summary refs log tree commit diff stats
path: root/lib/pure/concurrency/threadpool.nim
blob: 04be704be8baf53a9559a091d21e6fe0f58524ad (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Implements Nim's `spawn <manual.html#parallel-amp-spawn>`_.
##
## **See also:**
## * `threads module <threads.html>`_
## * `chanels module <channels.html>`_
## * `locks module <locks.html>`_
## * `asyncdispatch module <asyncdispatch.html>`_

when not compileOption("threads"):
  {.error: "Threadpool requires --threads:on option.".}

import cpuinfo, cpuload, locks, os

{.push stackTrace:off.}

type
  Semaphore = object
    c: Cond
    L: Lock
    counter: int

proc initSemaphore(cv: var Semaphore) =
  initCond(cv.c)
  initLock(cv.L)

proc destroySemaphore(cv: var Semaphore) {.inline.} =
  deinitCond(cv.c)
  deinitLock(cv.L)

proc blockUntil(cv: var Semaphore) =
  acquire(cv.L)
  while cv.counter <= 0:
    wait(cv.c, cv.L)
  dec cv.counter
  release(cv.L)

proc signal(cv: var Semaphore) =
  acquire(cv.L)
  inc cv.counter
  release(cv.L)
  signal(cv.c)

const CacheLineSize = 32 # true for most archs

type
  Barrier {.compilerProc.} = object
    entered: int
    cv: Semaphore # Semaphore takes 3 words at least
    when sizeof(int) < 8:
      cacheAlign: array[CacheLineSize-4*sizeof(int), byte]
    left: int
    cacheAlign2: array[CacheLineSize-sizeof(int), byte]
    interest: bool # whether the master is interested in the "all done" event

proc barrierEnter(b: ptr Barrier) {.compilerProc, inline.} =
  # due to the signaling between threads, it is ensured we are the only
  # one with access to 'entered' so we don't need 'atomicInc' here:
  inc b.entered
  # also we need no 'fence' instructions here as soon 'nimArgsPassingDone'
  # will be called which already will perform a fence for us.

proc barrierLeave(b: ptr Barrier) {.compilerProc, inline.} =
  atomicInc b.left
  when not defined(x86): fence()
  # We may not have seen the final value of b.entered yet,
  # so we need to check for >= instead of ==.
  if b.interest and b.left >= b.entered: signal(b.cv)

proc openBarrier(b: ptr Barrier) {.compilerProc, inline.} =
  b.entered = 0
  b.left = 0
  b.interest = false

proc closeBarrier(b: ptr Barrier) {.compilerProc.} =
  fence()
  if b.left != b.entered:
    b.cv.initSemaphore()
    fence()
    b.interest = true
    fence()
    while b.left != b.entered: blockUntil(b.cv)
    destroySemaphore(b.cv)

{.pop.}

# ----------------------------------------------------------------------------

type
  AwaitInfo = object
    cv: Semaphore
    idx: int

  FlowVarBase* = ref FlowVarBaseObj ## Untyped base class for ``FlowVar[T]``.
  FlowVarBaseObj = object of RootObj
    ready, usesSemaphore, awaited: bool
    cv: Semaphore  # for 'blockUntilAny' support
    ai: ptr AwaitInfo
    idx: int
    data: pointer  # we incRef and unref it to keep it alive; note this MUST NOT
                   # be RootRef here otherwise the wrong GC keeps track of it!
    owner: pointer # ptr Worker

  FlowVarObj[T] = object of FlowVarBaseObj
    blob: T

  FlowVar*{.compilerProc.}[T] = ref FlowVarObj[T] ## A data flow variable.

  ToFreeQueue = object
    len: int
    lock: Lock
    empty: Semaphore
    data: array[128, pointer]

  WorkerProc = proc (thread, args: pointer) {.nimcall, gcsafe.}
  Worker = object
    taskArrived: Semaphore
    taskStarted: Semaphore #\
    # task data:
    f: WorkerProc
    data: pointer
    ready: bool # put it here for correct alignment!
    initialized: bool # whether it has even been initialized
    shutdown: bool # the pool requests to shut down this worker thread
    q: ToFreeQueue
    readyForTask: Semaphore

proc blockUntil*(fv: FlowVarBase) =
  ## Waits until the value for the ``fv`` arrives.
  ##
  ## Usually it is not necessary to call this explicitly.
  if fv.usesSemaphore and not fv.awaited:
    fv.awaited = true
    blockUntil(fv.cv)
    destroySemaphore(fv.cv)

proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool =
  if cas(addr w.ready, true, false):
    w.data = data
    w.f = fn
    signal(w.taskArrived)
    blockUntil(w.taskStarted)
    result = true

proc cleanFlowVars(w: ptr Worker) =
  let q = addr(w.q)
  acquire(q.lock)
  for i in 0 ..< q.len:
    GC_unref(cast[RootRef](q.data[i]))
    #echo "GC_unref"
  q.len = 0
  release(q.lock)

proc wakeupWorkerToProcessQueue(w: ptr Worker) =
  # we have to ensure it's us who wakes up the owning thread.
  # This is quite horrible code, but it runs so rarely that it doesn't matter:
  while not cas(addr w.ready, true, false):
    cpuRelax()
    discard
  w.data = nil
  w.f = proc (w, a: pointer) {.nimcall.} =
    let w = cast[ptr Worker](w)
    cleanFlowVars(w)
    signal(w.q.empty)
  signal(w.taskArrived)

proc attach(fv: FlowVarBase; i: int): bool =
  acquire(fv.cv.L)
  if fv.cv.counter <= 0:
    fv.idx = i
    result = true
  else:
    result = false
  release(fv.cv.L)

proc finished(fv: FlowVarBase) =
  doAssert fv.ai.isNil, "flowVar is still attached to an 'blockUntilAny'"
  # we have to protect against the rare cases where the owner of the flowVar
  # simply disregards the flowVar and yet the "flowVar" has not yet written
  # anything to it:
  blockUntil(fv)
  if fv.data.isNil: return
  let owner = cast[ptr Worker](fv.owner)
  let q = addr(owner.q)
  acquire(q.lock)
  while not (q.len < q.data.len):
    #echo "EXHAUSTED!"
    release(q.lock)
    wakeupWorkerToProcessQueue(owner)
    blockUntil(q.empty)
    acquire(q.lock)
  q.data[q.len] = cast[pointer](fv.data)
  inc q.len
  release(q.lock)
  fv.data = nil

proc fvFinalizer[T](fv: FlowVar[T]) = finished(fv)

proc nimCreateFlowVar[T](): FlowVar[T] {.compilerProc.} =
  new(result, fvFinalizer)

proc nimFlowVarCreateSemaphore(fv: FlowVarBase) {.compilerProc.} =
  fv.cv.initSemaphore()
  fv.usesSemaphore = true

proc nimFlowVarSignal(fv: FlowVarBase) {.compilerProc.} =
  if fv.ai != nil:
    acquire(fv.ai.cv.L)
    fv.ai.idx = fv.idx
    inc fv.ai.cv.counter
    release(fv.ai.cv.L)
    signal(fv.ai.cv.c)
  if fv.usesSemaphore:
    signal(fv.cv)

proc awaitAndThen*[T](fv: FlowVar[T]; action: proc (x: T) {.closure.}) =
  ## Blocks until the ``fv`` is available and then passes its value
  ## to ``action``.
  ##
  ## Note that due to Nim's parameter passing semantics this
  ## means that ``T`` doesn't need to be copied so ``awaitAndThen`` can
  ## sometimes be more efficient than `^ proc <#^,FlowVar[T]>`_.
  blockUntil(fv)
  when T is string or T is seq:
    action(cast[T](fv.data))
  elif T is ref:
    {.error: "'awaitAndThen' not available for FlowVar[ref]".}
  else:
    action(fv.blob)
  finished(fv)

proc unsafeRead*[T](fv: FlowVar[ref T]): ptr T =
  ## Blocks until the value is available and then returns this value.
  blockUntil(fv)
  result = cast[ptr T](fv.data)

proc `^`*[T](fv: FlowVar[ref T]): ref T =
  ## Blocks until the value is available and then returns this value.
  blockUntil(fv)
  let src = cast[ref T](fv.data)
  deepCopy result, src

proc `^`*[T](fv: FlowVar[T]): T =
  ## Blocks until the value is available and then returns this value.
  blockUntil(fv)
  when T is string or T is seq:
    # XXX closures? deepCopy?
    result = cast[T](fv.data)
  else:
    result = fv.blob

proc blockUntilAny*(flowVars: openArray[FlowVarBase]): int =
  ## Awaits any of the given ``flowVars``. Returns the index of one ``flowVar``
  ## for which a value arrived.
  ##
  ## A ``flowVar`` only supports one call to ``blockUntilAny`` at the same time.
  ## That means if you ``blockUntilAny([a,b])`` and ``blockUntilAny([b,c])``
  ## the second call will only block until ``c``. If there is no ``flowVar`` left
  ## to be able to wait on, -1 is returned.
  ##
  ## **Note**: This results in non-deterministic behaviour and should be avoided.
  var ai: AwaitInfo
  ai.cv.initSemaphore()
  var conflicts = 0
  result = -1
  for i in 0 .. flowVars.high:
    if cas(addr flowVars[i].ai, nil, addr ai):
      if not attach(flowVars[i], i):
        result = i
        break
    else:
      inc conflicts
  if conflicts < flowVars.len:
    if result < 0:
      blockUntil(ai.cv)
      result = ai.idx
    for i in 0 .. flowVars.high:
      discard cas(addr flowVars[i].ai, addr ai, nil)
  destroySemaphore(ai.cv)

proc isReady*(fv: FlowVarBase): bool =
  ## Determines whether the specified ``FlowVarBase``'s value is available.
  ##
  ## If ``true``, awaiting ``fv`` will not block.
  if fv.usesSemaphore and not fv.awaited:
    acquire(fv.cv.L)
    result = fv.cv.counter > 0
    release(fv.cv.L)
  else:
    result = true

proc nimArgsPassingDone(p: pointer) {.compilerProc.} =
  let w = cast[ptr Worker](p)
  signal(w.taskStarted)

const
  MaxThreadPoolSize* = 256 ## Maximum size of the thread pool. 256 threads
                           ## should be good enough for anybody ;-)
  MaxDistinguishedThread* = 32 ## Maximum number of "distinguished" threads.

type
  ThreadId* = range[0..MaxDistinguishedThread-1]

var
  currentPoolSize: int
  maxPoolSize = MaxThreadPoolSize
  minPoolSize = 4
  gSomeReady : Semaphore
  readyWorker: ptr Worker

# A workaround for recursion deadlock issue
# https://github.com/nim-lang/Nim/issues/4597
var
  numSlavesLock: Lock
  numSlavesRunning {.guard: numSlavesLock}: int
  numSlavesWaiting {.guard: numSlavesLock}: int
  isSlave {.threadvar.}: bool

numSlavesLock.initLock

gSomeReady.initSemaphore()

proc slave(w: ptr Worker) {.thread.} =
  isSlave = true
  while true:
    if w.shutdown:
      w.shutdown = false
      atomicDec currentPoolSize
      break
    when declared(atomicStoreN):
      atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
    else:
      w.ready = true
    readyWorker = w
    signal(gSomeReady)
    blockUntil(w.taskArrived)
    # XXX Somebody needs to look into this (why does this assertion fail
    # in Visual Studio?)
    when not defined(vcc) and not defined(tcc): assert(not w.ready)

    withLock numSlavesLock:
      inc numSlavesRunning

    w.f(w, w.data)

    withLock numSlavesLock:
      dec numSlavesRunning

    if w.q.len != 0: w.cleanFlowVars

proc distinguishedSlave(w: ptr Worker) {.thread.} =
  while true:
    when declared(atomicStoreN):
      atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
    else:
      w.ready = true
    signal(w.readyForTask)
    blockUntil(w.taskArrived)
    assert(not w.ready)
    w.f(w, w.data)
    if w.q.len != 0: w.cleanFlowVars

var
  workers: array[MaxThreadPoolSize, Thread[ptr Worker]]
  workersData: array[MaxThreadPoolSize, Worker]

  distinguished: array[MaxDistinguishedThread, Thread[ptr Worker]]
  distinguishedData: array[MaxDistinguishedThread, Worker]

when defined(nimPinToCpu):
  var gCpus: Natural

proc setMinPoolSize*(size: range[1..MaxThreadPoolSize]) =
  ## Sets the minimum thread pool size. The default value of this is 4.
  minPoolSize = size

proc setMaxPoolSize*(size: range[1..MaxThreadPoolSize]) =
  ## Sets the maximum thread pool size. The default value of this
  ## is ``MaxThreadPoolSize`` (256).
  maxPoolSize = size
  if currentPoolSize > maxPoolSize:
    for i in maxPoolSize..currentPoolSize-1:
      let w = addr(workersData[i])
      w.shutdown = true

when defined(nimRecursiveSpawn):
  var localThreadId {.threadvar.}: int

proc activateWorkerThread(i: int) {.noinline.} =
  workersData[i].taskArrived.initSemaphore()
  workersData[i].taskStarted.initSemaphore()
  workersData[i].initialized = true
  workersData[i].q.empty.initSemaphore()
  initLock(workersData[i].q.lock)
  createThread(workers[i], slave, addr(workersData[i]))
  when defined(nimRecursiveSpawn):
    localThreadId = i+1
  when defined(nimPinToCpu):
    if gCpus > 0: pinToCpu(workers[i], i mod gCpus)

proc activateDistinguishedThread(i: int) {.noinline.} =
  distinguishedData[i].taskArrived.initSemaphore()
  distinguishedData[i].taskStarted.initSemaphore()
  distinguishedData[i].initialized = true
  distinguishedData[i].q.empty.initSemaphore()
  initLock(distinguishedData[i].q.lock)
  distinguishedData[i].readyForTask.initSemaphore()
  createThread(distinguished[i], distinguishedSlave, addr(distinguishedData[i]))

proc setup() =
  let p = countProcessors()
  when defined(nimPinToCpu):
    gCpus = p
  currentPoolSize = min(p, MaxThreadPoolSize)
  readyWorker = addr(workersData[0])
  for i in 0..<currentPoolSize: activateWorkerThread(i)

proc preferSpawn*(): bool =
  ## Use this proc to determine quickly if a ``spawn`` or a direct call is
  ## preferable.
  ##
  ## If it returns ``true``, a ``spawn`` may make sense. In general
  ## it is not necessary to call this directly; use `spawnX template
  ## <#spawnX.t>`_ instead.
  result = gSomeReady.counter > 0

proc spawn*(call: typed): void {.magic: "Spawn".}
  ## Always spawns a new task, so that the ``call`` is never executed on
  ## the calling thread.
  ##
  ## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
  ## return type that is either ``void`` or compatible with ``FlowVar[T]``.

proc pinnedSpawn*(id: ThreadId; call: typed): void {.magic: "Spawn".}
  ## Always spawns a new task on the worker thread with ``id``, so that
  ## the ``call`` is **always** executed on the thread.
  ##
  ## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
  ## return type that is either ``void`` or compatible with ``FlowVar[T]``.

template spawnX*(call): void =
  ## Spawns a new task if a CPU core is ready, otherwise executes the
  ## call in the calling thread.
  ##
  ## Usually it is advised to use `spawn proc <#spawn,typed>`_ in order to
  ## not block the producer for an unknown amount of time.
  ##
  ## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
  ## return type that is either 'void' or compatible with ``FlowVar[T]``.
  (if preferSpawn(): spawn call else: call)

proc parallel*(body: untyped) {.magic: "Parallel".}
  ## A parallel section can be used to execute a block in parallel.
  ##
  ## ``body`` has to be in a DSL that is a particular subset of the language.
  ##
  ## Please refer to `the manual <manual.html#parallel-amp-spawn>`_
  ## for further information.

var
  state: ThreadPoolState
  stateLock: Lock

initLock stateLock

proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerProc.} =
  # implementation of 'spawn' that is used by the code generator.
  while true:
    if selectWorker(readyWorker, fn, data): return
    for i in 0..<currentPoolSize:
      if selectWorker(addr(workersData[i]), fn, data): return

    # determine what to do, but keep in mind this is expensive too:
    # state.calls < maxPoolSize: warmup phase
    # (state.calls and 127) == 0: periodic check
    if state.calls < maxPoolSize or (state.calls and 127) == 0:
      # ensure the call to 'advice' is atomic:
      if tryAcquire(stateLock):
        if currentPoolSize < minPoolSize:
          if not workersData[currentPoolSize].initialized:
            activateWorkerThread(currentPoolSize)
          let w = addr(workersData[currentPoolSize])
          atomicInc currentPoolSize
          if selectWorker(w, fn, data):
            release(stateLock)
            return

        case advice(state)
        of doNothing: discard
        of doCreateThread:
          if currentPoolSize < maxPoolSize:
            if not workersData[currentPoolSize].initialized:
              activateWorkerThread(currentPoolSize)
            let w = addr(workersData[currentPoolSize])
            atomicInc currentPoolSize
            if selectWorker(w, fn, data):
              release(stateLock)
              return
            # else we didn't succeed but some other thread, so do nothing.
        of doShutdownThread:
          if currentPoolSize > minPoolSize:
            let w = addr(workersData[currentPoolSize-1])
            w.shutdown = true
          # we don't free anything here. Too dangerous.
        release(stateLock)
      # else the acquire failed, but this means some
      # other thread succeeded, so we don't need to do anything here.
    when defined(nimRecursiveSpawn):
      if localThreadId > 0:
        # we are a worker thread, so instead of waiting for something which
        # might as well never happen (see tparallel_quicksort), we run the task
        # on the current thread instead.
        var self = addr(workersData[localThreadId-1])
        fn(self, data)
        blockUntil(self.taskStarted)
        return

    if isSlave:
      # Run under lock until `numSlavesWaiting` increment to avoid a
      # race (otherwise two last threads might start waiting together)
      withLock numSlavesLock:
        if numSlavesRunning <= numSlavesWaiting + 1:
          # All the other slaves are waiting
          # If we wait now, we-re deadlocked until
          # an external spawn happens !
          if currentPoolSize < maxPoolSize:
            if not workersData[currentPoolSize].initialized:
              activateWorkerThread(currentPoolSize)
            let w = addr(workersData[currentPoolSize])
            atomicInc currentPoolSize
            if selectWorker(w, fn, data):
              return
          else:
            # There is no place in the pool. We're deadlocked.
            # echo "Deadlock!"
            discard

        inc numSlavesWaiting

    blockUntil(gSomeReady)

    if isSlave:
      withLock numSlavesLock:
        dec numSlavesWaiting

var
  distinguishedLock: Lock

initLock distinguishedLock

proc nimSpawn4(fn: WorkerProc; data: pointer; id: ThreadId) {.compilerProc.} =
  acquire(distinguishedLock)
  if not distinguishedData[id].initialized:
    activateDistinguishedThread(id)
  release(distinguishedLock)
  while true:
    if selectWorker(addr(distinguishedData[id]), fn, data): break
    blockUntil(distinguishedData[id].readyForTask)


proc sync*() =
  ## A simple barrier to wait for all ``spawn``'ed tasks.
  ##
  ## If you need more elaborate waiting, you have to use an explicit barrier.
  while true:
    var allReady = true
    for i in 0 ..< currentPoolSize:
      if not allReady: break
      allReady = allReady and workersData[i].ready
    if allReady: break
    sleep(100)
    # We cannot "blockUntil(gSomeReady)" because workers may be shut down between
    # the time we establish that some are not "ready" and the time we wait for a
    # "signal(gSomeReady)" from inside "slave()" that can never come.

setup()