summary refs log tree commit diff stats
path: root/lib/pure/collections/lists.nim
blob: 3e54dc02bbe7c43fe94e0734fd90dc632b295499 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#
#
#            Nimrod's Runtime Library
#        (c) Copyright 2011 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Implementation of singly and doubly linked lists. Because it makes no sense
## to do so, the 'next' and 'prev' pointers are not hidden from you and can
## be manipulated directly for efficiency.

type
  TDoublyLinkedNode* {.pure, 
      final.}[T] = object ## a node a doubly linked list consists of
    next*, prev*: ref TDoublyLinkedNode[T]
    value*: T
  PDoublyLinkedNode*[T] = ref TDoublyLinkedNode[T]

  TSinglyLinkedNode* {.pure, 
      final.}[T] = object ## a node a singly linked list consists of
    next*: ref TSinglyLinkedNode[T]
    value*: T
  PSinglyLinkedNode*[T] = ref TSinglyLinkedNode[T]

  TSinglyLinkedList* {.pure, final.}[T] = object ## a singly linked list
    head*, tail*: PSinglyLinkedNode[T]
  
  TDoublyLinkedList* {.pure, final.}[T] = object ## a doubly linked list
    head*, tail*: PDoublyLinkedNode[T]

  TSinglyLinkedRing* {.pure, final.}[T] = object ## a singly linked ring
    head*: PSinglyLinkedNode[T]
  
  TDoublyLinkedRing* {.pure, final.}[T] = object ## a doubly linked ring
    head*: PDoublyLinkedNode[T]

proc initSinglyLinkedList*[T](): TSinglyLinkedList[T] =
  ## creates a new singly linked list that is empty.
  nil

proc initDoublyLinkedList*[T](): TDoublyLinkedList[T] =
  ## creates a new doubly linked list that is empty.
  nil

proc initSinglyLinkedRing*[T](): TSinglyLinkedRing[T] =
  ## creates a new singly linked ring that is empty.
  nil

proc initDoublyLinkedRing*[T](): TDoublyLinkedRing[T] =
  ## creates a new doubly linked ring that is empty.
  nil

proc newDoublyLinkedNode*[T](value: T): PDoublyLinkedNode[T] =
  ## creates a new doubly linked node with the given `value`.
  new(result)
  result.value = value

proc newSinglyLinkedNode*[T](value: T): PSinglyLinkedNode[T] =
  ## creates a new singly linked node with the given `value`.
  new(result)
  result.value = value

template itemsListImpl() =
  var it = L.head
  while it != nil:
    yield it.value
    it = it.next

template itemsRingImpl() =
  var it = L.head
  if it != nil:
    while true:
      yield it.value
      it = it.next
      if it == L.head: break

template nodesListImpl() =
  var it = L.head
  while it != nil:
    var nxt = it.next
    yield it
    it = nxt

template nodesRingImpl() =
  var it = L.head
  if it != nil:
    while true:
      var nxt = it.next
      yield it
      it = nxt
      if it == L.head: break

template findImpl() =
  for x in nodes(L):
    if x.value == value: return x

iterator items*[T](L: TDoublyLinkedList[T]): T = 
  ## yields every value of `L`.
  itemsListImpl()

iterator items*[T](L: TSinglyLinkedList[T]): T = 
  ## yields every value of `L`.
  itemsListImpl()

iterator items*[T](L: TSinglyLinkedRing[T]): T = 
  ## yields every value of `L`.
  itemsRingImpl()

iterator items*[T](L: TDoublyLinkedRing[T]): T = 
  ## yields every value of `L`.
  itemsRingImpl()

iterator nodes*[T](L: TSinglyLinkedList[T]): PSinglyLinkedNode[T] = 
  ## iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  nodesListImpl()

iterator nodes*[T](L: TDoublyLinkedList[T]): PDoublyLinkedNode[T] = 
  ## iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  nodesListImpl()

iterator nodes*[T](L: TSinglyLinkedRing[T]): PSinglyLinkedNode[T] = 
  ## iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  nodesRingImpl()

iterator nodes*[T](L: TDoublyLinkedRing[T]): PDoublyLinkedNode[T] = 
  ## iterates over every node of `x`. Removing the current node from the
  ## list during traversal is supported.
  nodesRingImpl()

template dollarImpl() =
  result = "["
  for x in nodes(L):
    if result.len > 1: result.add(", ")
    result.add($x.value)
  result.add("]")

proc `$`*[T](L: TSinglyLinkedList[T]): string = 
  ## turns a list into its string representation.
  dollarImpl()

proc `$`*[T](L: TDoublyLinkedList[T]): string = 
  ## turns a list into its string representation.
  dollarImpl()

proc `$`*[T](L: TSinglyLinkedRing[T]): string = 
  ## turns a list into its string representation.
  dollarImpl()

proc `$`*[T](L: TDoublyLinkedRing[T]): string = 
  ## turns a list into its string representation.
  dollarImpl()

proc find*[T](L: TSinglyLinkedList[T], value: T): PSinglyLinkedNode[T] = 
  ## searches in the list for a value. Returns nil if the value does not
  ## exist.
  findImpl()

proc find*[T](L: TDoublyLinkedList[T], value: T): PDoublyLinkedNode[T] = 
  ## searches in the list for a value. Returns nil if the value does not
  ## exist.
  findImpl()

proc find*[T](L: TSinglyLinkedRing[T], value: T): PSinglyLinkedNode[T] = 
  ## searches in the list for a value. Returns nil if the value does not
  ## exist.
  findImpl()

proc find*[T](L: TDoublyLinkedRing[T], value: T): PDoublyLinkedNode[T] = 
  ## searches in the list for a value. Returns nil if the value does not
  ## exist.
  findImpl()

proc contains*[T](L: TSinglyLinkedList[T], value: T): bool {.inline.} = 
  ## searches in the list for a value. Returns false if the value does not
  ## exist, true otherwise.
  result = find(L, value) != nil

proc contains*[T](L: TDoublyLinkedList[T], value: T): bool {.inline.} = 
  ## searches in the list for a value. Returns false if the value does not
  ## exist, true otherwise.
  result = find(L, value) != nil

proc contains*[T](L: TSinglyLinkedRing[T], value: T): bool {.inline.} = 
  ## searches in the list for a value. Returns false if the value does not
  ## exist, true otherwise.
  result = find(L, value) != nil

proc contains*[T](L: TDoublyLinkedRing[T], value: T): bool {.inline.} = 
  ## searches in the list for a value. Returns false if the value does not
  ## exist, true otherwise.
  result = find(L, value) != nil

proc prepend*[T](L: var TSinglyLinkedList[T], 
                 n: PSinglyLinkedNode[T]) {.inline.} = 
  ## prepends a node to `L`. Efficiency: O(1).
  n.next = L.head
  L.head = n

proc prepend*[T](L: var TSinglyLinkedList[T], value: T) {.inline.} = 
  ## prepends a node to `L`. Efficiency: O(1).
  prepend(L, newSinglyLinkedNode(value))
  
proc append*[T](L: var TDoublyLinkedList[T], n: PDoublyLinkedNode[T]) = 
  ## appends a node `n` to `L`. Efficiency: O(1).
  n.next = nil
  n.prev = L.tail
  if L.tail != nil: 
    assert(L.tail.next == nil)
    L.tail.next = n
  L.tail = n
  if L.head == nil: L.head = n

proc append*[T](L: var TDoublyLinkedList[T], value: T) = 
  ## appends a value to `L`. Efficiency: O(1).
  append(L, newDoublyLinkedNode(value))

proc prepend*[T](L: var TDoublyLinkedList[T], n: PDoublyLinkedNode[T]) = 
  ## prepends a node `n` to `L`. Efficiency: O(1).
  n.prev = nil
  n.next = L.head
  if L.head != nil:
    assert(L.head.prev == nil)
    L.head.prev = n
  L.head = n
  if L.tail == nil: L.tail = n

proc prepend*[T](L: var TDoublyLinkedList[T], value: T) = 
  ## prepends a value to `L`. Efficiency: O(1).
  prepend(L, newDoublyLinkedNode(value))
  
proc remove*[T](L: var TDoublyLinkedList[T], n: PDoublyLinkedNode[T]) = 
  ## removes `n` from `L`. Efficiency: O(1).
  if n == L.tail: L.tail = n.prev
  if n == L.head: L.head = n.next
  if n.next != nil: n.next.prev = n.prev
  if n.prev != nil: n.prev.next = n.next


proc prepend*[T](L: var TSinglyLinkedRing[T], n: PSinglyLinkedNode[T]) = 
  ## prepends a node `n` to `L`. Efficiency: O(1).
  if L.head != nil: 
    n.next = L.head    
    L.head.next = n
  else: 
    n.next = n
  L.head = n

proc prepend*[T](L: var TSinglyLinkedRing[T], value: T) = 
  ## prepends a value to `L`. Efficiency: O(1).
  prepend(L, newSinglyLinkedNode(value))

proc append*[T](L: var TDoublyLinkedRing[T], n: PDoublyLinkedNode[T]) = 
  ## appends a node `n` to `L`. Efficiency: O(1).
  if L.head != nil:
    n.next = L.head
    n.prev = L.head.prev
    L.head.prev.next = n
    L.head.prev = n
  else:
    n.prev = n
    n.next = n
    L.head = n

proc append*[T](L: var TDoublyLinkedRing[T], value: T) = 
  ## appends a value to `L`. Efficiency: O(1).
  append(L, newDoublyLinkedNode(value))

proc prepend*[T](L: var TDoublyLinkedRing[T], n: PDoublyLinkedNode[T]) = 
  ## prepends a node `n` to `L`. Efficiency: O(1).
  if L.head != nil: 
    n.next = L.head
    n.prev = L.head.prev
    L.head.prev.next = n
    L.head.prev = n
  else:
    n.prev = n
    n.next = n
  L.head = n

proc prepend*[T](L: var TDoublyLinkedRing[T], value: T) = 
  ## prepends a value to `L`. Efficiency: O(1).
  prepend(L, newDoublyLinkedNode(value))
  
proc remove*[T](L: var TDoublyLinkedRing[T], n: PDoublyLinkedNode[T]) = 
  ## removes `n` from `L`. Efficiency: O(1).
  n.next.prev = n.prev
  n.prev.next = n.next
  if n == L.head: 
    var p = L.head.prev
    if p == L.head: 
      # only one element left:
      L.head = nil
    else:
      L.head = L.head.prev