1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## An implementation of a `deque`:idx: (double-ended queue).
## The underlying implementation uses a `seq`.
##
## Note that none of the procs that get an individual value from the deque should be used
## on an empty deque.
## If compiled with the `boundChecks` option, those procs will raise an `IndexDefect`
## on such access. This should not be relied upon, as `-d:danger` or `--checks:off` will
## disable those checks and then the procs may return garbage or crash the program.
##
## As such, a check to see if the deque is empty is needed before any
## access, unless your program logic guarantees it indirectly.
runnableExamples:
var a = [10, 20, 30, 40].toDeque
doAssertRaises(IndexDefect, echo a[4])
a.addLast(50)
assert $a == "[10, 20, 30, 40, 50]"
assert a.peekFirst == 10
assert a.peekLast == 50
assert len(a) == 5
assert a.popFirst == 10
assert a.popLast == 50
assert len(a) == 3
a.addFirst(11)
a.addFirst(22)
a.addFirst(33)
assert $a == "[33, 22, 11, 20, 30, 40]"
a.shrink(fromFirst = 1, fromLast = 2)
assert $a == "[22, 11, 20]"
## See also
## ========
## * `lists module <lists.html>`_ for singly and doubly linked lists and rings
## * `channels module <channels_builtin.html>`_ for inter-thread communication
import std/private/since
import math
type
Deque*[T] = object
## A double-ended queue backed with a ringed `seq` buffer.
##
## To initialize an empty deque,
## use the `initDeque proc <#initDeque,int>`_.
data: seq[T]
head, tail, count, mask: int
const
defaultInitialSize* = 4
template initImpl(result: typed, initialSize: int) =
let correctSize = nextPowerOfTwo(initialSize)
result.mask = correctSize - 1
newSeq(result.data, correctSize)
template checkIfInitialized(deq: typed) =
when compiles(defaultInitialSize):
if deq.mask == 0:
initImpl(deq, defaultInitialSize)
proc initDeque*[T](initialSize: int = defaultInitialSize): Deque[T] =
## Creates a new empty deque.
##
## Optionally, the initial capacity can be reserved via `initialSize`
## as a performance optimization
## (default: `defaultInitialSize <#defaultInitialSize>`_).
## The length of a newly created deque will still be 0.
##
## **See also:**
## * `toDeque proc <#toDeque,openArray[T]>`_
result.initImpl(initialSize)
proc toDeque*[T](x: openArray[T]): Deque[T] {.since: (1, 3).} =
## Creates a new deque that contains the elements of `x` (in the same order).
##
## **See also:**
## * `initDeque proc <#initDeque,int>`_
runnableExamples:
let a = toDeque([7, 8, 9])
assert len(a) == 3
assert $a == "[7, 8, 9]"
result.initImpl(x.len)
for item in items(x):
result.addLast(item)
proc len*[T](deq: Deque[T]): int {.inline.} =
## Returns the number of elements of `deq`.
result = deq.count
template emptyCheck(deq) =
# Bounds check for the regular deque access.
when compileOption("boundChecks"):
if unlikely(deq.count < 1):
raise newException(IndexDefect, "Empty deque.")
template xBoundsCheck(deq, i) =
# Bounds check for the array like accesses.
when compileOption("boundChecks"): # `-d:danger` or `--checks:off` should disable this.
if unlikely(i >= deq.count): # x < deq.low is taken care by the Natural parameter
raise newException(IndexDefect,
"Out of bounds: " & $i & " > " & $(deq.count - 1))
if unlikely(i < 0): # when used with BackwardsIndex
raise newException(IndexDefect,
"Out of bounds: " & $i & " < 0")
proc `[]`*[T](deq: Deque[T], i: Natural): lent T {.inline.} =
## Accesses the `i`-th element of `deq`.
runnableExamples:
let a = [10, 20, 30, 40, 50].toDeque
assert a[0] == 10
assert a[3] == 40
doAssertRaises(IndexDefect, echo a[8])
xBoundsCheck(deq, i)
return deq.data[(deq.head + i) and deq.mask]
proc `[]`*[T](deq: var Deque[T], i: Natural): var T {.inline.} =
## Accesses the `i`-th element of `deq` and returns a mutable
## reference to it.
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
inc(a[0])
assert a[0] == 11
xBoundsCheck(deq, i)
return deq.data[(deq.head + i) and deq.mask]
proc `[]=`*[T](deq: var Deque[T], i: Natural, val: sink T) {.inline.} =
## Sets the `i`-th element of `deq` to `val`.
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
a[0] = 99
a[3] = 66
assert $a == "[99, 20, 30, 66, 50]"
checkIfInitialized(deq)
xBoundsCheck(deq, i)
deq.data[(deq.head + i) and deq.mask] = val
proc `[]`*[T](deq: Deque[T], i: BackwardsIndex): lent T {.inline.} =
## Accesses the backwards indexed `i`-th element.
##
## `deq[^1]` is the last element.
runnableExamples:
let a = [10, 20, 30, 40, 50].toDeque
assert a[^1] == 50
assert a[^4] == 20
doAssertRaises(IndexDefect, echo a[^9])
xBoundsCheck(deq, deq.len - int(i))
return deq[deq.len - int(i)]
proc `[]`*[T](deq: var Deque[T], i: BackwardsIndex): var T {.inline.} =
## Accesses the backwards indexed `i`-th element and returns a mutable
## reference to it.
##
## `deq[^1]` is the last element.
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
inc(a[^1])
assert a[^1] == 51
xBoundsCheck(deq, deq.len - int(i))
return deq[deq.len - int(i)]
proc `[]=`*[T](deq: var Deque[T], i: BackwardsIndex, x: sink T) {.inline.} =
## Sets the backwards indexed `i`-th element of `deq` to `x`.
##
## `deq[^1]` is the last element.
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
a[^1] = 99
a[^3] = 77
assert $a == "[10, 20, 77, 40, 99]"
checkIfInitialized(deq)
xBoundsCheck(deq, deq.len - int(i))
deq[deq.len - int(i)] = x
iterator items*[T](deq: Deque[T]): lent T =
## Yields every element of `deq`.
##
## **See also:**
## * `mitems iterator <#mitems,Deque[T]>`_
runnableExamples:
from std/sequtils import toSeq
let a = [10, 20, 30, 40, 50].toDeque
assert toSeq(a.items) == @[10, 20, 30, 40, 50]
var i = deq.head
for c in 0 ..< deq.count:
yield deq.data[i]
i = (i + 1) and deq.mask
iterator mitems*[T](deq: var Deque[T]): var T =
## Yields every element of `deq`, which can be modified.
##
## **See also:**
## * `items iterator <#items,Deque[T]>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
for x in mitems(a):
x = 5 * x - 1
assert $a == "[49, 99, 149, 199, 249]"
var i = deq.head
for c in 0 ..< deq.count:
yield deq.data[i]
i = (i + 1) and deq.mask
iterator pairs*[T](deq: Deque[T]): tuple[key: int, val: T] =
## Yields every `(position, value)`-pair of `deq`.
runnableExamples:
from std/sequtils import toSeq
let a = [10, 20, 30].toDeque
assert toSeq(a.pairs) == @[(0, 10), (1, 20), (2, 30)]
var i = deq.head
for c in 0 ..< deq.count:
yield (c, deq.data[i])
i = (i + 1) and deq.mask
proc contains*[T](deq: Deque[T], item: T): bool {.inline.} =
## Returns true if `item` is in `deq` or false if not found.
##
## Usually used via the `in` operator.
## It is the equivalent of `deq.find(item) >= 0`.
runnableExamples:
let q = [7, 9].toDeque
assert 7 in q
assert q.contains(7)
assert 8 notin q
for e in deq:
if e == item: return true
return false
proc expandIfNeeded[T](deq: var Deque[T]) =
checkIfInitialized(deq)
var cap = deq.mask + 1
if unlikely(deq.count >= cap):
var n = newSeq[T](cap * 2)
var i = 0
for x in mitems(deq):
when nimVM: n[i] = x # workaround for VM bug
else: n[i] = move(x)
inc i
deq.data = move(n)
deq.mask = cap * 2 - 1
deq.tail = deq.count
deq.head = 0
proc addFirst*[T](deq: var Deque[T], item: sink T) =
## Adds an `item` to the beginning of `deq`.
##
## **See also:**
## * `addLast proc <#addLast,Deque[T],T>`_
runnableExamples:
var a = initDeque[int]()
for i in 1 .. 5:
a.addFirst(10 * i)
assert $a == "[50, 40, 30, 20, 10]"
expandIfNeeded(deq)
inc deq.count
deq.head = (deq.head - 1) and deq.mask
deq.data[deq.head] = item
proc addLast*[T](deq: var Deque[T], item: sink T) =
## Adds an `item` to the end of `deq`.
##
## **See also:**
## * `addFirst proc <#addFirst,Deque[T],T>`_
runnableExamples:
var a = initDeque[int]()
for i in 1 .. 5:
a.addLast(10 * i)
assert $a == "[10, 20, 30, 40, 50]"
expandIfNeeded(deq)
inc deq.count
deq.data[deq.tail] = item
deq.tail = (deq.tail + 1) and deq.mask
proc peekFirst*[T](deq: Deque[T]): lent T {.inline.} =
## Returns the first element of `deq`, but does not remove it from the deque.
##
## **See also:**
## * `peekFirst proc <#peekFirst,Deque[T]_2>`_ which returns a mutable reference
## * `peekLast proc <#peekLast,Deque[T]>`_
runnableExamples:
let a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
assert a.peekFirst == 10
assert len(a) == 5
emptyCheck(deq)
result = deq.data[deq.head]
proc peekLast*[T](deq: Deque[T]): lent T {.inline.} =
## Returns the last element of `deq`, but does not remove it from the deque.
##
## **See also:**
## * `peekLast proc <#peekLast,Deque[T]_2>`_ which returns a mutable reference
## * `peekFirst proc <#peekFirst,Deque[T]>`_
runnableExamples:
let a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
assert a.peekLast == 50
assert len(a) == 5
emptyCheck(deq)
result = deq.data[(deq.tail - 1) and deq.mask]
proc peekFirst*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} =
## Returns a mutable reference to the first element of `deq`,
## but does not remove it from the deque.
##
## **See also:**
## * `peekFirst proc <#peekFirst,Deque[T]>`_
## * `peekLast proc <#peekLast,Deque[T]_2>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
a.peekFirst() = 99
assert $a == "[99, 20, 30, 40, 50]"
emptyCheck(deq)
result = deq.data[deq.head]
proc peekLast*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} =
## Returns a mutable reference to the last element of `deq`,
## but does not remove it from the deque.
##
## **See also:**
## * `peekFirst proc <#peekFirst,Deque[T]_2>`_
## * `peekLast proc <#peekLast,Deque[T]>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
a.peekLast() = 99
assert $a == "[10, 20, 30, 40, 99]"
emptyCheck(deq)
result = deq.data[(deq.tail - 1) and deq.mask]
template destroy(x: untyped) =
reset(x)
proc popFirst*[T](deq: var Deque[T]): T {.inline, discardable.} =
## Removes and returns the first element of the `deq`.
##
## See also:
## * `popLast proc <#popLast,Deque[T]>`_
## * `shrink proc <#shrink,Deque[T],int,int>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
assert a.popFirst == 10
assert $a == "[20, 30, 40, 50]"
emptyCheck(deq)
dec deq.count
result = move deq.data[deq.head]
deq.head = (deq.head + 1) and deq.mask
proc popLast*[T](deq: var Deque[T]): T {.inline, discardable.} =
## Removes and returns the last element of the `deq`.
##
## **See also:**
## * `popFirst proc <#popFirst,Deque[T]>`_
## * `shrink proc <#shrink,Deque[T],int,int>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
assert a.popLast == 50
assert $a == "[10, 20, 30, 40]"
emptyCheck(deq)
dec deq.count
deq.tail = (deq.tail - 1) and deq.mask
result = move deq.data[deq.tail]
proc clear*[T](deq: var Deque[T]) {.inline.} =
## Resets the deque so that it is empty.
##
## **See also:**
## * `shrink proc <#shrink,Deque[T],int,int>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
clear(a)
assert len(a) == 0
for el in mitems(deq): destroy(el)
deq.count = 0
deq.tail = deq.head
proc shrink*[T](deq: var Deque[T], fromFirst = 0, fromLast = 0) =
## Removes `fromFirst` elements from the front of the deque and
## `fromLast` elements from the back.
##
## If the supplied number of elements exceeds the total number of elements
## in the deque, the deque will remain empty.
##
## **See also:**
## * `clear proc <#clear,Deque[T]>`_
## * `popFirst proc <#popFirst,Deque[T]>`_
## * `popLast proc <#popLast,Deque[T]>`_
runnableExamples:
var a = [10, 20, 30, 40, 50].toDeque
assert $a == "[10, 20, 30, 40, 50]"
a.shrink(fromFirst = 2, fromLast = 1)
assert $a == "[30, 40]"
if fromFirst + fromLast > deq.count:
clear(deq)
return
for i in 0 ..< fromFirst:
destroy(deq.data[deq.head])
deq.head = (deq.head + 1) and deq.mask
for i in 0 ..< fromLast:
destroy(deq.data[deq.tail])
deq.tail = (deq.tail - 1) and deq.mask
dec deq.count, fromFirst + fromLast
proc `$`*[T](deq: Deque[T]): string =
## Turns a deque into its string representation.
runnableExamples:
let a = [10, 20, 30].toDeque
assert $a == "[10, 20, 30]"
result = "["
for x in deq:
if result.len > 1: result.add(", ")
result.addQuoted(x)
result.add("]")
|