1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
|
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Implementation of:
## * `singly linked lists <#SinglyLinkedList>`_
## * `doubly linked lists <#DoublyLinkedList>`_
## * `singly linked rings <#SinglyLinkedRing>`_ (circular lists)
## * `doubly linked rings <#DoublyLinkedRing>`_ (circular lists)
##
## # Basic Usage
## Because it makes no sense to do otherwise, the `next` and `prev` pointers
## are not hidden from you and can be manipulated directly for efficiency.
##
## ## Lists
runnableExamples:
var list = initDoublyLinkedList[int]()
let
a = newDoublyLinkedNode[int](3)
b = newDoublyLinkedNode[int](7)
c = newDoublyLinkedNode[int](9)
list.add(a)
list.add(b)
list.prepend(c)
assert a.next == b
assert a.prev == c
assert c.next == a
assert c.next.next == b
assert c.prev == nil
assert b.next == nil
## ## Rings
runnableExamples:
var ring = initSinglyLinkedRing[int]()
let
a = newSinglyLinkedNode[int](3)
b = newSinglyLinkedNode[int](7)
c = newSinglyLinkedNode[int](9)
ring.add(a)
ring.add(b)
ring.prepend(c)
assert c.next == a
assert a.next == b
assert c.next.next == b
assert b.next == c
assert c.next.next.next == c
## # See also
## * `deques module <deques.html>`_ for double-ended queues
import std/private/since
when defined(nimPreviewSlimSystem):
import std/assertions
type
DoublyLinkedNodeObj*[T] = object
## A node of a doubly linked list.
##
## It consists of a `value` field, and pointers to `next` and `prev`.
next*: DoublyLinkedNode[T]
prev* {.cursor.}: DoublyLinkedNode[T]
value*: T
DoublyLinkedNode*[T] = ref DoublyLinkedNodeObj[T]
SinglyLinkedNodeObj*[T] = object
## A node of a singly linked list.
##
## It consists of a `value` field, and a pointer to `next`.
next*: SinglyLinkedNode[T]
value*: T
SinglyLinkedNode*[T] = ref SinglyLinkedNodeObj[T]
SinglyLinkedList*[T] = object
## A singly linked list.
head*: SinglyLinkedNode[T]
tail* {.cursor.}: SinglyLinkedNode[T]
DoublyLinkedList*[T] = object
## A doubly linked list.
head*: DoublyLinkedNode[T]
tail* {.cursor.}: DoublyLinkedNode[T]
SinglyLinkedRing*[T] = object
## A singly linked ring.
head*: SinglyLinkedNode[T]
tail* {.cursor.}: SinglyLinkedNode[T]
DoublyLinkedRing*[T] = object
## A doubly linked ring.
head*: DoublyLinkedNode[T]
SomeLinkedList*[T] = SinglyLinkedList[T] | DoublyLinkedList[T]
SomeLinkedRing*[T] = SinglyLinkedRing[T] | DoublyLinkedRing[T]
SomeLinkedCollection*[T] = SomeLinkedList[T] | SomeLinkedRing[T]
SomeLinkedNode*[T] = SinglyLinkedNode[T] | DoublyLinkedNode[T]
proc initSinglyLinkedList*[T](): SinglyLinkedList[T] =
## Creates a new singly linked list that is empty.
##
## Singly linked lists are initialized by default, so it is not necessary to
## call this function explicitly.
runnableExamples:
let a = initSinglyLinkedList[int]()
discard
proc initDoublyLinkedList*[T](): DoublyLinkedList[T] =
## Creates a new doubly linked list that is empty.
##
## Doubly linked lists are initialized by default, so it is not necessary to
## call this function explicitly.
runnableExamples:
let a = initDoublyLinkedList[int]()
discard
proc initSinglyLinkedRing*[T](): SinglyLinkedRing[T] =
## Creates a new singly linked ring that is empty.
##
## Singly linked rings are initialized by default, so it is not necessary to
## call this function explicitly.
runnableExamples:
let a = initSinglyLinkedRing[int]()
discard
proc initDoublyLinkedRing*[T](): DoublyLinkedRing[T] =
## Creates a new doubly linked ring that is empty.
##
## Doubly linked rings are initialized by default, so it is not necessary to
## call this function explicitly.
runnableExamples:
let a = initDoublyLinkedRing[int]()
discard
proc newDoublyLinkedNode*[T](value: T): DoublyLinkedNode[T] =
## Creates a new doubly linked node with the given `value`.
runnableExamples:
let n = newDoublyLinkedNode[int](5)
assert n.value == 5
new(result)
result.value = value
proc newSinglyLinkedNode*[T](value: T): SinglyLinkedNode[T] =
## Creates a new singly linked node with the given `value`.
runnableExamples:
let n = newSinglyLinkedNode[int](5)
assert n.value == 5
new(result)
result.value = value
func toSinglyLinkedList*[T](elems: openArray[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
## Creates a new `SinglyLinkedList` from the members of `elems`.
runnableExamples:
from std/sequtils import toSeq
let a = [1, 2, 3, 4, 5].toSinglyLinkedList
assert a.toSeq == [1, 2, 3, 4, 5]
result = initSinglyLinkedList[T]()
for elem in elems.items:
result.add(elem)
func toDoublyLinkedList*[T](elems: openArray[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
## Creates a new `DoublyLinkedList` from the members of `elems`.
runnableExamples:
from std/sequtils import toSeq
let a = [1, 2, 3, 4, 5].toDoublyLinkedList
assert a.toSeq == [1, 2, 3, 4, 5]
result = initDoublyLinkedList[T]()
for elem in elems.items:
result.add(elem)
template itemsListImpl() {.dirty.} =
var it {.cursor.} = L.head
while it != nil:
yield it.value
it = it.next
template itemsRingImpl() {.dirty.} =
var it {.cursor.} = L.head
if it != nil:
while true:
yield it.value
it = it.next
if it == L.head: break
iterator items*[T](L: SomeLinkedList[T]): T =
## Yields every value of `L`.
##
## **See also:**
## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
runnableExamples:
from std/sugar import collect
from std/sequtils import toSeq
let a = collect(initSinglyLinkedList):
for i in 1..3: 10 * i
assert toSeq(items(a)) == toSeq(a)
assert toSeq(a) == @[10, 20, 30]
itemsListImpl()
iterator items*[T](L: SomeLinkedRing[T]): T =
## Yields every value of `L`.
##
## **See also:**
## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
runnableExamples:
from std/sugar import collect
from std/sequtils import toSeq
let a = collect(initSinglyLinkedRing):
for i in 1..3: 10 * i
assert toSeq(items(a)) == toSeq(a)
assert toSeq(a) == @[10, 20, 30]
itemsRingImpl()
iterator mitems*[T](L: var SomeLinkedList[T]): var T =
## Yields every value of `L` so that you can modify it.
##
## **See also:**
## * `items iterator <#items.i,SomeLinkedList[T]>`_
## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_
runnableExamples:
var a = initSinglyLinkedList[int]()
for i in 1..5:
a.add(10 * i)
assert $a == "[10, 20, 30, 40, 50]"
for x in mitems(a):
x = 5 * x - 1
assert $a == "[49, 99, 149, 199, 249]"
itemsListImpl()
iterator mitems*[T](L: var SomeLinkedRing[T]): var T =
## Yields every value of `L` so that you can modify it.
##
## **See also:**
## * `items iterator <#items.i,SomeLinkedRing[T]>`_
## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_
runnableExamples:
var a = initSinglyLinkedRing[int]()
for i in 1..5:
a.add(10 * i)
assert $a == "[10, 20, 30, 40, 50]"
for x in mitems(a):
x = 5 * x - 1
assert $a == "[49, 99, 149, 199, 249]"
itemsRingImpl()
iterator nodes*[T](L: SomeLinkedList[T]): SomeLinkedNode[T] =
## Iterates over every node of `x`. Removing the current node from the
## list during traversal is supported.
##
## **See also:**
## * `items iterator <#items.i,SomeLinkedList[T]>`_
## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_
runnableExamples:
var a = initDoublyLinkedList[int]()
for i in 1..5:
a.add(10 * i)
assert $a == "[10, 20, 30, 40, 50]"
for x in nodes(a):
if x.value == 30:
a.remove(x)
else:
x.value = 5 * x.value - 1
assert $a == "[49, 99, 199, 249]"
var it {.cursor.} = L.head
while it != nil:
let nxt = it.next
yield it
it = nxt
iterator nodes*[T](L: SomeLinkedRing[T]): SomeLinkedNode[T] =
## Iterates over every node of `x`. Removing the current node from the
## list during traversal is supported.
##
## **See also:**
## * `items iterator <#items.i,SomeLinkedRing[T]>`_
## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_
runnableExamples:
var a = initDoublyLinkedRing[int]()
for i in 1..5:
a.add(10 * i)
assert $a == "[10, 20, 30, 40, 50]"
for x in nodes(a):
if x.value == 30:
a.remove(x)
else:
x.value = 5 * x.value - 1
assert $a == "[49, 99, 199, 249]"
var it {.cursor.} = L.head
if it != nil:
while true:
let nxt = it.next
yield it
it = nxt
if it == L.head: break
proc `$`*[T](L: SomeLinkedCollection[T]): string =
## Turns a list into its string representation for logging and printing.
runnableExamples:
let a = [1, 2, 3, 4].toSinglyLinkedList
assert $a == "[1, 2, 3, 4]"
result = "["
for x in nodes(L):
if result.len > 1: result.add(", ")
result.addQuoted(x.value)
result.add("]")
proc find*[T](L: SomeLinkedCollection[T], value: T): SomeLinkedNode[T] =
## Searches in the list for a value. Returns `nil` if the value does not
## exist.
##
## **See also:**
## * `contains proc <#contains,SomeLinkedCollection[T],T>`_
runnableExamples:
let a = [9, 8].toSinglyLinkedList
assert a.find(9).value == 9
assert a.find(1) == nil
for x in nodes(L):
if x.value == value: return x
proc contains*[T](L: SomeLinkedCollection[T], value: T): bool {.inline.} =
## Searches in the list for a value. Returns `false` if the value does not
## exist, `true` otherwise. This allows the usage of the `in` and `notin`
## operators.
##
## **See also:**
## * `find proc <#find,SomeLinkedCollection[T],T>`_
runnableExamples:
let a = [9, 8].toSinglyLinkedList
assert a.contains(9)
assert 8 in a
assert(not a.contains(1))
assert 2 notin a
result = find(L, value) != nil
proc prepend*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
## Prepends a shallow copy of `b` to the beginning of `a`.
##
## **See also:**
## * `prependMoved proc <#prependMoved,T,T>`_
## for moving the second list instead of copying
runnableExamples:
from std/sequtils import toSeq
var a = [4, 5].toSinglyLinkedList
let b = [1, 2, 3].toSinglyLinkedList
a.prepend(b)
assert a.toSeq == [1, 2, 3, 4, 5]
assert b.toSeq == [1, 2, 3]
a.prepend(a)
assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
var tmp = b.copy
tmp.addMoved(a)
a = tmp
proc prependMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
## Moves `b` before the head of `a`. Efficiency: O(1).
## Note that `b` becomes empty after the operation unless it has the same address as `a`.
## Self-prepending results in a cycle.
##
## **See also:**
## * `prepend proc <#prepend,T,T>`_
## for prepending a copy of a list
runnableExamples:
import std/[sequtils, enumerate, sugar]
var
a = [4, 5].toSinglyLinkedList
b = [1, 2, 3].toSinglyLinkedList
c = [0, 1].toSinglyLinkedList
a.prependMoved(b)
assert a.toSeq == [1, 2, 3, 4, 5]
assert b.toSeq == []
c.prependMoved(c)
let s = collect:
for i, ci in enumerate(c):
if i == 6: break
ci
assert s == [0, 1, 0, 1, 0, 1]
b.addMoved(a)
when defined(js): # XXX: swap broken in js; bug #16771
(b, a) = (a, b)
else: swap a, b
proc add*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} =
## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedList[int]()
let n = newSinglyLinkedNode[int](9)
a.add(n)
assert a.contains(9)
n.next = nil
if L.tail != nil:
assert(L.tail.next == nil)
L.tail.next = n
L.tail = n
if L.head == nil: L.head = n
proc add*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
## Appends (adds to the end) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedList[int]()
a.add(9)
a.add(8)
assert a.contains(9)
add(L, newSinglyLinkedNode(value))
proc prepend*[T](L: var SinglyLinkedList[T],
n: SinglyLinkedNode[T]) {.inline.} =
## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedList[int]()
let n = newSinglyLinkedNode[int](9)
a.prepend(n)
assert a.contains(9)
n.next = L.head
L.head = n
if L.tail == nil: L.tail = n
proc prepend*[T](L: var SinglyLinkedList[T], value: T) {.inline.} =
## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## for prepending a node
runnableExamples:
var a = initSinglyLinkedList[int]()
a.prepend(9)
a.prepend(8)
assert a.contains(9)
prepend(L, newSinglyLinkedNode(value))
func copy*[T](a: SinglyLinkedList[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} =
## Creates a shallow copy of `a`.
runnableExamples:
from std/sequtils import toSeq
type Foo = ref object
x: int
var
f = Foo(x: 1)
a = [f].toSinglyLinkedList
let b = a.copy
a.add([f].toSinglyLinkedList)
assert a.toSeq == [f, f]
assert b.toSeq == [f] # b isn't modified...
f.x = 42
assert a.head.value.x == 42
assert b.head.value.x == 42 # ... but the elements are not deep copied
let c = [1, 2, 3].toSinglyLinkedList
assert $c == $c.copy
result = initSinglyLinkedList[T]()
for x in a.items:
result.add(x)
proc addMoved*[T](a, b: var SinglyLinkedList[T]) {.since: (1, 5, 1).} =
## Moves `b` to the end of `a`. Efficiency: O(1).
## Note that `b` becomes empty after the operation unless it has the same address as `a`.
## Self-adding results in a cycle.
##
## **See also:**
## * `add proc <#add,T,T>`_ for adding a copy of a list
runnableExamples:
import std/[sequtils, enumerate, sugar]
var
a = [1, 2, 3].toSinglyLinkedList
b = [4, 5].toSinglyLinkedList
c = [0, 1].toSinglyLinkedList
a.addMoved(b)
assert a.toSeq == [1, 2, 3, 4, 5]
assert b.toSeq == []
c.addMoved(c)
let s = collect:
for i, ci in enumerate(c):
if i == 6: break
ci
assert s == [0, 1, 0, 1, 0, 1]
if b.head != nil:
if a.head == nil:
a.head = b.head
else:
a.tail.next = b.head
a.tail = b.tail
if a.addr != b.addr:
b.head = nil
b.tail = nil
proc add*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedList[int]()
let n = newDoublyLinkedNode[int](9)
a.add(n)
assert a.contains(9)
n.next = nil
n.prev = L.tail
if L.tail != nil:
assert(L.tail.next == nil)
L.tail.next = n
L.tail = n
if L.head == nil: L.head = n
proc add*[T](L: var DoublyLinkedList[T], value: T) =
## Appends (adds to the end) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedList[int]()
a.add(9)
a.add(8)
assert a.contains(9)
add(L, newDoublyLinkedNode(value))
proc prepend*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedList[int]()
let n = newDoublyLinkedNode[int](9)
a.prepend(n)
assert a.contains(9)
n.prev = nil
n.next = L.head
if L.head != nil:
assert(L.head.prev == nil)
L.head.prev = n
L.head = n
if L.tail == nil: L.tail = n
proc prepend*[T](L: var DoublyLinkedList[T], value: T) =
## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedList[int]()
a.prepend(9)
a.prepend(8)
assert a.contains(9)
prepend(L, newDoublyLinkedNode(value))
func copy*[T](a: DoublyLinkedList[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} =
## Creates a shallow copy of `a`.
runnableExamples:
from std/sequtils import toSeq
type Foo = ref object
x: int
var
f = Foo(x: 1)
a = [f].toDoublyLinkedList
let b = a.copy
a.add([f].toDoublyLinkedList)
assert a.toSeq == [f, f]
assert b.toSeq == [f] # b isn't modified...
f.x = 42
assert a.head.value.x == 42
assert b.head.value.x == 42 # ... but the elements are not deep copied
let c = [1, 2, 3].toDoublyLinkedList
assert $c == $c.copy
result = initDoublyLinkedList[T]()
for x in a.items:
result.add(x)
proc addMoved*[T](a, b: var DoublyLinkedList[T]) {.since: (1, 5, 1).} =
## Moves `b` to the end of `a`. Efficiency: O(1).
## Note that `b` becomes empty after the operation unless it has the same address as `a`.
## Self-adding results in a cycle.
##
## **See also:**
## * `add proc <#add,T,T>`_
## for adding a copy of a list
runnableExamples:
import std/[sequtils, enumerate, sugar]
var
a = [1, 2, 3].toDoublyLinkedList
b = [4, 5].toDoublyLinkedList
c = [0, 1].toDoublyLinkedList
a.addMoved(b)
assert a.toSeq == [1, 2, 3, 4, 5]
assert b.toSeq == []
c.addMoved(c)
let s = collect:
for i, ci in enumerate(c):
if i == 6: break
ci
assert s == [0, 1, 0, 1, 0, 1]
if b.head != nil:
if a.head == nil:
a.head = b.head
else:
b.head.prev = a.tail
a.tail.next = b.head
a.tail = b.tail
if a.addr != b.addr:
b.head = nil
b.tail = nil
proc add*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} =
## Appends a shallow copy of `b` to the end of `a`.
##
## **See also:**
## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
## for moving the second list instead of copying
runnableExamples:
from std/sequtils import toSeq
var a = [1, 2, 3].toSinglyLinkedList
let b = [4, 5].toSinglyLinkedList
a.add(b)
assert a.toSeq == [1, 2, 3, 4, 5]
assert b.toSeq == [4, 5]
a.add(a)
assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
var tmp = b.copy
a.addMoved(tmp)
proc remove*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]): bool {.discardable.} =
## Removes a node `n` from `L`.
## Returns `true` if `n` was found in `L`.
## Efficiency: O(n); the list is traversed until `n` is found.
## Attempting to remove an element not contained in the list is a no-op.
## When the list is cyclic, the cycle is preserved after removal.
runnableExamples:
import std/[sequtils, enumerate, sugar]
var a = [0, 1, 2].toSinglyLinkedList
let n = a.head.next
assert n.value == 1
assert a.remove(n) == true
assert a.toSeq == [0, 2]
assert a.remove(n) == false
assert a.toSeq == [0, 2]
a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
a.remove(a.head)
let s = collect:
for i, ai in enumerate(a):
if i == 4: break
ai
assert s == [2, 2, 2, 2]
if n == L.head:
L.head = n.next
if L.tail.next == n:
L.tail.next = L.head # restore cycle
else:
var prev {.cursor.} = L.head
while prev.next != n and prev.next != nil:
prev = prev.next
if prev.next == nil:
return false
prev.next = n.next
if L.tail == n:
L.tail = prev # update tail if we removed the last node
true
proc remove*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) =
## Removes a node `n` from `L`. Efficiency: O(1).
## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
## otherwise the effects are undefined.
## When the list is cyclic, the cycle is preserved after removal.
runnableExamples:
import std/[sequtils, enumerate, sugar]
var a = [0, 1, 2].toSinglyLinkedList
let n = a.head.next
assert n.value == 1
a.remove(n)
assert a.toSeq == [0, 2]
a.remove(n)
assert a.toSeq == [0, 2]
a.addMoved(a) # cycle: [0, 2, 0, 2, ...]
a.remove(a.head)
let s = collect:
for i, ai in enumerate(a):
if i == 4: break
ai
assert s == [2, 2, 2, 2]
if n == L.tail: L.tail = n.prev
if n == L.head: L.head = n.next
if n.next != nil: n.next.prev = n.prev
if n.prev != nil: n.prev.next = n.next
proc add*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedRing[int]()
let n = newSinglyLinkedNode[int](9)
a.add(n)
assert a.contains(9)
if L.head != nil:
n.next = L.head
assert(L.tail != nil)
L.tail.next = n
else:
n.next = n
L.head = n
L.tail = n
proc add*[T](L: var SinglyLinkedRing[T], value: T) =
## Appends (adds to the end) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for appending a node
## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedRing[int]()
a.add(9)
a.add(8)
assert a.contains(9)
add(L, newSinglyLinkedNode(value))
proc prepend*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) =
## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value
runnableExamples:
var a = initSinglyLinkedRing[int]()
let n = newSinglyLinkedNode[int](9)
a.prepend(n)
assert a.contains(9)
if L.head != nil:
n.next = L.head
assert(L.tail != nil)
L.tail.next = n
else:
n.next = n
L.tail = n
L.head = n
proc prepend*[T](L: var SinglyLinkedRing[T], value: T) =
## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_
## for prepending a node
runnableExamples:
var a = initSinglyLinkedRing[int]()
a.prepend(9)
a.prepend(8)
assert a.contains(9)
prepend(L, newSinglyLinkedNode(value))
proc add*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedRing[int]()
let n = newDoublyLinkedNode[int](9)
a.add(n)
assert a.contains(9)
if L.head != nil:
n.next = L.head
n.prev = L.head.prev
L.head.prev.next = n
L.head.prev = n
else:
n.prev = n
n.next = n
L.head = n
proc add*[T](L: var DoublyLinkedRing[T], value: T) =
## Appends (adds to the end) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedRing[int]()
a.add(9)
a.add(8)
assert a.contains(9)
add(L, newDoublyLinkedNode(value))
proc prepend*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value
## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedRing[int]()
let n = newDoublyLinkedNode[int](9)
a.prepend(n)
assert a.contains(9)
if L.head != nil:
n.next = L.head
n.prev = L.head.prev
L.head.prev.next = n
L.head.prev = n
else:
n.prev = n
n.next = n
L.head = n
proc prepend*[T](L: var DoublyLinkedRing[T], value: T) =
## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1).
##
## **See also:**
## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for appending a node
## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value
## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for prepending a node
## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_
## for removing a node
runnableExamples:
var a = initDoublyLinkedRing[int]()
a.prepend(9)
a.prepend(8)
assert a.contains(9)
prepend(L, newDoublyLinkedNode(value))
proc remove*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) =
## Removes `n` from `L`. Efficiency: O(1).
## This function assumes, for the sake of efficiency, that `n` is contained in `L`,
## otherwise the effects are undefined.
runnableExamples:
var a = initDoublyLinkedRing[int]()
let n = newDoublyLinkedNode[int](5)
a.add(n)
assert 5 in a
a.remove(n)
assert 5 notin a
n.next.prev = n.prev
n.prev.next = n.next
if n == L.head:
let p = L.head.prev
if p == L.head:
# only one element left:
L.head = nil
else:
L.head = p
proc append*[T](a: var (SinglyLinkedList[T] | SinglyLinkedRing[T]),
b: SinglyLinkedList[T] | SinglyLinkedNode[T] | T) =
## Alias for `a.add(b)`.
##
## **See also:**
## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_
## * `add proc <#add,SinglyLinkedList[T],T>`_
## * `add proc <#add,T,T>`_
a.add(b)
proc append*[T](a: var (DoublyLinkedList[T] | DoublyLinkedRing[T]),
b: DoublyLinkedList[T] | DoublyLinkedNode[T] | T) =
## Alias for `a.add(b)`.
##
## **See also:**
## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_
## * `add proc <#add,DoublyLinkedList[T],T>`_
## * `add proc <#add,T,T>`_
a.add(b)
proc appendMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} =
## Alias for `a.addMoved(b)`.
##
## **See also:**
## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_
## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_
a.addMoved(b)
|