1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
#
#
# Nim's Runtime Library
# (c) Copyright 2010 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements complex numbers.
## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float.
{.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
# the user does not want to trace a part of the standard library!
import math
type
Complex*[T: SomeFloat] = object
re*, im*: T
## A complex number, consisting of a real and an imaginary part.
Complex64* = Complex[float64]
## Alias for a pair of 64-bit floats.
Complex32* = Complex[float32]
## Alias for a pair of 32-bit floats.
proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
result.re = re
result.im = im
proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] =
result.re = re
result.im = im
proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] =
result.re = re
result.im = im
template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1)
template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1)
template im*(arg: float32): Complex32 = complex[float32](0, arg)
template im*(arg: float64): Complex64 = complex[float64](0, arg)
proc abs*[T](z: Complex[T]): T =
## Return the distance from (0,0) to ``z``.
result = hypot(z.re, z.im)
proc abs2*[T](z: Complex[T]): T =
## Return the squared distance from (0,0) to ``z``.
result = z.re*z.re + z.im*z.im
proc conjugate*[T](z: Complex[T]): Complex[T] =
## Conjugate of complex number ``z``.
result.re = z.re
result.im = -z.im
proc inv*[T](z: Complex[T]): Complex[T] =
## Multiplicative inverse of complex number ``z``.
conjugate(z) / abs2(z)
proc `==` *[T](x, y: Complex[T]): bool =
## Compare two complex numbers ``x`` and ``y`` for equality.
result = x.re == y.re and x.im == y.im
proc `+` *[T](x: T; y: Complex[T]): Complex[T] =
## Add a real number to a complex number.
result.re = x + y.re
result.im = y.im
proc `+` *[T](x: Complex[T]; y: T): Complex[T] =
## Add a complex number to a real number.
result.re = x.re + y
result.im = x.im
proc `+` *[T](x, y: Complex[T]): Complex[T] =
## Add two complex numbers.
result.re = x.re + y.re
result.im = x.im + y.im
proc `-` *[T](z: Complex[T]): Complex[T] =
## Unary minus for complex numbers.
result.re = -z.re
result.im = -z.im
proc `-` *[T](x: T; y: Complex[T]): Complex[T] =
## Subtract a complex number from a real number.
x + (-y)
proc `-` *[T](x: Complex[T]; y: T): Complex[T] =
## Subtract a real number from a complex number.
result.re = x.re - y
result.im = x.im
proc `-` *[T](x, y: Complex[T]): Complex[T] =
## Subtract two complex numbers.
result.re = x.re - y.re
result.im = x.im - y.im
proc `/` *[T](x: Complex[T]; y: T): Complex[T] =
## Divide complex number ``x`` by real number ``y``.
result.re = x.re / y
result.im = x.im / y
proc `/` *[T](x: T; y: Complex[T]): Complex[T] =
## Divide real number ``x`` by complex number ``y``.
result = x * inv(y)
proc `/` *[T](x, y: Complex[T]): Complex[T] =
## Divide ``x`` by ``y``.
var r, den: T
if abs(y.re) < abs(y.im):
r = y.re / y.im
den = y.im + r * y.re
result.re = (x.re * r + x.im) / den
result.im = (x.im * r - x.re) / den
else:
r = y.im / y.re
den = y.re + r * y.im
result.re = (x.re + r * x.im) / den
result.im = (x.im - r * x.re) / den
proc `*` *[T](x: T; y: Complex[T]): Complex[T] =
## Multiply a real number and a complex number.
result.re = x * y.re
result.im = x * y.im
proc `*` *[T](x: Complex[T]; y: T): Complex[T] =
## Multiply a complex number with a real number.
result.re = x.re * y
result.im = x.im * y
proc `*` *[T](x, y: Complex[T]): Complex[T] =
## Multiply ``x`` with ``y``.
result.re = x.re * y.re - x.im * y.im
result.im = x.im * y.re + x.re * y.im
proc `+=` *[T](x: var Complex[T]; y: Complex[T]) =
## Add ``y`` to ``x``.
x.re += y.re
x.im += y.im
proc `-=` *[T](x: var Complex[T]; y: Complex[T]) =
## Subtract ``y`` from ``x``.
x.re -= y.re
x.im -= y.im
proc `*=` *[T](x: var Complex[T]; y: Complex[T]) =
## Multiply ``y`` to ``x``.
let im = x.im * y.re + x.re * y.im
x.re = x.re * y.re - x.im * y.im
x.im = im
proc `/=` *[T](x: var Complex[T]; y: Complex[T]) =
## Divide ``x`` by ``y`` in place.
x = x / y
proc sqrt*[T](z: Complex[T]): Complex[T] =
## Square root for a complex number ``z``.
var x, y, w, r: T
if z.re == 0.0 and z.im == 0.0:
result = z
else:
x = abs(z.re)
y = abs(z.im)
if x >= y:
r = y / x
w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
else:
r = x / y
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
if z.re >= 0.0:
result.re = w
result.im = z.im / (w * 2.0)
else:
result.im = if z.im >= 0.0: w else: -w
result.re = z.im / (result.im + result.im)
proc exp*[T](z: Complex[T]): Complex[T] =
## ``e`` raised to the power ``z``.
var
rho = exp(z.re)
theta = z.im
result.re = rho * cos(theta)
result.im = rho * sin(theta)
proc ln*[T](z: Complex[T]): Complex[T] =
## Returns the natural log of ``z``.
result.re = ln(abs(z))
result.im = arctan2(z.im, z.re)
proc log10*[T](z: Complex[T]): Complex[T] =
## Returns the log base 10 of ``z``.
result = ln(z) / ln(10.0)
proc log2*[T](z: Complex[T]): Complex[T] =
## Returns the log base 2 of ``z``.
result = ln(z) / ln(2.0)
proc pow*[T](x, y: Complex[T]): Complex[T] =
## ``x`` raised to the power ``y``.
if x.re == 0.0 and x.im == 0.0:
if y.re == 0.0 and y.im == 0.0:
result.re = 1.0
result.im = 0.0
else:
result.re = 0.0
result.im = 0.0
elif y.re == 1.0 and y.im == 0.0:
result = x
elif y.re == -1.0 and y.im == 0.0:
result = T(1.0) / x
else:
var
rho = abs(x)
theta = arctan2(x.im, x.re)
s = pow(rho, y.re) * exp(-y.im * theta)
r = y.re * theta + y.im * ln(rho)
result.re = s * cos(r)
result.im = s * sin(r)
proc pow*[T](x: Complex[T]; y: T): Complex[T] =
## Complex number ``x`` raised to the power ``y``.
pow(x, complex[T](y))
proc sin*[T](z: Complex[T]): Complex[T] =
## Returns the sine of ``z``.
result.re = sin(z.re) * cosh(z.im)
result.im = cos(z.re) * sinh(z.im)
proc arcsin*[T](z: Complex[T]): Complex[T] =
## Returns the inverse sine of ``z``.
result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))
proc cos*[T](z: Complex[T]): Complex[T] =
## Returns the cosine of ``z``.
result.re = cos(z.re) * cosh(z.im)
result.im = -sin(z.re) * sinh(z.im)
proc arccos*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cosine of ``z``.
result = -im(T) * ln(z + sqrt(z*z - T(1.0)))
proc tan*[T](z: Complex[T]): Complex[T] =
## Returns the tangent of ``z``.
result = sin(z) / cos(z)
proc arctan*[T](z: Complex[T]): Complex[T] =
## Returns the inverse tangent of ``z``.
result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))
proc cot*[T](z: Complex[T]): Complex[T] =
## Returns the cotangent of ``z``.
result = cos(z)/sin(z)
proc arccot*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cotangent of ``z``.
result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))
proc sec*[T](z: Complex[T]): Complex[T] =
## Returns the secant of ``z``.
result = T(1.0) / cos(z)
proc arcsec*[T](z: Complex[T]): Complex[T] =
## Returns the inverse secant of ``z``.
result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)
proc csc*[T](z: Complex[T]): Complex[T] =
## Returns the cosecant of ``z``.
result = T(1.0) / sin(z)
proc arccsc*[T](z: Complex[T]): Complex[T] =
## Returns the inverse cosecant of ``z``.
result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)
proc sinh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic sine of ``z``.
result = T(0.5) * (exp(z) - exp(-z))
proc arcsinh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic sine of ``z``.
result = ln(z + sqrt(z*z + 1.0))
proc cosh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cosine of ``z``.
result = T(0.5) * (exp(z) + exp(-z))
proc arccosh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cosine of ``z``.
result = ln(z + sqrt(z*z - T(1.0)))
proc tanh*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic tangent of ``z``.
result = sinh(z) / cosh(z)
proc arctanh*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic tangent of ``z``.
result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))
proc sech*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic secant of ``z``.
result = T(2.0) / (exp(z) + exp(-z))
proc arcsech*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic secant of ``z``.
result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))
proc csch*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cosecant of ``z``.
result = T(2.0) / (exp(z) - exp(-z))
proc arccsch*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cosecant of ``z``.
result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))
proc coth*[T](z: Complex[T]): Complex[T] =
## Returns the hyperbolic cotangent of ``z``.
result = cosh(z) / sinh(z)
proc arccoth*[T](z: Complex[T]): Complex[T] =
## Returns the inverse hyperbolic cotangent of ``z``.
result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))
proc phase*[T](z: Complex[T]): T =
## Returns the phase of ``z``.
arctan2(z.im, z.re)
proc polar*[T](z: Complex[T]): tuple[r, phi: T] =
## Returns ``z`` in polar coordinates.
(r: abs(z), phi: phase(z))
proc rect*[T](r, phi: T): Complex[T] =
## Returns the complex number with polar coordinates ``r`` and ``phi``.
##
## | ``result.re = r * cos(phi)``
## | ``result.im = r * sin(phi)``
complex(r * cos(phi), r * sin(phi))
proc `$`*(z: Complex): string =
## Returns ``z``'s string representation as ``"(re, im)"``.
result = "(" & $z.re & ", " & $z.im & ")"
{.pop.}
when isMainModule:
proc `=~`[T](x, y: Complex[T]): bool =
result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6
proc `=~`[T](x: Complex[T]; y: T): bool =
result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6
var
z: Complex64 = complex(0.0, 0.0)
oo: Complex64 = complex(1.0, 1.0)
a: Complex64 = complex(1.0, 2.0)
b: Complex64 = complex(-1.0, -2.0)
m1: Complex64 = complex(-1.0, 0.0)
i: Complex64 = complex(0.0, 1.0)
one: Complex64 = complex(1.0, 0.0)
tt: Complex64 = complex(10.0, 20.0)
ipi: Complex64 = complex(0.0, -PI)
doAssert(a/2.0 =~ complex(0.5, 1.0))
doAssert(a == a)
doAssert((a-a) == z)
doAssert((a+b) == z)
doAssert((a+b) =~ 0.0)
doAssert((a/b) == m1)
doAssert((1.0/a) =~ complex(0.2, -0.4))
doAssert((a*b) == complex(3.0, -4.0))
doAssert(10.0*a == tt)
doAssert(a*10.0 == tt)
doAssert(tt/10.0 == a)
doAssert(oo+(-1.0) == i)
doAssert( (-1.0)+oo == i)
doAssert(abs(oo) == sqrt(2.0))
doAssert(conjugate(a) == complex(1.0, -2.0))
doAssert(sqrt(m1) == i)
doAssert(exp(ipi) =~ m1)
doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068))
doAssert(pow(z, a) =~ complex(0.0, 0.0))
doAssert(pow(z, z) =~ complex(1.0, 0.0))
doAssert(pow(a, one) =~ a)
doAssert(pow(a, m1) =~ complex(0.2, -0.4))
doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0))
doAssert(pow(a, 2) =~ complex(-3.0, 4.0))
doAssert(not(pow(a, 2.0) =~ a))
doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090))
doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234))
doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811))
doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161))
doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180))
doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335))
doAssert(cot(a) =~ 1.0 / tan(a))
doAssert(sec(a) =~ 1.0 / cos(a))
doAssert(csc(a) =~ 1.0 / sin(a))
doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998))
doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100))
doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525))
doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525))
doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288))
doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291))
doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778))
doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040))
doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725))
doAssert(sech(a) =~ 1.0 / cosh(a))
doAssert(csch(a) =~ 1.0 / sinh(a))
doAssert(coth(a) =~ 1.0 / tanh(a))
doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242))
doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775))
doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617))
doAssert(arcsech(a) =~ arccosh(1.0/a))
doAssert(arccsch(a) =~ arcsinh(1.0/a))
doAssert(arccoth(a) =~ arctanh(1.0/a))
doAssert(phase(a) == 1.1071487177940904)
var t = polar(a)
doAssert(rect(t.r, t.phi) =~ a)
doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817))
var
i64: Complex32 = complex(0.0f, 1.0f)
a64: Complex32 = 2.0f*i64 + 1.0.float32
b64: Complex32 = complex(-1.0'f32, -2.0'f32)
doAssert(a64 == a64)
doAssert(a64 == -b64)
doAssert(a64 + b64 =~ 0.0'f32)
doAssert(not(pow(a64, b64) =~ a64))
doAssert(pow(a64, 0.5f) =~ sqrt(a64))
doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32))
doAssert(sin(arcsin(b64)) =~ b64)
doAssert(cosh(arccosh(a64)) =~ a64)
doAssert(phase(a64) - 1.107149f < 1e-6)
var t64 = polar(a64)
doAssert(rect(t64.r, t64.phi) =~ a64)
doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f))
doAssert(sizeof(a64) == 8)
doAssert(sizeof(a) == 16)
doAssert 123.0.im + 456.0 == complex64(456, 123)
var localA = complex(0.1'f32)
doAssert localA.im is float32
|