about summary refs log tree commit diff stats
path: root/src/ui/window.c
diff options
context:
space:
mode:
authorSpiridonov Alexander <spiridoncha@gmail.com>2016-11-07 03:26:15 +0300
committerSpiridonov Alexander <spiridoncha@gmail.com>2016-11-07 03:26:15 +0300
commitfd2346ccb4e4e447109fc49b16025aa87ae69b86 (patch)
tree48c68d1cb4413554f24df608b7133e603f5b4049 /src/ui/window.c
parent0d6aef68e7f08db1c3879a9e9a2c25db9838501d (diff)
downloadprofani-tty-fd2346ccb4e4e447109fc49b16025aa87ae69b86.tar.gz
Makes /clear behavior configurable.
Diffstat (limited to 'src/ui/window.c')
-rw-r--r--src/ui/window.c5
1 files changed, 5 insertions, 0 deletions
diff --git a/src/ui/window.c b/src/ui/window.c
index bbc9b9d0..53dc9d02 100644
--- a/src/ui/window.c
+++ b/src/ui/window.c
@@ -562,6 +562,11 @@ win_sub_page_up(ProfWin *window)
 void
 win_clear(ProfWin *window)
 {
+    if (!prefs_get_boolean(PREF_CLEAR_PERSIST_HISTORY)) {
+        werase(window->layout->win);
+        return;
+    }
+
     int y = getcury(window->layout->win);
     int *page_start = &(window->layout->y_pos);
     *page_start = y;
id='n146' href='#n146'>146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#
#
#            Nim's Runtime Library
#        (c) Copyright 2010 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#



## This module implements complex numbers.
{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
# the user does not want to trace a part
# of the standard library!


import
  math

const
  EPS = 1.0e-7 ## Epsilon used for float comparisons.

type
  Complex* = tuple[re, im: float]
    ## a complex number, consisting of a real and an imaginary part

{.deprecated: [TComplex: Complex].}

proc toComplex*(x: SomeInteger): Complex =
  ## Convert some integer ``x`` to a complex number.
  result.re = x
  result.im = 0

proc `==` *(x, y: Complex): bool =
  ## Compare two complex numbers `x` and `y` for equality.
  result = x.re == y.re and x.im == y.im

proc `=~` *(x, y: Complex): bool =
  ## Compare two complex numbers `x` and `y` approximately.
  result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS

proc `+` *(x, y: Complex): Complex =
  ## Add two complex numbers.
  result.re = x.re + y.re
  result.im = x.im + y.im

proc `+` *(x: Complex, y: float): Complex =
  ## Add complex `x` to float `y`.
  result.re = x.re + y
  result.im = x.im

proc `+` *(x: float, y: Complex): Complex =
  ## Add float `x` to complex `y`.
  result.re = x + y.re
  result.im = y.im


proc `-` *(z: Complex): Complex =
  ## Unary minus for complex numbers.
  result.re = -z.re
  result.im = -z.im

proc `-` *(x, y: Complex): Complex =
  ## Subtract two complex numbers.
  result.re = x.re - y.re
  result.im = x.im - y.im

proc `-` *(x: Complex, y: float): Complex =
  ## Subtracts float `y` from complex `x`.
  result = x + (-y)

proc `-` *(x: float, y: Complex): Complex =
  ## Subtracts complex `y` from float `x`.
  result = x + (-y)


proc `/` *(x, y: Complex): Complex =
  ## Divide `x` by `y`.
  var
    r, den: float
  if abs(y.re) < abs(y.im):
    r = y.re / y.im
    den = y.im + r * y.re
    result.re = (x.re * r + x.im) / den
    result.im = (x.im * r - x.re) / den
  else:
    r = y.im / y.re
    den = y.re + r * y.im
    result.re = (x.re + r * x.im) / den
    result.im = (x.im - r * x.re) / den

proc `/` *(x : Complex, y: float ): Complex =
  ## Divide complex `x` by float `y`.
  result.re = x.re/y
  result.im = x.im/y

proc `/` *(x : float, y: Complex ): Complex =
  ## Divide float `x` by complex `y`.
  var num : Complex = (x, 0.0)
  result = num/y


proc `*` *(x, y: Complex): Complex =
  ## Multiply `x` with `y`.
  result.re = x.re * y.re - x.im * y.im
  result.im = x.im * y.re + x.re * y.im

proc `*` *(x: float, y: Complex): Complex =
  ## Multiply float `x` with complex `y`.
  result.re = x * y.re
  result.im = x * y.im

proc `*` *(x: Complex, y: float): Complex =
  ## Multiply complex `x` with float `y`.
  result.re = x.re * y
  result.im = x.im * y


proc `+=` *(x: var Complex, y: Complex) =
  ## Add `y` to `x`.
  x.re += y.re
  x.im += y.im

proc `+=` *(x: var Complex, y: float) =
  ## Add `y` to the complex number `x`.
  x.re += y

proc `-=` *(x: var Complex, y: Complex) =
  ## Subtract `y` from `x`.
  x.re -= y.re
  x.im -= y.im

proc `-=` *(x: var Complex, y: float) =
  ## Subtract `y` from the complex number `x`.
  x.re -= y

proc `*=` *(x: var Complex, y: Complex) =
  ## Multiply `y` to `x`.
  let im = x.im * y.re + x.re * y.im
  x.re = x.re * y.re - x.im * y.im
  x.im = im

proc `*=` *(x: var Complex, y: float) =
  ## Multiply `y` to the complex number `x`.
  x.re *= y
  x.im *= y

proc `/=` *(x: var Complex, y: Complex) =
  ## Divide `x` by `y` in place.
  x = x / y

proc `/=` *(x : var Complex, y: float) =
  ## Divide complex `x` by float `y` in place.
  x.re /= y
  x.im /= y


proc abs*(z: Complex): float =
  ## Return the distance from (0,0) to `z`.

  # optimized by checking special cases (sqrt is expensive)
  var x, y, temp: float

  x = abs(z.re)
  y = abs(z.im)
  if x == 0.0:
    result = y
  elif y == 0.0:
    result = x
  elif x > y:
    temp = y / x
    result = x * sqrt(1.0 + temp * temp)
  else:
    temp = x / y
    result = y * sqrt(1.0 + temp * temp)


proc conjugate*(z: Complex): Complex =
  ## Conjugate of complex number `z`.
  result.re = z.re
  result.im = -z.im


proc sqrt*(z: Complex): Complex =
  ## Square root for a complex number `z`.
  var x, y, w, r: float

  if z.re == 0.0 and z.im == 0.0:
    result = z
  else:
    x = abs(z.re)
    y = abs(z.im)
    if x >= y:
      r = y / x
      w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
    else:
      r = x / y
      w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
    if z.re >= 0.0:
      result.re = w
      result.im = z.im / (w * 2.0)
    else:
      if z.im >= 0.0: result.im = w
      else:           result.im = -w
      result.re = z.im / (result.im + result.im)


proc exp*(z: Complex): Complex =
  ## e raised to the power `z`.
  var rho   = exp(z.re)
  var theta = z.im
  result.re = rho*cos(theta)
  result.im = rho*sin(theta)


proc ln*(z: Complex): Complex =
  ## Returns the natural log of `z`.
  result.re = ln(abs(z))
  result.im = arctan2(z.im,z.re)

proc log10*(z: Complex): Complex =
  ## Returns the log base 10 of `z`.
  result = ln(z)/ln(10.0)

proc log2*(z: Complex): Complex =
  ## Returns the log base 2 of `z`.
  result = ln(z)/ln(2.0)


proc pow*(x, y: Complex): Complex =
  ## `x` raised to the power `y`.
  if x.re == 0.0  and  x.im == 0.0:
    if y.re == 0.0  and  y.im == 0.0:
      result.re = 1.0
      result.im = 0.0
    else:
      result.re = 0.0
      result.im = 0.0
  elif y.re == 1.0  and  y.im == 0.0:
    result = x
  elif y.re == -1.0  and  y.im == 0.0:
    result = 1.0/x
  else:
    var rho   = sqrt(x.re*x.re + x.im*x.im)
    var theta = arctan2(x.im,x.re)
    var s     = pow(rho,y.re) * exp(-y.im*theta)
    var r     = y.re*theta + y.im*ln(rho)
    result.re = s*cos(r)
    result.im = s*sin(r)


proc sin*(z: Complex): Complex =
  ## Returns the sine of `z`.
  result.re = sin(z.re)*cosh(z.im)
  result.im = cos(z.re)*sinh(z.im)

proc arcsin*(z: Complex): Complex =
  ## Returns the inverse sine of `z`.
  var i: Complex = (0.0,1.0)
  result = -i*ln(i*z + sqrt(1.0-z*z))

proc cos*(z: Complex): Complex =
  ## Returns the cosine of `z`.
  result.re = cos(z.re)*cosh(z.im)
  result.im = -sin(z.re)*sinh(z.im)

proc arccos*(z: Complex): Complex =
  ## Returns the inverse cosine of `z`.
  var i: Complex = (0.0,1.0)
  result = -i*ln(z + sqrt(z*z-1.0))

proc tan*(z: Complex): Complex =
  ## Returns the tangent of `z`.
  result = sin(z)/cos(z)

proc arctan*(z: Complex): Complex =
  ## Returns the inverse tangent of `z`.
  var i: Complex = (0.0,1.0)
  result = 0.5*i*(ln(1-i*z)-ln(1+i*z))

proc cot*(z: Complex): Complex =
  ## Returns the cotangent of `z`.
  result = cos(z)/sin(z)

proc arccot*(z: Complex): Complex =
  ## Returns the inverse cotangent of `z`.
  var i: Complex = (0.0,1.0)
  result = 0.5*i*(ln(1-i/z)-ln(1+i/z))

proc sec*(z: Complex): Complex =
  ## Returns the secant of `z`.
  result = 1.0/cos(z)

proc arcsec*(z: Complex): Complex =
  ## Returns the inverse secant of `z`.
  var i: Complex = (0.0,1.0)
  result = -i*ln(i*sqrt(1-1/(z*z))+1/z)

proc csc*(z: Complex): Complex =
  ## Returns the cosecant of `z`.
  result = 1.0/sin(z)

proc arccsc*(z: Complex): Complex =
  ## Returns the inverse cosecant of `z`.
  var i: Complex = (0.0,1.0)
  result = -i*ln(sqrt(1-1/(z*z))+i/z)


proc sinh*(z: Complex): Complex =
  ## Returns the hyperbolic sine of `z`.
  result = 0.5*(exp(z)-exp(-z))

proc arcsinh*(z: Complex): Complex =
  ## Returns the inverse hyperbolic sine of `z`.
  result = ln(z+sqrt(z*z+1))

proc cosh*(z: Complex): Complex =
  ## Returns the hyperbolic cosine of `z`.
  result = 0.5*(exp(z)+exp(-z))

proc arccosh*(z: Complex): Complex =
  ## Returns the inverse hyperbolic cosine of `z`.
  result = ln(z+sqrt(z*z-1))

proc tanh*(z: Complex): Complex =
  ## Returns the hyperbolic tangent of `z`.
  result = sinh(z)/cosh(z)

proc arctanh*(z: Complex): Complex =
  ## Returns the inverse hyperbolic tangent of `z`.
  result = 0.5*(ln((1+z)/(1-z)))

proc sech*(z: Complex): Complex =
  ## Returns the hyperbolic secant of `z`.
  result = 2/(exp(z)+exp(-z))

proc arcsech*(z: Complex): Complex =
  ## Returns the inverse hyperbolic secant of `z`.
  result = ln(1/z+sqrt(1/z+1)*sqrt(1/z-1))

proc csch*(z: Complex): Complex =
  ## Returns the hyperbolic cosecant of `z`.
  result = 2/(exp(z)-exp(-z))

proc arccsch*(z: Complex): Complex =
  ## Returns the inverse hyperbolic cosecant of `z`.
  result = ln(1/z+sqrt(1/(z*z)+1))

proc coth*(z: Complex): Complex =
  ## Returns the hyperbolic cotangent of `z`.
  result = cosh(z)/sinh(z)

proc arccoth*(z: Complex): Complex =
  ## Returns the inverse hyperbolic cotangent of `z`.
  result = 0.5*(ln(1+1/z)-ln(1-1/z))

proc phase*(z: Complex): float =
  ## Returns the phase of `z`.
  arctan2(z.im, z.re)

proc polar*(z: Complex): tuple[r, phi: float] =
  ## Returns `z` in polar coordinates.
  result.r = abs(z)
  result.phi = phase(z)

proc rect*(r: float, phi: float): Complex =
  ## Returns the complex number with polar coordinates `r` and `phi`.
  result.re = r * cos(phi)
  result.im = r * sin(phi)


proc `$`*(z: Complex): string =
  ## Returns `z`'s string representation as ``"(re, im)"``.
  result = "(" & $z.re & ", " & $z.im & ")"

{.pop.}


when isMainModule:
  var z = (0.0, 0.0)
  var oo = (1.0,1.0)
  var a = (1.0, 2.0)
  var b = (-1.0, -2.0)
  var m1 = (-1.0, 0.0)
  var i = (0.0,1.0)
  var one = (1.0,0.0)
  var tt = (10.0, 20.0)
  var ipi = (0.0, -PI)

  assert( a == a )
  assert( (a-a) == z )
  assert( (a+b) == z )
  assert( (a/b) == m1 )
  assert( (1.0/a) == (0.2, -0.4) )
  assert( (a*b) == (3.0, -4.0) )
  assert( 10.0*a == tt )
  assert( a*10.0 == tt )
  assert( tt/10.0 == a )
  assert( oo+(-1.0) == i )
  assert( (-1.0)+oo == i )
  assert( abs(oo) == sqrt(2.0) )
  assert( conjugate(a) == (1.0, -2.0) )
  assert( sqrt(m1) == i )
  assert( exp(ipi) =~ m1 )

  assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
  assert( pow(z,a) =~ (0.0, 0.0) )
  assert( pow(z,z) =~ (1.0, 0.0) )
  assert( pow(a,one) =~ a )
  assert( pow(a,m1) =~ (0.2, -0.4) )

  assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
  assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
  assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )

  assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
  assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
  assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
  assert( cot(a) =~ 1.0/tan(a) )
  assert( sec(a) =~ 1.0/cos(a) )
  assert( csc(a) =~ 1.0/sin(a) )
  assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
  assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
  assert( arctan(a) =~ (1.338972522294494, 0.402359478108525) )

  assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
  assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
  assert( tanh(a) =~ (1.1667362572409199,-0.243458201185725) )
  assert( sech(a) =~ 1/cosh(a) )
  assert( csch(a) =~ 1/sinh(a) )
  assert( coth(a) =~ 1/tanh(a) )
  assert( arccosh(a) =~ (1.528570919480998, 1.14371774040242) )
  assert( arcsinh(a) =~ (1.469351744368185, 1.06344002357775) )
  assert( arctanh(a) =~ (0.173286795139986, 1.17809724509617) )
  assert( arcsech(a) =~ arccosh(1/a) )
  assert( arccsch(a) =~ arcsinh(1/a) )
  assert( arccoth(a) =~ arctanh(1/a) )

  assert( phase(a) == 1.1071487177940904 )
  var t = polar(a)
  assert( rect(t.r, t.phi) =~ a )
  assert( rect(1.0, 2.0) =~ (-0.4161468365471424, 0.9092974268256817) )