1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## The ``tables`` module implements an efficient hash table that is
## a mapping from keys to values.
##
## **Note:** The data types declared here have *value semantics*: This means
## that ``=`` performs a copy of the hash table.
import
hashes, math
{.pragma: myShallow.}
type
TSlotEnum = enum seEmpty, seFilled, seDeleted
TKeyValuePair[A, B] = tuple[slot: TSlotEnum, key: A, val: B]
TKeyValuePairSeq[A, B] = seq[TKeyValuePair[A, B]]
TTable* {.final, myShallow.}[A, B] = object ## generic hash table
data: TKeyValuePairSeq[A, B]
counter: int
when not defined(nimhygiene):
{.pragma: dirty.}
proc len*[A, B](t: TTable[A, B]): int =
## returns the number of keys in `t`.
result = t.counter
iterator pairs*[A, B](t: TTable[A, B]): tuple[key: A, val: B] =
## iterates over any (key, value) pair in the table `t`.
for h in 0..high(t.data):
if t.data[h].slot == seFilled: yield (t.data[h].key, t.data[h].val)
iterator mpairs*[A, B](t: var TTable[A, B]): tuple[key: A, val: var B] =
## iterates over any (key, value) pair in the table `t`. The values
## can be modified.
for h in 0..high(t.data):
if t.data[h].slot == seFilled: yield (t.data[h].key, t.data[h].val)
iterator keys*[A, B](t: TTable[A, B]): A =
## iterates over any key in the table `t`.
for h in 0..high(t.data):
if t.data[h].slot == seFilled: yield t.data[h].key
iterator values*[A, B](t: TTable[A, B]): B =
## iterates over any value in the table `t`.
for h in 0..high(t.data):
if t.data[h].slot == seFilled: yield t.data[h].val
iterator mvalues*[A, B](t: var TTable[A, B]): var B =
## iterates over any value in the table `t`. The values can be modified.
for h in 0..high(t.data):
if t.data[h].slot == seFilled: yield t.data[h].val
const
growthFactor = 2
proc mustRehash(length, counter: int): bool {.inline.} =
assert(length > counter)
result = (length * 2 < counter * 3) or (length - counter < 4)
proc nextTry(h, maxHash: THash): THash {.inline.} =
result = ((5 * h) + 1) and maxHash
template rawGetImpl() {.dirty.} =
var h: THash = hash(key) and high(t.data) # start with real hash value
while t.data[h].slot != seEmpty:
if t.data[h].key == key and t.data[h].slot == seFilled:
return h
h = nextTry(h, high(t.data))
result = -1
template rawInsertImpl() {.dirty.} =
var h: THash = hash(key) and high(data)
while data[h].slot == seFilled:
h = nextTry(h, high(data))
data[h].key = key
data[h].val = val
data[h].slot = seFilled
proc rawGet[A, B](t: TTable[A, B], key: A): int =
rawGetImpl()
proc `[]`*[A, B](t: TTable[A, B], key: A): B =
## retrieves the value at ``t[key]``. If `key` is not in `t`,
## default empty value for the type `B` is returned
## and no exception is raised. One can check with ``hasKey`` whether the key
## exists.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
proc mget*[A, B](t: var TTable[A, B], key: A): var B =
## retrieves the value at ``t[key]``. The value can be modified.
## If `key` is not in `t`, the ``EInvalidKey`` exception is raised.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
else: raise newException(EInvalidKey, "key not found: " & $key)
proc hasKey*[A, B](t: TTable[A, B], key: A): bool =
## returns true iff `key` is in the table `t`.
result = rawGet(t, key) >= 0
proc rawInsert[A, B](t: var TTable[A, B], data: var TKeyValuePairSeq[A, B],
key: A, val: B) =
rawInsertImpl()
proc enlarge[A, B](t: var TTable[A, B]) =
var n: TKeyValuePairSeq[A, B]
newSeq(n, len(t.data) * growthFactor)
for i in countup(0, high(t.data)):
if t.data[i].slot == seFilled: rawInsert(t, n, t.data[i].key, t.data[i].val)
swap(t.data, n)
template addImpl() {.dirty.} =
if mustRehash(len(t.data), t.counter): enlarge(t)
rawInsert(t, t.data, key, val)
inc(t.counter)
template putImpl() {.dirty.} =
var index = rawGet(t, key)
if index >= 0:
t.data[index].val = val
else:
addImpl()
when false:
# not yet used:
template hasKeyOrPutImpl() {.dirty.} =
var index = rawGet(t, key)
if index >= 0:
t.data[index].val = val
result = true
else:
if mustRehash(len(t.data), t.counter): enlarge(t)
rawInsert(t, t.data, key, val)
inc(t.counter)
result = false
proc `[]=`*[A, B](t: var TTable[A, B], key: A, val: B) =
## puts a (key, value)-pair into `t`.
putImpl()
proc add*[A, B](t: var TTable[A, B], key: A, val: B) =
## puts a new (key, value)-pair into `t` even if ``t[key]`` already exists.
addImpl()
proc del*[A, B](t: var TTable[A, B], key: A) =
## deletes `key` from hash table `t`.
let index = rawGet(t, key)
if index >= 0:
t.data[index].slot = seDeleted
dec(t.counter)
proc initTable*[A, B](initialSize=64): TTable[A, B] =
## creates a new hash table that is empty.
##
## `initialSize` needs to be a power of two. If you need to accept runtime
## values for this you could use the ``nextPowerOfTwo`` proc from the
## `math <math.html>`_ module.
assert isPowerOfTwo(initialSize)
result.counter = 0
newSeq(result.data, initialSize)
proc toTable*[A, B](pairs: openArray[tuple[key: A,
val: B]]): TTable[A, B] =
## creates a new hash table that contains the given `pairs`.
result = initTable[A, B](nextPowerOfTwo(pairs.len+10))
for key, val in items(pairs): result[key] = val
template dollarImpl(): stmt {.dirty.} =
if t.len == 0:
result = "{:}"
else:
result = "{"
for key, val in pairs(t):
if result.len > 1: result.add(", ")
result.add($key)
result.add(": ")
result.add($val)
result.add("}")
proc `$`*[A, B](t: TTable[A, B]): string =
## The `$` operator for hash tables.
dollarImpl()
proc `==`*[A, B](s, t: TTable[A, B]): bool =
s.counter == t.counter and s.data == t.data
proc indexBy*[A, B, C](collection: A, index: proc(x: B): C): TTable[C, B] =
## Index the collection with the proc provided.
# TODO: As soon as supported, change collection: A to collection: A[B]
result = initTable[C, B]()
for item in collection:
result[index(item)] = item
# ------------------------------ ordered table ------------------------------
type
TOrderedKeyValuePair[A, B] = tuple[
slot: TSlotEnum, next: int, key: A, val: B]
TOrderedKeyValuePairSeq[A, B] = seq[TOrderedKeyValuePair[A, B]]
TOrderedTable* {.
final, myShallow.}[A, B] = object ## table that remembers insertion order
data: TOrderedKeyValuePairSeq[A, B]
counter, first, last: int
proc len*[A, B](t: TOrderedTable[A, B]): int {.inline.} =
## returns the number of keys in `t`.
result = t.counter
template forAllOrderedPairs(yieldStmt: stmt) {.dirty, immediate.} =
var h = t.first
while h >= 0:
var nxt = t.data[h].next
if t.data[h].slot == seFilled: yieldStmt
h = nxt
iterator pairs*[A, B](t: TOrderedTable[A, B]): tuple[key: A, val: B] =
## iterates over any (key, value) pair in the table `t` in insertion
## order.
forAllOrderedPairs:
yield (t.data[h].key, t.data[h].val)
iterator mpairs*[A, B](t: var TOrderedTable[A, B]): tuple[key: A, val: var B] =
## iterates over any (key, value) pair in the table `t` in insertion
## order. The values can be modified.
forAllOrderedPairs:
yield (t.data[h].key, t.data[h].val)
iterator keys*[A, B](t: TOrderedTable[A, B]): A =
## iterates over any key in the table `t` in insertion order.
forAllOrderedPairs:
yield t.data[h].key
iterator values*[A, B](t: TOrderedTable[A, B]): B =
## iterates over any value in the table `t` in insertion order.
forAllOrderedPairs:
yield t.data[h].val
iterator mvalues*[A, B](t: var TOrderedTable[A, B]): var B =
## iterates over any value in the table `t` in insertion order. The values
## can be modified.
forAllOrderedPairs:
yield t.data[h].val
proc rawGet[A, B](t: TOrderedTable[A, B], key: A): int =
rawGetImpl()
proc `[]`*[A, B](t: TOrderedTable[A, B], key: A): B =
## retrieves the value at ``t[key]``. If `key` is not in `t`,
## default empty value for the type `B` is returned
## and no exception is raised. One can check with ``hasKey`` whether the key
## exists.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
proc mget*[A, B](t: var TOrderedTable[A, B], key: A): var B =
## retrieves the value at ``t[key]``. The value can be modified.
## If `key` is not in `t`, the ``EInvalidKey`` exception is raised.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
else: raise newException(EInvalidKey, "key not found: " & $key)
proc hasKey*[A, B](t: TOrderedTable[A, B], key: A): bool =
## returns true iff `key` is in the table `t`.
result = rawGet(t, key) >= 0
proc rawInsert[A, B](t: var TOrderedTable[A, B],
data: var TOrderedKeyValuePairSeq[A, B],
key: A, val: B) =
rawInsertImpl()
data[h].next = -1
if t.first < 0: t.first = h
if t.last >= 0: data[t.last].next = h
t.last = h
proc enlarge[A, B](t: var TOrderedTable[A, B]) =
var n: TOrderedKeyValuePairSeq[A, B]
newSeq(n, len(t.data) * growthFactor)
var h = t.first
t.first = -1
t.last = -1
while h >= 0:
var nxt = t.data[h].next
if t.data[h].slot == seFilled:
rawInsert(t, n, t.data[h].key, t.data[h].val)
h = nxt
swap(t.data, n)
proc `[]=`*[A, B](t: var TOrderedTable[A, B], key: A, val: B) =
## puts a (key, value)-pair into `t`.
putImpl()
proc add*[A, B](t: var TOrderedTable[A, B], key: A, val: B) =
## puts a new (key, value)-pair into `t` even if ``t[key]`` already exists.
addImpl()
proc initOrderedTable*[A, B](initialSize=64): TOrderedTable[A, B] =
## creates a new ordered hash table that is empty.
##
## `initialSize` needs to be a power of two. If you need to accept runtime
## values for this you could use the ``nextPowerOfTwo`` proc from the
## `math <math.html>`_ module.
assert isPowerOfTwo(initialSize)
result.counter = 0
result.first = -1
result.last = -1
newSeq(result.data, initialSize)
proc toOrderedTable*[A, B](pairs: openArray[tuple[key: A,
val: B]]): TOrderedTable[A, B] =
## creates a new ordered hash table that contains the given `pairs`.
result = initOrderedTable[A, B](nextPowerOfTwo(pairs.len+10))
for key, val in items(pairs): result[key] = val
proc `$`*[A, B](t: TOrderedTable[A, B]): string =
## The `$` operator for ordered hash tables.
dollarImpl()
proc sort*[A, B](t: var TOrderedTable[A, B],
cmp: proc (x,y: tuple[key: A, val: B]): int) =
## sorts `t` according to `cmp`. This modifies the internal list
## that kept the insertion order, so insertion order is lost after this
## call but key lookup and insertions remain possible after `sort` (in
## contrast to the `sort` for count tables).
var list = t.first
var
p, q, e, tail, oldhead: int
nmerges, psize, qsize, i: int
if t.counter == 0: return
var insize = 1
while true:
p = list; oldhead = list
list = -1; tail = -1; nmerges = 0
while p >= 0:
inc(nmerges)
q = p
psize = 0
i = 0
while i < insize:
inc(psize)
q = t.data[q].next
if q < 0: break
inc(i)
qsize = insize
while psize > 0 or (qsize > 0 and q >= 0):
if psize == 0:
e = q; q = t.data[q].next; dec(qsize)
elif qsize == 0 or q < 0:
e = p; p = t.data[p].next; dec(psize)
elif cmp((t.data[p].key, t.data[p].val),
(t.data[q].key, t.data[q].val)) <= 0:
e = p; p = t.data[p].next; dec(psize)
else:
e = q; q = t.data[q].next; dec(qsize)
if tail >= 0: t.data[tail].next = e
else: list = e
tail = e
p = q
t.data[tail].next = -1
if nmerges <= 1: break
insize = insize * 2
t.first = list
t.last = tail
# ------------------------------ count tables -------------------------------
type
TCountTable* {.final, myShallow.}[
A] = object ## table that counts the number of each key
data: seq[tuple[key: A, val: int]]
counter: int
proc len*[A](t: TCountTable[A]): int =
## returns the number of keys in `t`.
result = t.counter
iterator pairs*[A](t: TCountTable[A]): tuple[key: A, val: int] =
## iterates over any (key, value) pair in the table `t`.
for h in 0..high(t.data):
if t.data[h].val != 0: yield (t.data[h].key, t.data[h].val)
iterator mpairs*[A](t: var TCountTable[A]): tuple[key: A, val: var int] =
## iterates over any (key, value) pair in the table `t`. The values can
## be modified.
for h in 0..high(t.data):
if t.data[h].val != 0: yield (t.data[h].key, t.data[h].val)
iterator keys*[A](t: TCountTable[A]): A =
## iterates over any key in the table `t`.
for h in 0..high(t.data):
if t.data[h].val != 0: yield t.data[h].key
iterator values*[A](t: TCountTable[A]): int =
## iterates over any value in the table `t`.
for h in 0..high(t.data):
if t.data[h].val != 0: yield t.data[h].val
iterator mvalues*[A](t: TCountTable[A]): var int =
## iterates over any value in the table `t`. The values can be modified.
for h in 0..high(t.data):
if t.data[h].val != 0: yield t.data[h].val
proc rawGet[A](t: TCountTable[A], key: A): int =
var h: THash = hash(key) and high(t.data) # start with real hash value
while t.data[h].val != 0:
if t.data[h].key == key: return h
h = nextTry(h, high(t.data))
result = -1
proc `[]`*[A](t: TCountTable[A], key: A): int =
## retrieves the value at ``t[key]``. If `key` is not in `t`,
## 0 is returned. One can check with ``hasKey`` whether the key
## exists.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
proc mget*[A](t: var TCountTable[A], key: A): var int =
## retrieves the value at ``t[key]``. The value can be modified.
## If `key` is not in `t`, the ``EInvalidKey`` exception is raised.
var index = rawGet(t, key)
if index >= 0: result = t.data[index].val
else: raise newException(EInvalidKey, "key not found: " & $key)
proc hasKey*[A](t: TCountTable[A], key: A): bool =
## returns true iff `key` is in the table `t`.
result = rawGet(t, key) >= 0
proc rawInsert[A](t: TCountTable[A], data: var seq[tuple[key: A, val: int]],
key: A, val: int) =
var h: THash = hash(key) and high(data)
while data[h].val != 0: h = nextTry(h, high(data))
data[h].key = key
data[h].val = val
proc enlarge[A](t: var TCountTable[A]) =
var n: seq[tuple[key: A, val: int]]
newSeq(n, len(t.data) * growthFactor)
for i in countup(0, high(t.data)):
if t.data[i].val != 0: rawInsert(t, n, t.data[i].key, t.data[i].val)
swap(t.data, n)
proc `[]=`*[A](t: var TCountTable[A], key: A, val: int) =
## puts a (key, value)-pair into `t`. `val` has to be positive.
assert val > 0
putImpl()
proc initCountTable*[A](initialSize=64): TCountTable[A] =
## creates a new count table that is empty.
##
## `initialSize` needs to be a power of two. If you need to accept runtime
## values for this you could use the ``nextPowerOfTwo`` proc from the
## `math <math.html>`_ module.
assert isPowerOfTwo(initialSize)
result.counter = 0
newSeq(result.data, initialSize)
proc toCountTable*[A](keys: openArray[A]): TCountTable[A] =
## creates a new count table with every key in `keys` having a count of 1.
result = initCountTable[A](nextPowerOfTwo(keys.len+10))
for key in items(keys): result[key] = 1
proc `$`*[A](t: TCountTable[A]): string =
## The `$` operator for count tables.
dollarImpl()
proc inc*[A](t: var TCountTable[A], key: A, val = 1) =
## increments `t[key]` by `val`.
var index = rawGet(t, key)
if index >= 0:
inc(t.data[index].val, val)
else:
if mustRehash(len(t.data), t.counter): enlarge(t)
rawInsert(t, t.data, key, val)
inc(t.counter)
proc smallest*[A](t: TCountTable[A]): tuple[key: A, val: int] =
## returns the largest (key,val)-pair. Efficiency: O(n)
assert t.len > 0
var minIdx = 0
for h in 1..high(t.data):
if t.data[h].val > 0 and t.data[minIdx].val > t.data[h].val: minIdx = h
result.key = t.data[minIdx].key
result.val = t.data[minIdx].val
proc largest*[A](t: TCountTable[A]): tuple[key: A, val: int] =
## returns the (key,val)-pair with the largest `val`. Efficiency: O(n)
assert t.len > 0
var maxIdx = 0
for h in 1..high(t.data):
if t.data[maxIdx].val < t.data[h].val: maxIdx = h
result.key = t.data[maxIdx].key
result.val = t.data[maxIdx].val
proc sort*[A](t: var TCountTable[A]) =
## sorts the count table so that the entry with the highest counter comes
## first. This is destructive! You must not modify `t` afterwards!
## You can use the iterators `pairs`, `keys`, and `values` to iterate over
## `t` in the sorted order.
# we use shellsort here; fast enough and simple
var h = 1
while true:
h = 3 * h + 1
if h >= high(t.data): break
while true:
h = h div 3
for i in countup(h, high(t.data)):
var j = i
while t.data[j-h].val <= t.data[j].val:
swap(t.data[j], t.data[j-h])
j = j-h
if j < h: break
if h == 1: break
|