1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
#
#
# Nim's Runtime Library
# (c) Copyright 2016 Yuriy Glukhov
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
## The `heapqueue` module implements a
## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
## for all indices `k` (counting elements from 0). The interesting property of a heap is that
## `a[0]` is always its smallest element.
##
## Basic usage
## -----------
##
runnableExamples:
var heap = [8, 2].toHeapQueue
heap.push(5)
# the first element is the lowest element
assert heap[0] == 2
# remove and return the lowest element
assert heap.pop() == 2
# the lowest element remaining is 5
assert heap[0] == 5
## Usage with custom objects
## -------------------------
## To use a `HeapQueue` with a custom object, the `<` operator must be
## implemented.
runnableExamples:
type Job = object
priority: int
proc `<`(a, b: Job): bool = a.priority < b.priority
var jobs = initHeapQueue[Job]()
jobs.push(Job(priority: 1))
jobs.push(Job(priority: 2))
assert jobs[0].priority == 1
import std/private/since
when defined(nimPreviewSlimSystem):
import std/assertions
type HeapQueue*[T] = object
## A heap queue, commonly known as a priority queue.
data: seq[T]
proc initHeapQueue*[T](): HeapQueue[T] =
## Creates a new empty heap.
##
## Heaps are initialized by default, so it is not necessary to call
## this function explicitly.
##
## **See also:**
## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
result = default(HeapQueue[T])
proc len*[T](heap: HeapQueue[T]): int {.inline.} =
## Returns the number of elements of `heap`.
runnableExamples:
let heap = [9, 5, 8].toHeapQueue
assert heap.len == 3
heap.data.len
proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
## Accesses the i-th element of `heap`.
heap.data[i]
iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} =
## Iterates over each item of `heap`.
let L = len(heap)
for i in 0 .. high(heap.data):
yield heap.data[i]
assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it")
proc heapCmp[T](x, y: T): bool {.inline.} = x < y
proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
## is the index of a leaf with a possibly out-of-order value. Restores the
## heap invariant.
var pos = p
let newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
let parentpos = (pos - 1) shr 1
let parent = heap[parentpos]
if heapCmp(newitem, parent):
heap.data[pos] = parent
pos = parentpos
else:
break
heap.data[pos] = newitem
proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
# This is faster when the element should be close to the bottom.
let endpos = len(heap)
var pos = p
let startpos = pos
let newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
var childpos = 2 * pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
let rightpos = childpos + 1
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
childpos = rightpos
# Move the smaller child up.
heap.data[pos] = heap[childpos]
pos = childpos
childpos = 2 * pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap.data[pos] = newitem
siftup(heap, startpos, pos)
proc siftdown[T](heap: var HeapQueue[T], p: int) =
let endpos = len(heap)
var pos = p
let newitem = heap[pos]
var childpos = 2 * pos + 1
while childpos < endpos:
let rightpos = childpos + 1
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
childpos = rightpos
if not heapCmp(heap[childpos], newitem):
break
heap.data[pos] = heap[childpos]
pos = childpos
childpos = 2 * pos + 1
heap.data[pos] = newitem
proc push*[T](heap: var HeapQueue[T], item: sink T) =
## Pushes `item` onto `heap`, maintaining the heap invariant.
heap.data.add(item)
siftup(heap, 0, len(heap) - 1)
proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
## Creates a new HeapQueue that contains the elements of `x`.
##
## **See also:**
## * `initHeapQueue proc <#initHeapQueue>`_
runnableExamples:
var heap = [9, 5, 8].toHeapQueue
assert heap.pop() == 5
assert heap[0] == 8
# see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
result.data = @x
for i in countdown(x.len div 2 - 1, 0):
siftdown(result, i)
proc pop*[T](heap: var HeapQueue[T]): T =
## Pops and returns the smallest item from `heap`,
## maintaining the heap invariant.
runnableExamples:
var heap = [9, 5, 8].toHeapQueue
assert heap.pop() == 5
let lastelt = heap.data.pop()
if heap.len > 0:
result = heap[0]
heap.data[0] = lastelt
siftdownToBottom(heap, 0)
else:
result = lastelt
proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
## Linear scan to find the index of the item `x` or -1 if not found.
runnableExamples:
let heap = [9, 5, 8].toHeapQueue
assert heap.find(5) == 0
assert heap.find(9) == 1
assert heap.find(777) == -1
result = -1
for i in 0 ..< heap.len:
if heap[i] == x: return i
proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} =
## Returns true if `x` is in `heap` or false if not found. This is a shortcut
## for `find(heap, x) >= 0`.
result = find(heap, x) >= 0
proc del*[T](heap: var HeapQueue[T], index: Natural) =
## Removes the element at `index` from `heap`, maintaining the heap invariant.
runnableExamples:
var heap = [9, 5, 8].toHeapQueue
heap.del(1)
assert heap[0] == 5
assert heap[1] == 8
swap(heap.data[^1], heap.data[index])
let newLen = heap.len - 1
heap.data.setLen(newLen)
if index < newLen:
siftdownToBottom(heap, index)
proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
## Pops and returns the current smallest value, and add the new item.
## This is more efficient than `pop()` followed by `push()`, and can be
## more appropriate when using a fixed-size heap. Note that the value
## returned may be larger than `item`! That constrains reasonable uses of
## this routine unless written as part of a conditional replacement.
##
## **See also:**
## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
runnableExamples:
var heap = [5, 12].toHeapQueue
assert heap.replace(6) == 5
assert heap.len == 2
assert heap[0] == 6
assert heap.replace(4) == 6
result = heap[0]
heap.data[0] = item
siftdown(heap, 0)
proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
## Fast version of a `push()` followed by a `pop()`.
##
## **See also:**
## * `replace proc <#replace,HeapQueue[T],sinkT>`_
runnableExamples:
var heap = [5, 12].toHeapQueue
assert heap.pushpop(6) == 5
assert heap.len == 2
assert heap[0] == 6
assert heap.pushpop(4) == 4
result = item
if heap.len > 0 and heapCmp(heap.data[0], result):
swap(result, heap.data[0])
siftdown(heap, 0)
proc clear*[T](heap: var HeapQueue[T]) =
## Removes all elements from `heap`, making it empty.
runnableExamples:
var heap = [9, 5, 8].toHeapQueue
heap.clear()
assert heap.len == 0
heap.data.setLen(0)
proc `$`*[T](heap: HeapQueue[T]): string =
## Turns a heap into its string representation.
runnableExamples:
let heap = [1, 2].toHeapQueue
assert $heap == "[1, 2]"
result = "["
for x in heap.data:
if result.len > 1: result.add(", ")
result.addQuoted(x)
result.add("]")
|