intrin.h>".}

  # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
  func bitScanForward(index: ptr culong, mask: culong): uint8 {.
      importc: "_BitScanForward", header: "<intrin.h>".}
  func bitScanForward64(index: ptr culong, mask: uint64): uint8 {.
      importc: "_BitScanForward64", header: "<intrin.h>".}

  template vcc_scan_impl(fnc: untyped; v: untyped): int =
    var index: culong
    discard fnc(index.addr, v)
    index.int

elif useICC_builtins:
  # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
  func bitScanForward(p: ptr uint32, b: uint32): uint8 {.
      importc: "_BitScanForward", header: "<immintrin.h>".}
  func bitScanForward64(p: ptr uint32, b: uint64): uint8 {.
      importc: "_BitScanForward64", header: "<immintrin.h>".}

  # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
  func bitScanReverse(p: ptr uint32, b: uint32): uint8 {.
      importc: "_BitScanReverse", header: "<immintrin.h>".}
  func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {.
      importc: "_BitScanReverse64", header: "<immintrin.h>".}

  template icc_scan_impl(fnc: untyped; v: untyped): int =
    var index: uint32
    discard fnc(index.addr, v)
    index.int

func countSetBits*(x: SomeInteger): int {.inline.} =
  ## Counts the set bits in an integer (also called `Hamming weight`:idx:).
  runnableExamples:
    doAssert countSetBits(0b0000_0011'u8) == 2
    doAssert countSetBits(0b1010_1010'u8) == 4

  result = countSetBitsImpl(x)

func popcount*(x: SomeInteger): int {.inline.} =
  ## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight).
  result = countSetBits(x)

func parityBits*(x: SomeInteger): int {.inline.} =
  ## Calculate the bit parity in an integer. If the number of 1-bits
  ## is odd, the parity is 1, otherwise 0.
  runnableExamples:
    doAssert parityBits(0b0000_0000'u8) == 0
    doAssert parityBits(0b0101_0001'u8) == 1
    doAssert parityBits(0b0110_1001'u8) == 0
    doAssert parityBits(0b0111_1111'u8) == 1

  # Can be used a base if creating ASM version.
  # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
  let x = x.castToUnsigned
  when nimvm:
    result = forwardImpl(parityImpl, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
      else: result = builtin_parityll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = parityImpl(x.uint32)
      else: result = parityImpl(x.uint64)

func firstSetBit*(x: SomeInteger): int {.inline.} =
  ## Returns the 1-based index of the least significant set bit of `x`.
  ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
  ## otherwise the result is undefined.
  runnableExamples:
    doAssert firstSetBit(0b0000_0001'u8) == 1
    doAssert firstSetBit(0b0000_0010'u8) == 2
    doAssert firstSetBit(0b0000_0100'u8) == 3
    doAssert firstSetBit(0b0000_1000'u8) == 4
    doAssert firstSetBit(0b0000_1111'u8) == 1

  # GCC builtin 'builtin_ffs' already handle zero input.
  let x = x.castToUnsigned
  when nimvm:
    when noUndefined:
      if x == 0:
        return 0
    result = forwardImpl(firstSetBitNim, x)
  else:
    when noUndefined and not useGCC_builtins:
      if x == 0:
        return 0
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
      else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = 1 + vcc_scan_impl(bitScanForward, x.culong)
      elif arch64:
        result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBitNim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = 1 + icc_scan_impl(bitScanForward, x.uint32)
      elif arch64:
        result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
      else:
        result = firstSetBitNim(x.uint64)
    else:
      when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
      else: result = firstSetBitNim(x.uint64)

func fastLog2*(x: SomeInteger): int {.inline.} =
  ## Quickly find the log base 2 of an integer.
  ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1,
  ## otherwise the result is undefined.
  runnableExamples:
    doAssert fastLog2(0b0000_0001'u8) == 0
    doAssert fastLog2(0b0000_0010'u8) == 1
    doAssert fastLog2(0b0000_0100'u8) == 2
    doAssert fastLog2(0b0000_1000'u8) == 3
    doAssert fastLog2(0b0000_1111'u8) == 3

  let x = x.castToUnsigned
  when noUndefined:
    if x == 0:
      return -1
  when nimvm:
    result = forwardImpl(fastlog2Nim, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
      else: result = 63 - builtin_clzll(x.uint64).int
    elif useVCC_builtins:
      when sizeof(x) <= 4:
        result = vcc_scan_impl(bitScanReverse, x.culong)
      elif arch64:
        result = vcc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2Nim(x.uint64)
    elif useICC_builtins:
      when sizeof(x) <= 4:
        result = icc_scan_impl(bitScanReverse, x.uint32)
      elif arch64:
        result = icc_scan_impl(bitScanReverse64, x.uint64)
      else:
        result = fastlog2Nim(x.uint64)
    else:
      when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
      else: result = fastlog2Nim(x.uint64)

func countLeadingZeroBits*(x: SomeInteger): int {.inline.} =
  ## Returns the number of leading zero bits in an integer.
  ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
  ## otherwise the result is undefined.
  ##
  ## **See also:**
  ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_
  runnableExamples:
    doAssert countLeadingZeroBits(0b0000_0001'u8) == 7
    doAssert countLeadingZeroBits(0b0000_0010'u8) == 6
    doAssert countLeadingZeroBits(0b0000_0100'u8) == 5
    doAssert countLeadingZeroBits(0b0000_1000'u8) == 4
    doAssert countLeadingZeroBits(0b0000_1111'u8) == 4

  let x = x.castToUnsigned
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
    result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
      else: result = builtin_clzll(x.uint64).int
    else:
      when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
      else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)

func countTrailingZeroBits*(x: SomeInteger): int {.inline.} =
  ## Returns the number of trailing zeros in an integer.
  ## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
  ## otherwise the result is undefined.
  ##
  ## **See also:**
  ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_
  runnableExamples:
    doAssert countTrailingZeroBits(0b0000_0001'u8) == 0
    doAssert countTrailingZeroBits(0b0000_0010'u8) == 1
    doAssert countTrailingZeroBits(0b0000_0100'u8) == 2
    doAssert countTrailingZeroBits(0b0000_1000'u8) == 3
    doAssert countTrailingZeroBits(0b0000_1111'u8) == 0

  let x = x.castToUnsigned
  when noUndefined:
    if x == 0:
      return 0
  when nimvm:
    result = firstSetBit(x) - 1
  else:
    when useGCC_builtins:
      when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
      else: result = builtin_ctzll(x.uint64).int
    else:
      result = firstSetBit(x) - 1

when useBuiltinsRotate:
  when defined(gcc):
    # GCC was tested until version 4.8.1 and intrinsics were present. Not tested
    # in previous versions.
    func builtin_rotl8(value: uint8, shift: cint): uint8
                      {.importc: "__rolb", header: "<x86intrin.h>".}
    func builtin_rotl16(value: cushort, shift: cint): cushort
                       {.importc: "__rolw", header: "<x86intrin.h>".}
    func builtin_rotl32(value: cuint, shift: cint): cuint
                       {.importc: "__rold", header: "<x86intrin.h>".}
    when defined(amd64):
      func builtin_rotl64(value: culonglong, shift: cint): culonglong
                         {.importc: "__rolq", header: "<x86intrin.h>".}

    func builtin_rotr8(value: uint8, shift: cint): uint8
                      {.importc: "__rorb", header: "<x86intrin.h>".}
    func builtin_rotr16(value: cushort, shift: cint): cushort
                       {.importc: "__rorw", header: "<x86intrin.h>".}
    func builtin_rotr32(value: cuint, shift: cint): cuint
                       {.importc: "__rord", header: "<x86intrin.h>".}
    when defined(amd64):
      func builtin_rotr64(value: culonglong, shift: cint): culonglong
                         {.importc: "__rorq", header: "<x86intrin.h>".}
  elif defined(clang):
    # In CLANG, builtins have been present since version 8.0.0 and intrinsics
    # since version 9.0.0. This implementation chose the builtins, as they have
    # been around for longer.
    # https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
    # https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft
    # source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def
    func builtin_rotl8(value: uint8, shift: uint8): uint8
                      {.importc: "__builtin_rotateleft8", nodecl.}
    func builtin_rotl16(value: cushort, shift: cushort): cushort
                       {.importc: "__builtin_rotateleft16", nodecl.}
    func builtin_rotl32(value: cuint, shift: cuint): cuint
                       {.importc: "__builtin_rotateleft32", nodecl.}
    when defined(amd64):
      func builtin_rotl64(value: culonglong, shift: culonglong): culonglong
                         {.importc: "__builtin_rotateleft64", nodecl.}

    func builtin_rotr8(value: uint8, shift: uint8): uint8
                      {.importc: "__builtin_rotateright8", nodecl.}
    func builtin_rotr16(value: cushort, shift: cushort): cushort
                       {.importc: "__builtin_rotateright16", nodecl.}
    func builtin_rotr32(value: cuint, shift: cuint): cuint
                       {.importc: "__builtin_rotateright32", nodecl.}
    when defined(amd64):
      # shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d
      func builtin_rotr64(value: culonglong, shift: culonglong): culonglong
                         {.importc: "__builtin_rotateright64", nodecl.}
  elif defined(vcc):
    # Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86.
    # Not tested in previous versions.
    # https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160
    # https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160
    # https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160
    func builtin_rotl8(value: uint8, shift: uint8): uint8
                      {.importc: "_rotl8", header: "<intrin.h>".}
    func builtin_rotl16(value: cushort, shift: uint8): cushort
                       {.importc: "_rotl16", header: "<intrin.h>".}
    func builtin_rotl32(value: cuint, shift: cint): cuint
                       {.importc: "_rotl", header: "<stdlib.h>".}
    when defined(amd64):
      func builtin_rotl64(value: culonglong, shift: cint): culonglong
                         {.importc: "_rotl64", header: "<stdlib.h>".}

    func builtin_rotr8(value: uint8, shift: uint8): uint8
                      {.importc: "_rotr8", header: "<intrin.h>".}
    func builtin_rotr16(value: cushort, shift: uint8): cushort
                       {.importc: "_rotr16", header: "<intrin.h>".}
    func builtin_rotr32(value: cuint, shift: cint): cuint
                       {.importc: "_rotr", header: "<stdlib.h>".}
    when defined(amd64):
      func builtin_rotr64(value: culonglong, shift: cint): culonglong
                         {.importc: "_rotr64", header: "<stdlib.h>".}
  elif defined(icl):
    # Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build
    # 20201208_000000 x64 and x86. Not tested in previous versions.
    func builtin_rotl8(value: uint8, shift: cint): uint8
                      {.importc: "__rolb", header: "<immintrin.h>".}
    func builtin_rotl16(value: cushort, shift: cint): cushort
                       {.importc: "__rolw", header: "<immintrin.h>".}
    func builtin_rotl32(value: cuint, shift: cint): cuint
                       {.importc: "__rold", header: "<immintrin.h>".}
    when defined(amd64):
      func builtin_rotl64(value: culonglong, shift: cint): culonglong
                         {.importc: "__rolq", header: "<immintrin.h>".}

    func builtin_rotr8(value: uint8, shift: cint): uint8
                      {.importc: "__rorb", header: "<immintrin.h>".}
    func builtin_rotr16(value: cushort, shift: cint): cushort
                       {.importc: "__rorw", header: "<immintrin.h>".}
    func builtin_rotr32(value: cuint, shift: cint): cuint
                       {.importc: "__rord", header: "<immintrin.h>".}
    when defined(amd64):
      func builtin_rotr64(value: culonglong, shift: cint): culonglong
                         {.importc: "__rorq", header: "<immintrin.h>".}

func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
  ## Left-rotate bits in a `value`.
  # https://stackoverflow.com/a/776523
  const mask = 8 * sizeof(value) - 1
  let rot = rot and mask
  (value shl rot) or (value shr ((-rot) and mask))

func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
  ## Right-rotate bits in a `value`.
  const mask = 8 * sizeof(value) - 1
  let rot = rot and mask
  (value shr rot) or (value shl ((-rot) and mask))

func shiftTypeTo(size: static int, shift: int): auto {.inline.} =
  ## Returns the `shift` for the rotation according to the compiler and the
  ## `size`.
  when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl):
    cint(shift)
  elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1):
    uint8(shift)
  elif defined(clang):
    when size == 2:
      cushort(shift)
    elif size == 4:
      cuint(shift)
    elif size == 8:
      culonglong(shift)

func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
  ## Left-rotate bits in a `value`.
  runnableExamples:
    doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
    doAssert rotateLeftBits(0b00111100_11000011'u16, 8) ==
      0b11000011_00111100'u16
    doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) ==
      0b1111000000001111_0000111111110000'u32
    doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
      0b11111111000000000000000011111111_00000000111111111111111100000000'u64
  when nimvm:
    rotl(value, shift.int32)
  else:
    when useBuiltinsRotate:
      const size = sizeof(T)
      when size == 1:
        builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T
      elif size == 2:
        builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T
      elif size == 4:
        builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T
      elif size == 8 and arch64:
        builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T
      else:
        rotl(value, shift.int32)
    else:
      rotl(value, shift.int32)

func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
  ## Right-rotate bits in a `value`.
  runnableExamples:
    doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
    doAssert rotateRightBits(0b00111100_11000011'u16, 8) ==
      0b11000011_00111100'u16
    doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) ==
      0b1111000000001111_0000111111110000'u32
    doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
      0b11111111000000000000000011111111_00000000111111111111111100000000'u64
  when nimvm:
    rotr(value, shift.int32)
  else:
    when useBuiltinsRotate:
      const size = sizeof(T)
      when size == 1:
        builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T
      elif size == 2:
        builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T
      elif size == 4:
        builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T
      elif size == 8 and arch64:
        builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T
      else:
        rotr(value, shift.int32)
    else:
      rotr(value, shift.int32)

func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T  =
  result = x
  var i = 1
  while i != (sizeof(T) div sizeof(x)):
    result = (result shl (sizeof(x)*8*i)) or result
    i *= 2

func reverseBits*[T: SomeUnsignedInt](x: T): T =
  ## Return the bit reversal of x.
  runnableExamples:
    doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
    doAssert reverseBits(0xdd'u8) == 0xbb'u8
    doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
    doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32

  template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)

  result = x
  result =
    ((repeat(0x55u8) and result) shl 1) or
    ((repeat(0xaau8) and result) shr 1)
  result =
    ((repeat(0x33u8) and result) shl 2) or
    ((repeat(0xccu8) and result) shr 2)
  when sizeof(T) == 1:
    result = (result shl 4) or (result shr 4)
  when sizeof(T) >= 2:
    result =
      ((repeat(0x0fu8) and result) shl 4) or
      ((repeat(0xf0u8) and result) shr 4)
  when sizeof(T) == 2:
    result = (result shl 8) or (result shr 8)
  when sizeof(T) >= 4:
    result =
      ((repeat(0x00ffu16) and result) shl 8) or
      ((repeat(0xff00u16) and result) shr 8)
  when sizeof(T) == 4:
    result = (result shl 16) or (result shr 16)
  when sizeof(T) == 8:
    result =
      ((repeat(0x0000ffffu32) and result) shl 16) or
      ((repeat(0xffff0000u32) and result) shr 16)
    result = (result shl 32) or (result shr 32)