1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
#
#
# Nim's Runtime Library
# (c) Copyright 2010 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements complex numbers.
{.push checks:off, line_dir:off, stack_trace:off, debugger:off.}
# the user does not want to trace a part
# of the standard library!
import
math
const
EPS = 5.0e-6 ## Epsilon used for float comparisons (should be smaller
## if float is really float64, but w/ the current version
## it seems to be float32?)
type
Complex* = tuple[re, im: float]
## a complex number, consisting of a real and an imaginary part
{.deprecated: [TComplex: Complex].}
proc `==` *(x, y: Complex): bool =
## Compare two complex numbers `x` and `y` for equality.
result = x.re == y.re and x.im == y.im
proc `=~` *(x, y: Complex): bool =
## Compare two complex numbers `x` and `y` approximately.
result = abs(x.re-y.re)<EPS and abs(x.im-y.im)<EPS
proc `+` *(x, y: Complex): Complex =
## Add two complex numbers.
result.re = x.re + y.re
result.im = x.im + y.im
proc `+` *(x: Complex, y: float): Complex =
## Add complex `x` to float `y`.
result.re = x.re + y
result.im = x.im
proc `+` *(x: float, y: Complex): Complex =
## Add float `x` to complex `y`.
result.re = x + y.re
result.im = y.im
proc `-` *(z: Complex): Complex =
## Unary minus for complex numbers.
result.re = -z.re
result.im = -z.im
proc `-` *(x, y: Complex): Complex =
## Subtract two complex numbers.
result.re = x.re - y.re
result.im = x.im - y.im
proc `-` *(x: Complex, y: float): Complex =
## Subtracts float `y` from complex `x`.
result = x + (-y)
proc `-` *(x: float, y: Complex): Complex =
## Subtracts complex `y` from float `x`.
result = x + (-y)
proc `/` *(x, y: Complex): Complex =
## Divide `x` by `y`.
var
r, den: float
if abs(y.re) < abs(y.im):
r = y.re / y.im
den = y.im + r * y.re
result.re = (x.re * r + x.im) / den
result.im = (x.im * r - x.re) / den
else:
r = y.im / y.re
den = y.re + r * y.im
result.re = (x.re + r * x.im) / den
result.im = (x.im - r * x.re) / den
proc `/` *(x : Complex, y: float ): Complex =
## Divide complex `x` by float `y`.
result.re = x.re/y
result.im = x.im/y
proc `/` *(x : float, y: Complex ): Complex =
## Divide float `x` by complex `y`.
var num : Complex = (x, 0.0)
result = num/y
proc `*` *(x, y: Complex): Complex =
## Multiply `x` with `y`.
result.re = x.re * y.re - x.im * y.im
result.im = x.im * y.re + x.re * y.im
proc `*` *(x: float, y: Complex): Complex =
## Multiply float `x` with complex `y`.
result.re = x * y.re
result.im = x * y.im
proc `*` *(x: Complex, y: float): Complex =
## Multiply complex `x` with float `y`.
result.re = x.re * y
result.im = x.im * y
proc `+=` *(x: var Complex, y: Complex) =
## Add `y` to `x`.
x.re += y.re
x.im += y.im
proc `+=` *(x: var Complex, y: float) =
## Add `y` to the complex number `x`.
x.re += y
proc `-=` *(x: var Complex, y: Complex) =
## Subtract `y` from `x`.
x.re -= y.re
x.im -= y.im
proc `-=` *(x: var Complex, y: float) =
## Subtract `y` from the complex number `x`.
x.re -= y
proc `*=` *(x: var Complex, y: Complex) =
## Multiply `y` to `x`.
let im = x.im * y.re + x.re * y.im
x.re = x.re * y.re - x.im * y.im
x.im = im
proc `*=` *(x: var Complex, y: float) =
## Multiply `y` to the complex number `x`.
x.re *= y
x.im *= y
proc `/=` *(x: var Complex, y: Complex) =
## Divide `x` by `y` in place.
x = x / y
proc `/=` *(x : var Complex, y: float) =
## Divide complex `x` by float `y` in place.
x.re /= y
x.im /= y
proc abs*(z: Complex): float =
## Return the distance from (0,0) to `z`.
# optimized by checking special cases (sqrt is expensive)
var x, y, temp: float
x = abs(z.re)
y = abs(z.im)
if x == 0.0:
result = y
elif y == 0.0:
result = x
elif x > y:
temp = y / x
result = x * sqrt(1.0 + temp * temp)
else:
temp = x / y
result = y * sqrt(1.0 + temp * temp)
proc sqrt*(z: Complex): Complex =
## Square root for a complex number `z`.
var x, y, w, r: float
if z.re == 0.0 and z.im == 0.0:
result = z
else:
x = abs(z.re)
y = abs(z.im)
if x >= y:
r = y / x
w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
else:
r = x / y
w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))
if z.re >= 0.0:
result.re = w
result.im = z.im / (w * 2.0)
else:
if z.im >= 0.0: result.im = w
else: result.im = -w
result.re = z.im / (result.im + result.im)
proc exp*(z: Complex): Complex =
## e raised to the power `z`.
var rho = exp(z.re)
var theta = z.im
result.re = rho*cos(theta)
result.im = rho*sin(theta)
proc ln*(z: Complex): Complex =
## Returns the natural log of `z`.
result.re = ln(abs(z))
result.im = arctan2(z.im,z.re)
proc log10*(z: Complex): Complex =
## Returns the log base 10 of `z`.
result = ln(z)/ln(10.0)
proc log2*(z: Complex): Complex =
## Returns the log base 2 of `z`.
result = ln(z)/ln(2.0)
proc pow*(x, y: Complex): Complex =
## `x` raised to the power `y`.
if x.re == 0.0 and x.im == 0.0:
if y.re == 0.0 and y.im == 0.0:
result.re = 1.0
result.im = 0.0
else:
result.re = 0.0
result.im = 0.0
elif y.re == 1.0 and y.im == 0.0:
result = x
elif y.re == -1.0 and y.im == 0.0:
result = 1.0/x
else:
var rho = sqrt(x.re*x.re + x.im*x.im)
var theta = arctan2(x.im,x.re)
var s = pow(rho,y.re) * exp(-y.im*theta)
var r = y.re*theta + y.im*ln(rho)
result.re = s*cos(r)
result.im = s*sin(r)
proc sin*(z: Complex): Complex =
## Returns the sine of `z`.
result.re = sin(z.re)*cosh(z.im)
result.im = cos(z.re)*sinh(z.im)
proc arcsin*(z: Complex): Complex =
## Returns the inverse sine of `z`.
var i: Complex = (0.0,1.0)
result = -i*ln(i*z + sqrt(1.0-z*z))
proc cos*(z: Complex): Complex =
## Returns the cosine of `z`.
result.re = cos(z.re)*cosh(z.im)
result.im = -sin(z.re)*sinh(z.im)
proc arccos*(z: Complex): Complex =
## Returns the inverse cosine of `z`.
var i: Complex = (0.0,1.0)
result = -i*ln(z + sqrt(z*z-1.0))
proc tan*(z: Complex): Complex =
## Returns the tangent of `z`.
result = sin(z)/cos(z)
proc cot*(z: Complex): Complex =
## Returns the cotangent of `z`.
result = cos(z)/sin(z)
proc sec*(z: Complex): Complex =
## Returns the secant of `z`.
result = 1.0/cos(z)
proc csc*(z: Complex): Complex =
## Returns the cosecant of `z`.
result = 1.0/sin(z)
proc sinh*(z: Complex): Complex =
## Returns the hyperbolic sine of `z`.
result = 0.5*(exp(z)-exp(-z))
proc cosh*(z: Complex): Complex =
## Returns the hyperbolic cosine of `z`.
result = 0.5*(exp(z)+exp(-z))
proc `$`*(z: Complex): string =
## Returns `z`'s string representation as ``"(re, im)"``.
result = "(" & $z.re & ", " & $z.im & ")"
{.pop.}
when isMainModule:
var z = (0.0, 0.0)
var oo = (1.0,1.0)
var a = (1.0, 2.0)
var b = (-1.0, -2.0)
var m1 = (-1.0, 0.0)
var i = (0.0,1.0)
var one = (1.0,0.0)
var tt = (10.0, 20.0)
var ipi = (0.0, -PI)
assert( a == a )
assert( (a-a) == z )
assert( (a+b) == z )
assert( (a/b) == m1 )
assert( (1.0/a) == (0.2, -0.4) )
assert( (a*b) == (3.0, -4.0) )
assert( 10.0*a == tt )
assert( a*10.0 == tt )
assert( tt/10.0 == a )
assert( oo+(-1.0) == i )
assert( (-1.0)+oo == i )
assert( abs(oo) == sqrt(2.0) )
assert( sqrt(m1) == i )
assert( exp(ipi) =~ m1 )
assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) )
assert( pow(z,a) =~ (0.0, 0.0) )
assert( pow(z,z) =~ (1.0, 0.0) )
assert( pow(a,one) =~ a )
assert( pow(a,m1) =~ (0.2, -0.4) )
assert( ln(a) =~ (0.804718956217050, 1.107148717794090) )
assert( log10(a) =~ (0.349485002168009, 0.480828578784234) )
assert( log2(a) =~ (1.16096404744368, 1.59727796468811) )
assert( sin(a) =~ (3.16577851321617, 1.95960104142161) )
assert( cos(a) =~ (2.03272300701967, -3.05189779915180) )
assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) )
assert( cot(a) =~ 1.0/tan(a) )
assert( sec(a) =~ 1.0/cos(a) )
assert( csc(a) =~ 1.0/sin(a) )
assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) )
assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) )
assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) )
assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )
|