1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2014 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Implements Nimrod's 'spawn'.
when not compileOption("threads"):
{.error: "Threadpool requires --threads:on option.".}
import cpuinfo, cpuload, locks
{.push stackTrace:off.}
type
CondVar = object
c: TCond
L: TLock
counter: int
proc createCondVar(): CondVar =
initCond(result.c)
initLock(result.L)
proc destroyCondVar(cv: var CondVar) {.inline.} =
deinitCond(cv.c)
deinitLock(cv.L)
proc await(cv: var CondVar) =
acquire(cv.L)
while cv.counter <= 0:
wait(cv.c, cv.L)
dec cv.counter
release(cv.L)
proc signal(cv: var CondVar) =
acquire(cv.L)
inc cv.counter
release(cv.L)
signal(cv.c)
const CacheLineSize = 32 # true for most archs
type
Barrier {.compilerProc.} = object
entered: int
cv: CondVar # condvar takes 3 words at least
when sizeof(int) < 8:
cacheAlign: array[CacheLineSize-4*sizeof(int), byte]
left: int
cacheAlign2: array[CacheLineSize-sizeof(int), byte]
interest: bool ## wether the master is interested in the "all done" event
proc barrierEnter(b: ptr Barrier) {.compilerProc, inline.} =
# due to the signaling between threads, it is ensured we are the only
# one with access to 'entered' so we don't need 'atomicInc' here:
inc b.entered
# also we need no 'fence' instructions here as soon 'nimArgsPassingDone'
# will be called which already will perform a fence for us.
proc barrierLeave(b: ptr Barrier) {.compilerProc, inline.} =
atomicInc b.left
when not defined(x86): fence()
if b.interest and b.left == b.entered: signal(b.cv)
proc openBarrier(b: ptr Barrier) {.compilerProc, inline.} =
b.entered = 0
b.left = 0
b.interest = false
proc closeBarrier(b: ptr Barrier) {.compilerProc.} =
fence()
if b.left != b.entered:
b.cv = createCondVar()
fence()
b.interest = true
fence()
while b.left != b.entered: await(b.cv)
destroyCondVar(b.cv)
{.pop.}
# ----------------------------------------------------------------------------
type
foreign* = object ## a region that indicates the pointer comes from a
## foreign thread heap.
AwaitInfo = object
cv: CondVar
idx: int
FlowVarBase* = ref FlowVarBaseObj ## untyped base class for 'FlowVar[T]'
FlowVarBaseObj = object of TObject
ready, usesCondVar: bool
cv: CondVar #\
# for 'awaitAny' support
ai: ptr AwaitInfo
idx: int
data: pointer # we incRef and unref it to keep it alive
owner: pointer # ptr Worker
FlowVarObj[T] = object of FlowVarBaseObj
blob: T
FlowVar*{.compilerProc.}[T] = ref FlowVarObj[T] ## a data flow variable
ToFreeQueue = object
len: int
lock: TLock
empty: TCond
data: array[512, pointer]
WorkerProc = proc (thread, args: pointer) {.nimcall, gcsafe.}
Worker = object
taskArrived: CondVar
taskStarted: CondVar #\
# task data:
f: WorkerProc
data: pointer
ready: bool # put it here for correct alignment!
initialized: bool # whether it has even been initialized
shutdown: bool # the pool requests to shut down this worker thread
q: ToFreeQueue
proc await*(fv: FlowVarBase) =
## waits until the value for the flowVar arrives. Usually it is not necessary
## to call this explicitly.
if fv.usesCondVar:
fv.usesCondVar = false
await(fv.cv)
destroyCondVar(fv.cv)
proc finished(fv: FlowVarBase) =
doAssert fv.ai.isNil, "flowVar is still attached to an 'awaitAny'"
# we have to protect against the rare cases where the owner of the flowVar
# simply disregards the flowVar and yet the "flowVar" has not yet written
# anything to it:
await(fv)
if fv.data.isNil: return
let owner = cast[ptr Worker](fv.owner)
let q = addr(owner.q)
var waited = false
while true:
acquire(q.lock)
if q.len < q.data.len:
q.data[q.len] = fv.data
inc q.len
release(q.lock)
break
else:
# the queue is exhausted! We block until it has been cleaned:
release(q.lock)
wait(q.empty, q.lock)
waited = true
fv.data = nil
# wakeup other potentially waiting threads:
if waited: signal(q.empty)
proc cleanFlowVars(w: ptr Worker) =
let q = addr(w.q)
acquire(q.lock)
for i in 0 .. <q.len:
GC_unref(cast[PObject](q.data[i]))
q.len = 0
release(q.lock)
signal(q.empty)
proc fvFinalizer[T](fv: FlowVar[T]) = finished(fv)
proc nimCreateFlowVar[T](): FlowVar[T] {.compilerProc.} =
new(result, fvFinalizer)
proc nimFlowVarCreateCondVar(fv: FlowVarBase) {.compilerProc.} =
fv.cv = createCondVar()
fv.usesCondVar = true
proc nimFlowVarSignal(fv: FlowVarBase) {.compilerProc.} =
if fv.ai != nil:
acquire(fv.ai.cv.L)
fv.ai.idx = fv.idx
inc fv.ai.cv.counter
release(fv.ai.cv.L)
signal(fv.ai.cv.c)
if fv.usesCondVar: signal(fv.cv)
proc awaitAndThen*[T](fv: FlowVar[T]; action: proc (x: T) {.closure.}) =
## blocks until the ``fv`` is available and then passes its value
## to ``action``. Note that due to Nimrod's parameter passing semantics this
## means that ``T`` doesn't need to be copied and so ``awaitAndThen`` can
## sometimes be more efficient than ``^``.
await(fv)
when T is string or T is seq:
action(cast[T](fv.data))
elif T is ref:
{.error: "'awaitAndThen' not available for FlowVar[ref]".}
else:
action(fv.blob)
finished(fv)
proc `^`*[T](fv: FlowVar[ref T]): foreign ptr T =
## blocks until the value is available and then returns this value.
await(fv)
result = cast[foreign ptr T](fv.data)
proc `^`*[T](fv: FlowVar[T]): T =
## blocks until the value is available and then returns this value.
await(fv)
when T is string or T is seq:
# XXX closures? deepCopy?
result = cast[T](fv.data)
else:
result = fv.blob
proc awaitAny*(flowVars: openArray[FlowVarBase]): int =
## awaits any of the given flowVars. Returns the index of one flowVar for
## which a value arrived. A flowVar only supports one call to 'awaitAny' at
## the same time. That means if you await([a,b]) and await([b,c]) the second
## call will only await 'c'. If there is no flowVar left to be able to wait
## on, -1 is returned.
## **Note**: This results in non-deterministic behaviour and so should be
## avoided.
var ai: AwaitInfo
ai.cv = createCondVar()
var conflicts = 0
for i in 0 .. flowVars.high:
if cas(addr flowVars[i].ai, nil, addr ai):
flowVars[i].idx = i
else:
inc conflicts
if conflicts < flowVars.len:
await(ai.cv)
result = ai.idx
for i in 0 .. flowVars.high:
discard cas(addr flowVars[i].ai, addr ai, nil)
else:
result = -1
destroyCondVar(ai.cv)
proc nimArgsPassingDone(p: pointer) {.compilerProc.} =
let w = cast[ptr Worker](p)
signal(w.taskStarted)
const
MaxThreadPoolSize* = 256 ## maximal size of the thread pool. 256 threads
## should be good enough for anybody ;-)
var
currentPoolSize: int
maxPoolSize = MaxThreadPoolSize
minPoolSize = 4
gSomeReady = createCondVar()
readyWorker: ptr Worker
proc slave(w: ptr Worker) {.thread.} =
while true:
w.ready = true
readyWorker = w
signal(gSomeReady)
await(w.taskArrived)
assert(not w.ready)
w.f(w, w.data)
if w.q.len != 0: w.cleanFlowVars
if w.shutdown:
w.shutdown = false
atomicDec currentPoolSize
var
workers: array[MaxThreadPoolSize, TThread[ptr Worker]]
workersData: array[MaxThreadPoolSize, Worker]
proc setMinPoolSize*(size: range[1..MaxThreadPoolSize]) =
## sets the minimal thread pool size. The default value of this is 4.
minPoolSize = size
proc setMaxPoolSize*(size: range[1..MaxThreadPoolSize]) =
## sets the minimal thread pool size. The default value of this
## is ``MaxThreadPoolSize``.
maxPoolSize = size
if currentPoolSize > maxPoolSize:
for i in maxPoolSize..currentPoolSize-1:
let w = addr(workersData[i])
w.shutdown = true
proc activateThread(i: int) {.noinline.} =
workersData[i].taskArrived = createCondVar()
workersData[i].taskStarted = createCondVar()
workersData[i].initialized = true
initCond(workersData[i].q.empty)
initLock(workersData[i].q.lock)
createThread(workers[i], slave, addr(workersData[i]))
proc setup() =
currentPoolSize = min(countProcessors(), MaxThreadPoolSize)
readyWorker = addr(workersData[0])
for i in 0.. <currentPoolSize: activateThread(i)
proc preferSpawn*(): bool =
## Use this proc to determine quickly if a 'spawn' or a direct call is
## preferable. If it returns 'true' a 'spawn' may make sense. In general
## it is not necessary to call this directly; use 'spawnX' instead.
result = gSomeReady.counter > 0
proc spawn*(call: expr): expr {.magic: "Spawn".}
## always spawns a new task, so that the 'call' is never executed on
## the calling thread. 'call' has to be proc call 'p(...)' where 'p'
## is gcsafe and has a return type that is either 'void' or compatible
## with ``FlowVar[T]``.
template spawnX*(call: expr): expr =
## spawns a new task if a CPU core is ready, otherwise executes the
## call in the calling thread. Usually it is advised to
## use 'spawn' in order to not block the producer for an unknown
## amount of time. 'call' has to be proc call 'p(...)' where 'p'
## is gcsafe and has a return type that is either 'void' or compatible
## with ``FlowVar[T]``.
(if preferSpawn(): spawn call else: call)
proc parallel*(body: stmt) {.magic: "Parallel".}
## a parallel section can be used to execute a block in parallel. ``body``
## has to be in a DSL that is a particular subset of the language. Please
## refer to the manual for further information.
var
state: ThreadPoolState
stateLock: TLock
initLock stateLock
proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool =
if cas(addr w.ready, true, false):
w.data = data
w.f = fn
signal(w.taskArrived)
await(w.taskStarted)
result = true
proc nimSpawn(fn: WorkerProc; data: pointer) {.compilerProc.} =
# implementation of 'spawn' that is used by the code generator.
while true:
if selectWorker(readyWorker, fn, data): return
for i in 0.. <currentPoolSize:
if selectWorker(addr(workersData[i]), fn, data): return
# determine what to do, but keep in mind this is expensive too:
# state.calls < maxPoolSize: warmup phase
# (state.calls and 127) == 0: periodic check
if state.calls < maxPoolSize or (state.calls and 127) == 0:
# ensure the call to 'advice' is atomic:
if tryAcquire(stateLock):
case advice(state)
of doNothing: discard
of doCreateThread:
if currentPoolSize < maxPoolSize:
if not workersData[currentPoolSize].initialized:
activateThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
release(stateLock)
return
# else we didn't succeed but some other thread, so do nothing.
of doShutdownThread:
if currentPoolSize > minPoolSize:
let w = addr(workersData[currentPoolSize-1])
w.shutdown = true
# we don't free anything here. Too dangerous.
release(stateLock)
# else the acquire failed, but this means some
# other thread succeeded, so we don't need to do anything here.
await(gSomeReady)
proc sync*() =
## a simple barrier to wait for all spawn'ed tasks. If you need more elaborate
## waiting, you have to use an explicit barrier.
while true:
var allReady = true
for i in 0 .. <currentPoolSize:
if not allReady: break
allReady = allReady and workersData[i].ready
if allReady: break
await(gSomeReady)
setup()
|