summary refs log tree commit diff stats
path: root/lib/pure/collections/sequtils.nim
blob: 5fac1f0af064bccf8ca6d9a49a709f5cfeb92241 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#
#
#            Nim's Runtime Library
#        (c) Copyright 2011 Alex Mitchell
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## :Author: Alex Mitchell
##
## This module implements operations for the built-in `seq`:idx: type which
## were inspired by functional programming languages. If you are looking for
## the typical `map` function which applies a function to every element in a
## sequence, it already exists in the `system <system.html>`_ module in both
## mutable and immutable styles.
##
## Also, for functional style programming you may want to pass `anonymous procs
## <manual.html#anonymous-procs>`_ to procs like ``filter`` to reduce typing.
## Anonymous procs can use `the special do notation <manual.html#do-notation>`_
## which is more convenient in certain situations.
##
## **Note**: This interface will change as soon as the compiler supports
## closures and proper coroutines.

when not defined(nimhygiene):
  {.pragma: dirty.}

proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
  ## Takes several sequences' items and returns them inside a new sequence.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let
  ##     s1 = @[1, 2, 3]
  ##     s2 = @[4, 5]
  ##     s3 = @[6, 7]
  ##     total = concat(s1, s2, s3)
  ##   assert total == @[1, 2, 3, 4, 5, 6, 7]
  var L = 0
  for seqitm in items(seqs): inc(L, len(seqitm))
  newSeq(result, L)
  var i = 0
  for s in items(seqs):
    for itm in items(s):
      result[i] = itm
      inc(i)

proc repeat*[T](s: seq[T], n: Natural): seq[T] =
  ## Returns a new sequence with the items of `s` repeated `n` times.
  ##
  ## Example:
  ##
  ## .. code-block:
  ##
  ##   let
  ##     s = @[1, 2, 3]
  ##     total = s.repeat(3)
  ##   assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
  result = newSeq[T](n * s.len)
  var o = 0
  for x in 1..n:
    for e in s:
      result[o] = e
      inc o

proc deduplicate*[T](seq1: seq[T]): seq[T] =
  ## Returns a new sequence without duplicates.
  ##
  ## .. code-block::
  ##   let
  ##     dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
  ##     dup2 = @["a", "a", "c", "d", "d"]
  ##     unique1 = deduplicate(dup1)
  ##     unique2 = deduplicate(dup2)
  ##   assert unique1 == @[1, 3, 4, 2, 8]
  ##   assert unique2 == @["a", "c", "d"]
  result = @[]
  for itm in items(seq1):
    if not result.contains(itm): result.add(itm)

{.deprecated: [distnct: deduplicate].}

proc zip*[S, T](seq1: seq[S], seq2: seq[T]): seq[tuple[a: S, b: T]] =
  ## Returns a new sequence with a combination of the two input sequences.
  ##
  ## For convenience you can access the returned tuples through the named
  ## fields `a` and `b`. If one sequence is shorter, the remaining items in the
  ## longer sequence are discarded. Example:
  ##
  ## .. code-block::
  ##   let
  ##     short = @[1, 2, 3]
  ##     long = @[6, 5, 4, 3, 2, 1]
  ##     words = @["one", "two", "three"]
  ##     zip1 = zip(short, long)
  ##     zip2 = zip(short, words)
  ##   assert zip1 == @[(1, 6), (2, 5), (3, 4)]
  ##   assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
  ##   assert zip1[2].b == 4
  ##   assert zip2[2].b == "three"
  var m = min(seq1.len, seq2.len)
  newSeq(result, m)
  for i in 0 .. m-1: result[i] = (seq1[i], seq2[i])

proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
  ## Splits and distributes a sequence `s` into `num` sub sequences.
  ##
  ## Returns a sequence of `num` sequences. For some input values this is the
  ## inverse of the `concat <#concat>`_ proc.  The proc will assert in debug
  ## builds if `s` is nil or `num` is less than one, and will likely crash on
  ## release builds.  The input sequence `s` can be empty, which will produce
  ## `num` empty sequences.
  ##
  ## If `spread` is false and the length of `s` is not a multiple of `num`, the
  ## proc will max out the first sub sequences with ``1 + len(s) div num``
  ## entries, leaving the remainder of elements to the last sequence.
  ##
  ## On the other hand, if `spread` is true, the proc will distribute evenly
  ## the remainder of the division across all sequences, which makes the result
  ## more suited to multithreading where you are passing equal sized work units
  ## to a thread pool and want to maximize core usage.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let numbers = @[1, 2, 3, 4, 5, 6, 7]
  ##   assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
  ##   assert numbers.distribute(3, false)  == @[@[1, 2, 3], @[4, 5, 6], @[7]]
  ##   assert numbers.distribute(6)[0] == @[1, 2]
  ##   assert numbers.distribute(6)[5] == @[7]
  assert(not s.isNil, "`s` can't be nil")
  if num < 2:
    result = @[s]
    return

  let num = int(num) # XXX probably only needed because of .. bug

  # Create the result and calculate the stride size and the remainder if any.
  result = newSeq[seq[T]](num)
  var
    stride = s.len div num
    first = 0
    last = 0
    extra = s.len mod num

  if extra == 0 or spread == false:
    # Use an algorithm which overcounts the stride and minimizes reading limits.
    if extra > 0: inc(stride)

    for i in 0 .. <num:
      result[i] = newSeq[T]()
      for g in first .. <min(s.len, first + stride):
        result[i].add(s[g])
      first += stride

  else:
    # Use an undercounting algorithm which *adds* the remainder each iteration.
    for i in 0 .. <num:
      last = first + stride
      if extra > 0:
        extra -= 1
        inc(last)

      result[i] = newSeq[T]()
      for g in first .. <last:
        result[i].add(s[g])
      first = last



iterator filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): T =
  ## Iterates through a sequence and yields every item that fulfills the
  ## predicate.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let numbers = @[1, 4, 5, 8, 9, 7, 4]
  ##   for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
  ##     echo($n)
  ##   # echoes 4, 8, 4 in separate lines
  for i in countup(0, len(seq1)-1):
    var item = seq1[i]
    if pred(item): yield seq1[i]

proc filter*[T](seq1: seq[T], pred: proc(item: T): bool {.closure.}): seq[T] =
  ## Returns a new sequence with all the items that fulfilled the predicate.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let
  ##     colors = @["red", "yellow", "black"]
  ##     f1 = filter(colors, proc(x: string): bool = x.len < 6)
  ##     f2 = filter(colors) do (x: string) -> bool : x.len > 5
  ##   assert f1 == @["red", "black"]
  ##   assert f2 == @["yellow"]
  accumulateResult(filter(seq1, pred))

proc keepIf*[T](seq1: var seq[T], pred: proc(item: T): bool {.closure.}) =
  ## Keeps the items in the passed sequence if they fulfilled the predicate.
  ## Same as the ``filter`` proc, but modifies the sequence directly.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
  ##   keepIf(floats, proc(x: float): bool = x > 10)
  ##   assert floats == @[13.0, 12.5, 10.1]
  var pos = 0
  for i in 0 .. <len(seq1):
    if pred(seq1[i]):
      if pos != i:
        seq1[pos] = seq1[i]
      inc(pos)
  setLen(seq1, pos)

proc delete*[T](s: var seq[T]; first, last: Natural) =
  ## Deletes in `s` the items at position `first` .. `last`. This modifies
  ## `s` itself, it does not return a copy.
  ##
  ## Example:
  ##
  ##.. code-block::
  ##   let outcome = @[1,1,1,1,1,1,1,1]
  ##   var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
  ##   dest.delete(3, 8)
  ##   assert outcome == dest

  var i = first
  var j = last+1
  var newLen = len(s)-j+i
  while i < newLen:
    s[i].shallowCopy(s[j])
    inc(i)
    inc(j)
  setLen(s, newLen)

proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
  ## Inserts items from `src` into `dest` at position `pos`. This modifies
  ## `dest` itself, it does not return a copy.
  ##
  ## Example:
  ##
  ##.. code-block::
  ##   var dest = @[1,1,1,1,1,1,1,1]
  ##   let
  ##     src = @[2,2,2,2,2,2]
  ##     outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
  ##   dest.insert(src, 3)
  ##   assert dest == outcome

  var j = len(dest) - 1
  var i = len(dest) + len(src) - 1
  dest.setLen(i + 1)

  # Move items after `pos` to the end of the sequence.
  while j >= pos:
    dest[i].shallowCopy(dest[j])
    dec(i)
    dec(j)
  # Insert items from `dest` into `dest` at `pos`
  inc(j)
  for item in src:
    dest[j] = item
    inc(j)


template filterIt*(seq1, pred: expr): expr {.immediate.} =
  ## Returns a new sequence with all the items that fulfilled the predicate.
  ##
  ## Unlike the `proc` version, the predicate needs to be an expression using
  ## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
  ## Example:
  ##
  ## .. code-block::
  ##    let
  ##      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
  ##      acceptable = filterIt(temperatures, it < 50 and it > -10)
  ##      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
  ##    assert acceptable == @[-2.0, 24.5, 44.31]
  ##    assert notAcceptable == @[-272.15, 99.9, -113.44]
  var result {.gensym.}: type(seq1) = @[]
  for it {.inject.} in items(seq1):
    if pred: result.add(it)
  result

template keepItIf*(varSeq, pred: expr) =
  ## Convenience template around the ``keepIf`` proc to reduce typing.
  ##
  ## Unlike the `proc` version, the predicate needs to be an expression using
  ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
  ## Example:
  ##
  ## .. code-block::
  ##   var candidates = @["foo", "bar", "baz", "foobar"]
  ##   keepItIf(candidates, it.len == 3 and it[0] == 'b')
  ##   assert candidates == @["bar", "baz"]
  var pos = 0
  for i in 0 .. <len(varSeq):
    let it {.inject.} = varSeq[i]
    if pred:
      if pos != i:
        varSeq[pos] = varSeq[i]
      inc(pos)
  setLen(varSeq, pos)


template toSeq*(iter: expr): expr {.immediate.} =
  ## Transforms any iterator into a sequence.
  ##
  ## Example:
  ##
  ## .. code-block::
  ##   let
  ##     numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
  ##     odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
  ##       if x mod 2 == 1:
  ##         result = true)
  ##   assert odd_numbers == @[1, 3, 5, 7, 9]
  ##
  ## **Note**: Since this is an immediate macro, you cannot always invoke this
  ## as ``x.toSeq``, depending on the ``x``.
  ## See `this <manual.html#limitations-of-the-method-call-syntax>`_
  ## for an explanation.
  var result {.gensym.}: seq[type(iter)] = @[]
  for x in iter: add(result, x)
  result

template foldl*(sequence, operation: expr): expr =
  ## Template to fold a sequence from left to right, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying ``operation``.
  ##
  ## The ``operation`` parameter should be an expression which uses the
  ## variables ``a`` and ``b`` for each step of the fold. Since this is a left
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
  ## 3).  Example:
  ##
  ## .. code-block::
  ##   let
  ##     numbers = @[5, 9, 11]
  ##     addition = foldl(numbers, a + b)
  ##     subtraction = foldl(numbers, a - b)
  ##     multiplication = foldl(numbers, a * b)
  ##     words = @["nim", "is", "cool"]
  ##     concatenation = foldl(words, a & b)
  ##   assert addition == 25, "Addition is (((5)+9)+11)"
  ##   assert subtraction == -15, "Subtraction is (((5)-9)-11)"
  ##   assert multiplication == 495, "Multiplication is (((5)*9)*11)"
  ##   assert concatenation == "nimiscool"
  assert sequence.len > 0, "Can't fold empty sequences"
  var result {.gensym.}: type(sequence[0])
  result = sequence[0]
  for i in countup(1, sequence.len - 1):
    let
      a {.inject.} = result
      b {.inject.} = sequence[i]
    result = operation
  result

template foldr*(sequence, operation: expr): expr =
  ## Template to fold a sequence from right to left, returning the accumulation.
  ##
  ## The sequence is required to have at least a single element. Debug versions
  ## of your program will assert in this situation but release versions will
  ## happily go ahead. If the sequence has a single element it will be returned
  ## without applying ``operation``.
  ##
  ## The ``operation`` parameter should be an expression which uses the
  ## variables ``a`` and ``b`` for each step of the fold. Since this is a right
  ## fold, for non associative binary operations like subtraction think that
  ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
  ## (3))). Example:
  ##
  ## .. code-block::
  ##   let
  ##     numbers = @[5, 9, 11]
  ##     addition = foldr(numbers, a + b)
  ##     subtraction = foldr(numbers, a - b)
  ##     multiplication = foldr(numbers, a * b)
  ##     words = @["nim", "is", "cool"]
  ##     concatenation = foldr(words, a & b)
  ##   assert addition == 25, "Addition is (5+(9+(11)))"
  ##   assert subtraction == 7, "Subtraction is (5-(9-(11)))"
  ##   assert multiplication == 495, "Multiplication is (5*(9*(11)))"
  ##   assert concatenation == "nimiscool"
  assert sequence.len > 0, "Can't fold empty sequences"
  var result {.gensym.}: type(sequence[0])
  result = sequence[sequence.len - 1]
  for i in countdown(sequence.len - 2, 0):
    let
      a {.inject.} = sequence[i]
      b {.inject.} = result
    result = operation
  result

template mapIt*(seq1, typ, op: expr): expr =
  ## Convenience template around the ``map`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. You also need to pass as `typ` the type of the expression,
  ## since the new returned sequence can have a different type than the
  ## original.  Example:
  ##
  ## .. code-block::
  ##   let
  ##     nums = @[1, 2, 3, 4]
  ##     strings = nums.mapIt(string, $(4 * it))
  ##   assert strings == @["4", "8", "12", "16"]
  var result {.gensym.}: seq[typ] = @[]
  for it {.inject.} in items(seq1):
    result.add(op)
  result

template mapIt*(varSeq, op: expr) =
  ## Convenience template around the mutable ``map`` proc to reduce typing.
  ##
  ## The template injects the ``it`` variable which you can use directly in an
  ## expression. The expression has to return the same type as the sequence you
  ## are mutating. Example:
  ##
  ## .. code-block::
  ##   var nums = @[1, 2, 3, 4]
  ##   nums.mapIt(it * 3)
  ##   assert nums[0] + nums[3] == 15
  for i in 0 .. <len(varSeq):
    let it {.inject.} = varSeq[i]
    varSeq[i] = op

template newSeqWith*(len: int, init: expr): expr =
  ## creates a new sequence, calling `init` to initialize each value. Example:
  ##
  ## .. code-block::
  ##   var seq2D = newSeqWith(20, newSeq[bool](10))
  ##   seq2D[0][0] = true
  ##   seq2D[1][0] = true
  ##   seq2D[0][1] = true
  ##
  ##   import math
  ##   var seqRand = newSeqWith(20, random(10))
  ##   echo seqRand
  var result {.gensym.} = newSeq[type(init)](len)
  for i in 0 .. <len:
    result[i] = init
  result

when isMainModule:
  import strutils
  block: # concat test
    let
      s1 = @[1, 2, 3]
      s2 = @[4, 5]
      s3 = @[6, 7]
      total = concat(s1, s2, s3)
    assert total == @[1, 2, 3, 4, 5, 6, 7]

  block: # duplicates test
    let
      dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
      dup2 = @["a", "a", "c", "d", "d"]
      unique1 = deduplicate(dup1)
      unique2 = deduplicate(dup2)
    assert unique1 == @[1, 3, 4, 2, 8]
    assert unique2 == @["a", "c", "d"]

  block: # zip test
    let
      short = @[1, 2, 3]
      long = @[6, 5, 4, 3, 2, 1]
      words = @["one", "two", "three"]
      zip1 = zip(short, long)
      zip2 = zip(short, words)
    assert zip1 == @[(1, 6), (2, 5), (3, 4)]
    assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
    assert zip1[2].b == 4
    assert zip2[2].b == "three"

  block: # filter proc test
    let
      colors = @["red", "yellow", "black"]
      f1 = filter(colors, proc(x: string): bool = x.len < 6)
      f2 = filter(colors) do (x: string) -> bool : x.len > 5
    assert f1 == @["red", "black"]
    assert f2 == @["yellow"]

  block: # filter iterator test
    let numbers = @[1, 4, 5, 8, 9, 7, 4]
    assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) ==
      @[4, 8, 4]

  block: # keepIf test
    var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
    keepIf(floats, proc(x: float): bool = x > 10)
    assert floats == @[13.0, 12.5, 10.1]

  block: # filterIt test
    let
      temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
      acceptable = filterIt(temperatures, it < 50 and it > -10)
      notAcceptable = filterIt(temperatures, it > 50 or it < -10)
    assert acceptable == @[-2.0, 24.5, 44.31]
    assert notAcceptable == @[-272.15, 99.9, -113.44]

  block: # keepItIf test
    var candidates = @["foo", "bar", "baz", "foobar"]
    keepItIf(candidates, it.len == 3 and it[0] == 'b')
    assert candidates == @["bar", "baz"]

  block: # toSeq test
    let
      numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
      odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
        if x mod 2 == 1:
          result = true)
    assert odd_numbers == @[1, 3, 5, 7, 9]

  block: # foldl tests
    let
      numbers = @[5, 9, 11]
      addition = foldl(numbers, a + b)
      subtraction = foldl(numbers, a - b)
      multiplication = foldl(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldl(words, a & b)
    assert addition == 25, "Addition is (((5)+9)+11)"
    assert subtraction == -15, "Subtraction is (((5)-9)-11)"
    assert multiplication == 495, "Multiplication is (((5)*9)*11)"
    assert concatenation == "nimiscool"

  block: # foldr tests
    let
      numbers = @[5, 9, 11]
      addition = foldr(numbers, a + b)
      subtraction = foldr(numbers, a - b)
      multiplication = foldr(numbers, a * b)
      words = @["nim", "is", "cool"]
      concatenation = foldr(words, a & b)
    assert addition == 25, "Addition is (5+(9+(11)))"
    assert subtraction == 7, "Subtraction is (5-(9-(11)))"
    assert multiplication == 495, "Multiplication is (5*(9*(11)))"
    assert concatenation == "nimiscool"

  block: # delete tests
    let outcome = @[1,1,1,1,1,1,1,1]
    var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.delete(3, 8)
    assert outcome == dest, """\
    Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    is [1,1,1,1,1,1,1,1]"""

  block: # insert tests
    var dest = @[1,1,1,1,1,1,1,1]
    let
      src = @[2,2,2,2,2,2]
      outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
    dest.insert(src, 3)
    assert dest == outcome, """\
    Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
    at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""

  block: # mapIt tests
    var
      nums = @[1, 2, 3, 4]
      strings = nums.mapIt(string, $(4 * it))
    nums.mapIt(it * 3)
    assert nums[0] + nums[3] == 15

  block: # distribute tests
    let numbers = @[1, 2, 3, 4, 5, 6, 7]
    doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    doAssert numbers.distribute(6)[0] == @[1, 2]
    doAssert numbers.distribute(6)[5] == @[7]
    let a = @[1, 2, 3, 4, 5, 6, 7]
    doAssert a.distribute(1, true)   == @[@[1, 2, 3, 4, 5, 6, 7]]
    doAssert a.distribute(1, false)  == @[@[1, 2, 3, 4, 5, 6, 7]]
    doAssert a.distribute(2, true)   == @[@[1, 2, 3, 4], @[5, 6, 7]]
    doAssert a.distribute(2, false)  == @[@[1, 2, 3, 4], @[5, 6, 7]]
    doAssert a.distribute(3, true)   == @[@[1, 2, 3], @[4, 5], @[6, 7]]
    doAssert a.distribute(3, false)  == @[@[1, 2, 3], @[4, 5, 6], @[7]]
    doAssert a.distribute(4, true)   == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
    doAssert a.distribute(4, false)  == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
    doAssert a.distribute(5, true)   == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
    doAssert a.distribute(5, false)  == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
    doAssert a.distribute(6, true)   == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
    doAssert a.distribute(6, false)  == @[
      @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
    doAssert a.distribute(8, false)  == a.distribute(8, true)
    doAssert a.distribute(90, false) == a.distribute(90, true)
    var b = @[0]
    for f in 1 .. 25: b.add(f)
    doAssert b.distribute(5, true)[4].len == 5
    doAssert b.distribute(5, false)[4].len == 2

  block: # newSeqWith tests
    var seq2D = newSeqWith(4, newSeq[bool](2))
    seq2D[0][0] = true
    seq2D[1][0] = true
    seq2D[0][1] = true
    doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]

  block: # repeat tests
    let
      a = @[1, 2, 3]
      b: seq[int] = @[]

    doAssert a.repeat(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
    doAssert a.repeat(0) == @[]
    #doAssert a.repeat(-1) == @[] # will not compile!
    doAssert b.repeat(3) == @[]

  when not defined(testing):
    echo "Finished doc tests"