summary refs log tree commit diff stats
path: root/lib/pure/dynlib.nim
blob: c6794be67f030fc6f0e52ef1d92012a488fb0c4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#
#
#            Nim's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the ability to access symbols from shared
## libraries. On POSIX this uses the ``dlsym`` mechanism, on 
## Windows ``LoadLibrary``. 

type
  LibHandle* = pointer ## a handle to a dynamically loaded library

{.deprecated: [TLibHandle: LibHandle].}

proc loadLib*(path: string, global_symbols=false): LibHandle
  ## loads a library from `path`. Returns nil if the library could not 
  ## be loaded.

proc loadLib*(): LibHandle
  ## gets the handle from the current executable. Returns nil if the 
  ## library could not be loaded.

proc unloadLib*(lib: LibHandle)
  ## unloads the library `lib`

proc raiseInvalidLibrary*(name: cstring) {.noinline, noreturn.} =
  ## raises an `EInvalidLibrary` exception.
  var e: ref LibraryError
  new(e)
  e.msg = "could not find symbol: " & $name
  raise e

proc symAddr*(lib: LibHandle, name: cstring): pointer
  ## retrieves the address of a procedure/variable from `lib`. Returns nil
  ## if the symbol could not be found.

proc checkedSymAddr*(lib: LibHandle, name: cstring): pointer =
  ## retrieves the address of a procedure/variable from `lib`. Raises
  ## `EInvalidLibrary` if the symbol could not be found.
  result = symAddr(lib, name)
  if result == nil: raiseInvalidLibrary(name)

when defined(posix):
  #
  # =========================================================================
  # This is an implementation based on the dlfcn interface.
  # The dlfcn interface is available in Linux, SunOS, Solaris, IRIX, FreeBSD,
  # NetBSD, AIX 4.2, HPUX 11, and probably most other Unix flavors, at least
  # as an emulation layer on top of native functions.
  # =========================================================================
  #
  var
    RTLD_NOW {.importc: "RTLD_NOW", header: "<dlfcn.h>".}: int
    RTLD_GLOBAL {.importc: "RTLD_GLOBAL", header: "<dlfcn.h>".}: int

  proc dlclose(lib: LibHandle) {.importc, header: "<dlfcn.h>".}
  proc dlopen(path: cstring, mode: int): LibHandle {.
      importc, header: "<dlfcn.h>".}
  proc dlsym(lib: LibHandle, name: cstring): pointer {.
      importc, header: "<dlfcn.h>".}

  proc loadLib(path: string, global_symbols=false): LibHandle = 
    var flags = RTLD_NOW
    if global_symbols: flags = flags or RTLD_GLOBAL
    return dlopen(path, flags)
  proc loadLib(): LibHandle = return dlopen(nil, RTLD_NOW)
  proc unloadLib(lib: LibHandle) = dlclose(lib)
  proc symAddr(lib: LibHandle, name: cstring): pointer = 
    return dlsym(lib, name)

elif defined(windows) or defined(dos):
  #
  # =======================================================================
  # Native Windows Implementation
  # =======================================================================
  #
  type
    THINSTANCE {.importc: "HINSTANCE".} = pointer

  proc FreeLibrary(lib: THINSTANCE) {.importc, header: "<windows.h>", stdcall.}
  proc winLoadLibrary(path: cstring): THINSTANCE {.
      importc: "LoadLibraryA", header: "<windows.h>", stdcall.}
  proc getProcAddress(lib: THINSTANCE, name: cstring): pointer {.
      importc: "GetProcAddress", header: "<windows.h>", stdcall.}

  proc loadLib(path: string, global_symbols=false): LibHandle =
    result = cast[LibHandle](winLoadLibrary(path))
  proc loadLib(): LibHandle =
    result = cast[LibHandle](winLoadLibrary(nil))
  proc unloadLib(lib: LibHandle) = FreeLibrary(cast[THINSTANCE](lib))

  proc symAddr(lib: LibHandle, name: cstring): pointer =
    result = getProcAddress(cast[THINSTANCE](lib), name)

else:
  {.error: "no implementation for dynlib".}
#n779'>779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
#
#
#            Nimrod's Runtime Library
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.

type
  int* {.magic: Int.} ## default integer type; bitwidth depends on
                      ## architecture, but is always the same as a pointer
  int8* {.magic: Int8.} ## signed 8 bit integer type
  int16* {.magic: Int16.} ## signed 16 bit integer type
  int32* {.magic: Int32.} ## signed 32 bit integer type
  int64* {.magic: Int64.} ## signed 64 bit integer type
  float* {.magic: Float.} ## default floating point type
  float32* {.magic: Float32.} ## 32 bit floating point type
  float64* {.magic: Float64.} ## 64 bit floating point type
type # we need to start a new type section here, so that ``0`` can have a type
  bool* {.magic: Bool.} = enum ## built-in boolean type
    false = 0, true = 1

type
  char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
  string* {.magic: String.} ## built-in string type
  cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
  pointer* {.magic: Pointer.} ## built-in pointer type

const
  on* = true    ## alias for ``true``
  off* = false  ## alias for ``false``

{.push hints: off.}

type
  Ordinal* {.magic: Ordinal.}[T]
  `nil` {.magic: "Nil".}
  expr* {.magic: Expr.} ## meta type to denote an expression (for templates)
  stmt* {.magic: Stmt.} ## meta type to denote a statement (for templates)
  typeDesc* {.magic: TypeDesc.} ## meta type to denote
                                ## a type description (for templates)
  void* {.magic: "VoidType".}  ## meta type to denote the absense of any type
  
  TInteger* = int|int8|int16|int32|int64
    ## type class matching all integer types

  TOrdinal* = TInteger|bool|enum
    ## type class matching all ordinal types; however this includes enums with
    ## holes.

  TNumber* = TInteger|float|float32|float64
    ## type class matching all number types

proc defined*(x: expr): bool {.magic: "Defined", noSideEffect.}
  ## Special compile-time procedure that checks whether `x` is
  ## defined. `x` has to be an identifier or a qualified identifier.
  ## This can be used to check whether a library provides a certain
  ## feature or not:
  ##
  ## .. code-block:: Nimrod
  ##   when not defined(strutils.toUpper):
  ##     # provide our own toUpper proc here, because strutils is
  ##     # missing it.

proc definedInScope*(x: expr): bool {.
  magic: "DefinedInScope", noSideEffect.}
  ## Special compile-time procedure that checks whether `x` is
  ## defined in the current scope. `x` has to be an identifier.

proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.}
  ## Boolean not; returns true iff ``x == false``.

proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
  ## Boolean ``and``; returns true iff ``x == y == true``.
  ## Evaluation is lazy: if ``x`` is false,
  ## ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
  ## Boolean ``or``; returns true iff ``not (not x and not y)``.
  ## Evaluation is lazy: if ``x`` is true,
  ## ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
  ## Boolean `exclusive or`; returns true iff ``x != y``.

proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it in ``a``.

proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
  ## leaked implementation detail. Do not use.

proc new*[T](a: var ref T, finalizer: proc (x: ref T)) {.
  magic: "NewFinalize", noSideEffect.}
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it in ``a``. When the garbage collector frees the object,
  ## `finalizer` is called. The `finalizer` may not keep a reference to the
  ## object pointed to by `x`. The `finalizer` cannot prevent the GC from
  ## freeing the object. Note: The `finalizer` refers to the type `T`, not to
  ## the object! This means that for each object of type `T` the finalizer
  ## will be called!
  
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
  ## resets an object `obj` to its initial (binary zero) value. This needs to
  ## be called before any possible `object branch transition`:idx:.

# for low and high the return type T may not be correct, but
# we handle that with compiler magic in SemLowHigh()
proc high*[T](x: T): T {.magic: "High", noSideEffect.}
  ## returns the highest possible index of an array, a sequence, a string or
  ## the highest possible value of an ordinal value `x`. As a special
  ## semantic rule, `x` may also be a type identifier.

proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of an array, a sequence, a string or
  ## the lowest possible value of an ordinal value `x`. As a special
  ## semantic rule, `x` may also be a type identifier.

type
  range*{.magic: "Range".} [T] ## Generic type to construct range types.
  array*{.magic: "Array".}[I, T]  ## Generic type to construct
                                  ## fixed-length arrays.
  openarray*{.magic: "OpenArray".}[T]  ## Generic type to construct open arrays.
                                       ## Open arrays are implemented as a
                                       ## pointer to the array data and a
                                       ## length field.
  seq*{.magic: "Seq".}[T]  ## Generic type to construct sequences.
  set*{.magic: "Set".}[T]  ## Generic type to construct bit sets.

type
  TSlice* {.final, pure.}[T] = object ## builtin slice type
    a*, b*: T                         ## the bounds

proc `..`*[T](a, b: T): TSlice[T] {.noSideEffect, inline.} =
  ## `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
  ## and `b` are inclusive. Slices can also be used in the set constructor
  ## and in ordinal case statements, but then they are special-cased by the
  ## compiler.
  result.a = a
  result.b = b

proc `..`*[T](b: T): TSlice[T] {.noSideEffect, inline.} =
  ## `slice`:idx: operator that constructs an interval ``[default(T), b]``
  result.b = b

proc contains*[T](s: TSlice[T], value: T): bool {.noSideEffect, inline.} = 
  result = value >= s.a and value <= s.b

when not defined(EcmaScript) and not defined(NimrodVM):
  type
    TGenericSeq {.compilerproc, pure.} = object
      len, reserved: int
    PGenericSeq {.exportc.} = ptr TGenericSeq
    # len and space without counting the terminating zero:
    NimStringDesc {.compilerproc, final.} = object of TGenericSeq
      data: array[0..100_000_000, char]
    NimString = ptr NimStringDesc
    
  template space(s: PGenericSeq): int = s.reserved and not seqShallowFlag

  include "system/hti"

type
  Byte* = Int8 ## this is an alias for ``int8``, that is a signed
               ## int 8 bits wide.

  Natural* = range[0..high(int)]
    ## is an int type ranging from zero to the maximum value
    ## of an int. This type is often useful for documentation and debugging.

  Positive* = range[1..high(int)]
    ## is an int type ranging from one to the maximum value
    ## of an int. This type is often useful for documentation and debugging.

  TObject* {.exportc: "TNimObject".} =
    object ## the root of Nimrod's object hierarchy. Objects should
           ## inherit from TObject or one of its descendants. However,
           ## objects that have no ancestor are allowed.
  PObject* = ref TObject ## reference to TObject

  E_Base* {.compilerproc.} = object of TObject ## base exception class;
                                               ## each exception has to
                                               ## inherit from `E_Base`.
    parent: ref E_Base        ## parent exception (can be used as a stack)
    name: cstring             ## The exception's name is its Nimrod identifier.
                              ## This field is filled automatically in the
                              ## ``raise`` statement.
    msg* {.exportc: "message".}: string ## the exception's message. Not
                                        ## providing an exception message 
                                        ## is bad style.
    trace: string

  EAsynch* = object of E_Base ## Abstract exception class for
                              ## *asynchronous exceptions* (interrupts).
                              ## This is rarely needed: Most
                              ## exception types inherit from `ESynch`
  ESynch* = object of E_Base  ## Abstract exception class for
                              ## *synchronous exceptions*. Most exceptions
                              ## should be inherited (directly or indirectly)
                              ## from ESynch.
  ESystem* = object of ESynch ## Abstract class for exceptions that the runtime
                              ## system raises.
  EIO* = object of ESystem    ## raised if an IO error occured.
  EOS* = object of ESystem    ## raised if an operating system service failed.
  EInvalidLibrary* = object of EOS ## raised if a dynamic library
                                   ## could not be loaded.
  EResourceExhausted* = object of ESystem ## raised if a resource request
                                           ## could not be fullfilled.
  EArithmetic* = object of ESynch       ## raised if any kind of arithmetic
                                        ## error occured.
  EDivByZero* {.compilerproc.} =
    object of EArithmetic ## is the exception class for integer divide-by-zero
                          ## errors.
  EOverflow* {.compilerproc.} =
    object of EArithmetic  ## is the exception class for integer calculations
                           ## whose results are too large to fit in the
                           ## provided bits.

  EAccessViolation* {.compilerproc.} =
    object of ESynch ## the exception class for invalid memory access errors

  EAssertionFailed* {.compilerproc.} =
    object of ESynch  ## is the exception class for Assert
                      ## procedures that is raised if the
                      ## assertion proves wrong

  EControlC* = object of EAsynch        ## is the exception class for Ctrl+C
                                        ## key presses in console applications.

  EInvalidValue* = object of ESynch     ## is the exception class for string
                                        ## and object conversion errors.
  EInvalidKey* = object of EInvalidValue ## is the exception class if a key
                                         ## cannot be found in a table.

  EOutOfMemory* = object of ESystem     ## is the exception class for
                                        ## unsuccessful attempts to allocate
                                        ## memory.

  EInvalidIndex* = object of ESynch     ## is raised if an array index is out
                                        ## of bounds.
  EInvalidField* = object of ESynch     ## is raised if a record field is not
                                        ## accessible because its dicriminant's
                                        ## value does not fit.

  EOutOfRange* = object of ESynch       ## is raised if a range check error
                                        ## occured.

  EStackOverflow* = object of ESystem   ## is raised if the hardware stack
                                        ## used for subroutine calls overflowed.

  ENoExceptionToReraise* = object of ESynch ## is raised if there is no
                                            ## exception to reraise.

  EInvalidObjectAssignment* =
    object of ESynch ## is raised if an object gets assigned to its
                     ## parent's object.

  EInvalidObjectConversion* =
    object of ESynch ## is raised if an object is converted to an incompatible
                     ## object type.

  EFloatingPoint* = object of ESynch ## base class for floating point exceptions
  EFloatInvalidOp* {.compilerproc.} = 
    object of EFloatingPoint ## Invalid operation according to IEEE: Raised by 
                             ## 0.0/0.0, for example.
  EFloatDivByZero* {.compilerproc.} = 
    object of EFloatingPoint ## Division by zero. Divisor is zero and dividend 
                             ## is a finite nonzero number.
  EFloatOverflow* {.compilerproc.} = 
    object of EFloatingPoint ## Overflow. Operation produces a result 
                             ## that exceeds the range of the exponent
  EFloatUnderflow* {.compilerproc.} = 
    object of EFloatingPoint ## Underflow. Operation produces a result 
                             ## that is too small to be represented as 
                             ## a normal number
  EFloatInexact* {.compilerproc.} = 
    object of EFloatingPoint ## Inexact. Operation produces a result
                             ## that cannot be represented with infinite
                             ## precision -- for example, 2.0 / 3.0, log(1.1) 
                             ## NOTE: Nimrod currently does not detect these!
  EDeadThread* =
    object of ESynch ## is raised if it is attempted to send a message to a
                     ## dead thread.
                     
  TResult* = enum Failure, Success

proc sizeof*[T](x: T): natural {.magic: "SizeOf", noSideEffect.}
  ## returns the size of ``x`` in bytes. Since this is a low-level proc,
  ## its usage is discouraged - using ``new`` for the most cases suffices
  ## that one never needs to know ``x``'s size. As a special semantic rule,
  ## ``x`` may also be a type identifier (``sizeof(int)`` is valid).

proc `<`*[T](x: ordinal[T]): T {.magic: "UnaryLt", noSideEffect.}
  ## unary ``<`` that can be used for nice looking excluding ranges:
  ## 
  ## .. code-block:: nimrod
  ##   for i in 0 .. <10: echo i
  ##
  ## Semantically this is the same as ``pred``. 

proc succ*[T](x: ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.}
  ## returns the ``y``-th successor of the value ``x``. ``T`` has to be
  ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
  ## or a compile time error occurs.

proc pred*[T](x: ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.}
  ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
  ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
  ## or a compile time error occurs.

proc inc*[T](x: var ordinal[T], y = 1) {.magic: "Inc", noSideEffect.}
  ## increments the ordinal ``x`` by ``y``. If such a value does not
  ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
  ## short notation for: ``x = succ(x, y)``.

proc dec*[T](x: var ordinal[T], y = 1) {.magic: "Dec", noSideEffect.}
  ## decrements the ordinal ``x`` by ``y``. If such a value does not
  ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
  ## short notation for: ``x = pred(x, y)``.
  
proc newSeq*[T](s: var seq[T], len: int) {.magic: "NewSeq", noSideEffect.}
  ## creates a new sequence of type ``seq[T]`` with length ``len``.
  ## This is equivalent to ``s = @[]; setlen(s, len)``, but more
  ## efficient since no reallocation is needed.

proc len*[T: openArray](x: T): int {.magic: "LengthOpenArray", noSideEffect.}
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.}
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
  ## returns the length of an array, an openarray, a sequence or a string.
  ## This is rougly the same as ``high(T)-low(T)+1``, but its resulting type is
  ## always an int.

# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
  ## includes element ``y`` to the set ``x``. This is the same as
  ## ``x = x + {y}``, but it might be more efficient.

proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
  ## excludes element ``y`` to the set ``x``. This is the same as
  ## ``x = x - {y}``, but it might be more efficient.

proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
  ## returns the cardinality of the set ``x``, i.e. the number of elements
  ## in the set.

proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.}
  ## returns the internal int value of an ordinal value ``x``.

proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
  ## converts an int in the range 0..255 to a character.

# --------------------------------------------------------------------------
# built-in operators

proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
  ## zero extends a smaller integer type to ``int``. This treats `x` as
  ## unsigned.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
  ## zero extends a smaller integer type to ``int``. This treats `x` as
  ## unsigned.

proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
  ## zero extends a smaller integer type to ``int64``. This treats `x` as
  ## unsigned.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
  ## zero extends a smaller integer type to ``int64``. This treats `x` as
  ## unsigned.

proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
  ## zero extends a smaller integer type to ``int64``. This treats `x` as
  ## unsigned.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noDecl, noSideEffect.}
  ## zero extends a smaller integer type to ``int64``. This treats `x` as
  ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
  ## (This is the case on 64 bit processors.)

proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
  ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
  ## from `x`.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
  ## treats `x` as unsigned and converts it to an ``int16`` by taking the last
  ## 16 bits from `x`.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
  ## treats `x` as unsigned and converts it to an ``int32`` by taking the
  ## last 32 bits from `x`.


# integer calculations:
proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int64): int64 {.magic: "UnaryPlusI64", noSideEffect.}
  ## Unary `+` operator for an integer. Has no effect.

proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
  ## Unary `-` operator for an integer. Negates `x`.

proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
  ## computes the `bitwise complement` of the integer `x`.

proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
  ## Binary `+` operator for an integer.

proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
  ## Binary `-` operator for an integer.

proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
  ## Binary `*` operator for an integer.

proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
  ## computes the integer division. This is roughly the same as
  ## ``floor(x/y)``.

proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
  ## computes the integer modulo operation. This is the same as
  ## ``x - (x div y) * y``.

proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int64): int64 {.magic: "ShrI64", noSideEffect.}
  ## computes the `shift right` operation of `x` and `y`.

proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int64): int64 {.magic: "ShlI64", noSideEffect.}
  ## computes the `shift left` operation of `x` and `y`.

proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int64): int64 {.magic: "BitandI64", noSideEffect.}
  ## computes the `bitwise and` of numbers `x` and `y`.

proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int64): int64 {.magic: "BitorI64", noSideEffect.}
  ## computes the `bitwise or` of numbers `x` and `y`.

proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int64): int64 {.magic: "BitxorI64", noSideEffect.}
  ## computes the `bitwise xor` of numbers `x` and `y`.

proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int64): bool {.magic: "EqI64", noSideEffect.}
  ## Compares two integers for equality.

proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int64): bool {.magic: "LeI64", noSideEffect.}
  ## Returns true iff `x` is less than or equal to `y`.

proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int64): bool {.magic: "LtI64", noSideEffect.}
  ## Returns true iff `x` is less than `y`.

proc abs*(x: int): int {.magic: "AbsI", noSideEffect.}
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.}
  ## returns the absolute value of `x`. If `x` is ``low(x)`` (that 
  ## is -MININT for its type), an overflow exception is thrown (if overflow
  ## checking is turned on).

proc `+%` *(x, y: int): int {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int8): int8 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int16): int16 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int32): int32 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int64): int64 {.magic: "AddU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and adds them. The result is truncated to
  ## fit into the result. This implements modulo arithmetic. No overflow
  ## errors are possible.

proc `-%` *(x, y: int): int {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int8): int8 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int16): int16 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int32): int32 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int64): int64 {.magic: "SubU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and subtracts them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `*%` *(x, y: int): int {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int8): int8 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int16): int16 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int32): int32 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int64): int64 {.magic: "MulU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and multiplies them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `/%` *(x, y: int): int {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int8): int8 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int16): int16 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int32): int32 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int64): int64 {.magic: "DivU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and divides them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `%%` *(x, y: int): int {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int8): int8 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int16): int16 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int32): int32 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int64): int64 {.magic: "ModU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
  ## The result is truncated to fit into the result.
  ## This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `<=%` *(x, y: int): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int8): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int16): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int32): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) <= unsigned(y)``.

proc `<%` *(x, y: int): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int8): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int16): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int32): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) < unsigned(y)``.


# floating point operations:
proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.}
  ## computes the floating point division

proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<`  *(x, y: float): bool {.magic: "LtF64", noSideEffect.}
proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.}
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.}
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.}

# set operators
proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
  ## This operator computes the intersection of two sets.
proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
  ## This operator computes the union of two sets.
proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
  ## This operator computes the difference of two sets.
proc `-+-` *[T](x, y: set[T]): set[T] {.magic: "SymDiffSet", noSideEffect.}
  ## computes the symmetric set difference. This is the same as
  ## ``(A - B) + (B - A)``, but more efficient.

# comparison operators:
proc `==` *[T](x, y: ordinal[T]): bool {.magic: "EqEnum", noSideEffect.}
proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.}
proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect.}
proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.}
proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.}
proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}

proc `<=` *[T](x, y: ordinal[T]): bool {.magic: "LeEnum", noSideEffect.}
proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.}
proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.}
proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}

proc `<` *[T](x, y: ordinal[T]): bool {.magic: "LtEnum", noSideEffect.}
proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.}
proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.}
proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}

template `!=` * (x, y: expr): expr {.immediate.} =
  ## unequals operator. This is a shorthand for ``not (x == y)``.
  not (x == y)

template `>=` * (x, y: expr): expr {.immediate.} =
  ## "is greater or equals" operator. This is the same as ``y <= x``.
  y <= x

template `>` * (x, y: expr): expr {.immediate.} =
  ## "is greater" operator. This is the same as ``y < x``.
  y < x

proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
  ## One should overload this proc if one wants to overload the ``in`` operator.
  ## The parameters are in reverse order! ``a in b`` is a template for
  ## ``contains(b, a)``.
  ## This is because the unification algorithm that Nimrod uses for overload
  ## resolution works from left to right.
  ## But for the ``in`` operator that would be the wrong direction for this
  ## piece of code:
  ##
  ## .. code-block:: Nimrod
  ##   var s: set[range['a'..'z']] = {'a'..'c'}
  ##   writeln(stdout, 'b' in s)
  ##
  ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
  ## have been bound to ``char``. But ``s`` is not compatible to type
  ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
  ## is achieved by reversing the parameters for ``contains``; ``in`` then
  ## passes its arguments in reverse order.

template `in` * (x, y: expr): expr {.immediate.} = contains(y, x)
template `not_in` * (x, y: expr): expr {.immediate.} = not contains(y, x)

proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
template `is_not` *(x, y: expr): expr {.immediate.} = not (x is y)

proc `of` *[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}

proc cmp*[T](x, y: T): int {.procvar.} =
  ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
  ## and 0 iff x == y. This is useful for writing generic algorithms without
  ## performance loss. This generic implementation uses the `==` and `<`
  ## operators.
  if x == y: return 0
  if x < y: return -1
  return 1

proc cmp*(x, y: string): int {.noSideEffect, procvar.}
  ## Compare proc for strings. More efficient than the generic version.

proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {.
  magic: "ArrToSeq", nosideeffect.}
  ## turns an array into a sequence. This most often useful for constructing
  ## sequences with the array constructor: ``@[1, 2, 3]`` has the type 
  ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``. 

proc setLen*[T](s: var seq[T], newlen: int) {.
  magic: "SetLengthSeq", noSideEffect.}
  ## sets the length of `s` to `newlen`.
  ## ``T`` may be any sequence type.
  ## If the current length is greater than the new length,
  ## ``s`` will be truncated. `s` cannot be nil! To initialize a sequence with
  ## a size, use ``newSeq`` instead. 

proc setLen*(s: var string, newlen: int) {.
  magic: "SetLengthStr", noSideEffect.}
  ## sets the length of `s` to `newlen`.
  ## If the current length is greater than the new length,
  ## ``s`` will be truncated. `s` cannot be nil! To initialize a string with
  ## a size, use ``newString`` instead. 

proc newString*(len: int): string {.
  magic: "NewString", importc: "mnewString", noSideEffect.}
  ## returns a new string of length ``len`` but with uninitialized
  ## content. One needs to fill the string character after character
  ## with the index operator ``s[i]``. This procedure exists only for
  ## optimization purposes; the same effect can be achieved with the
  ## ``&`` operator or with ``add``.

proc newStringOfCap*(cap: int): string {.
  magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
  ## returns a new string of length ``0`` but with capacity `cap`.This
  ## procedure exists only for optimization purposes; the same effect can 
  ## be achieved with the ``&`` operator or with ``add``.

proc `&` * (x: string, y: char): string {.
  magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x: char, y: char): string {.
  magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x, y: string): string {.
  magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x: char, y: string): string {.
  magic: "ConStrStr", noSideEffect, merge.}
  ## is the `concatenation operator`. It concatenates `x` and `y`.

# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly. 

proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}

type
  TEndian* = enum ## is a type describing the endianness of a processor.
    littleEndian, bigEndian

const
  isMainModule* {.magic: "IsMainModule".}: bool = false
    ## is true only when accessed in the main module. This works thanks to
    ## compiler magic. It is useful to embed testing code in a module.

  CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
    ## is the date of compilation as a string of the form
    ## ``YYYY-MM-DD``. This works thanks to compiler magic.

  CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
    ## is the time of compilation as a string of the form
    ## ``HH:MM:SS``. This works thanks to compiler magic.

  NimrodVersion* {.magic: "NimrodVersion"}: string = "0.0.0"
    ## is the version of Nimrod as a string.
    ## This works thanks to compiler magic.

  NimrodMajor* {.magic: "NimrodMajor"}: int = 0
    ## is the major number of Nimrod's version.
    ## This works thanks to compiler magic.

  NimrodMinor* {.magic: "NimrodMinor"}: int = 0
    ## is the minor number of Nimrod's version.
    ## This works thanks to compiler magic.

  NimrodPatch* {.magic: "NimrodPatch"}: int = 0
    ## is the patch number of Nimrod's version.
    ## This works thanks to compiler magic.

  cpuEndian* {.magic: "CpuEndian"}: TEndian = littleEndian
    ## is the endianness of the target CPU. This is a valuable piece of
    ## information for low-level code only. This works thanks to compiler
    ## magic.
    
  hostOS* {.magic: "HostOS"}: string = ""
    ## a string that describes the host operating system. Possible values:
    ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
    ## "aix".
        
  hostCPU* {.magic: "HostCPU"}: string = ""
    ## a string that describes the host CPU. Possible values:
    ## "i386", "alpha", "powerpc", "sparc", "amd64", "mips", "arm".
  
  appType* {.magic: "AppType"}: string = ""
    ## a string that describes the application type. Possible values:
    ## "console", "gui", "lib".
  
  seqShallowFlag = 1 shl (sizeof(int)*8-1)
  
proc compileOption*(option: string): bool {.
  magic: "CompileOption", noSideEffect.}
  ## can be used to determine an on|off compile-time option. Example:
  ##
  ## .. code-block:: nimrod
  ##   when compileOption("floatchecks"): 
  ##     echo "compiled with floating point NaN and Inf checks"
  
proc compileOption*(option, arg: string): bool {.
  magic: "CompileOptionArg", noSideEffect.}
  ## can be used to determine an enum compile-time option. Example:
  ##
  ## .. code-block:: nimrod
  ##   when compileOption("opt", "size") and compileOption("gc", "boehm"): 
  ##     echo "compiled with optimization for size and uses Boehm's GC"

const
  hasThreadSupport = compileOption("threads")
  hasSharedHeap = defined(boehmgc) # don't share heaps; every thread has its own
  taintMode = compileOption("taintmode")

when taintMode:
  type TaintedString* = distinct string ## a distinct string type that 
                                        ## is `tainted`:idx:. It is an alias for
                                        ## ``string`` if the taint mode is not
                                        ## turned on. Use the ``-d:taintMode``
                                        ## command line switch to turn the taint
                                        ## mode on.
  
  proc len*(s: TaintedString): int {.borrow.}
else:
  type TaintedString* = string


when hasThreadSupport:
  {.pragma: rtlThreadVar, threadvar.}
else:
  {.pragma: rtlThreadVar.}

const
  QuitSuccess* = 0
    ## is the value that should be passed to ``quit`` to indicate
    ## success.

  QuitFailure* = 1
    ## is the value that should be passed to ``quit`` to indicate
    ## failure.

var programResult* {.exportc: "nim_program_result".}: int
  ## modify this varialbe to specify the exit code of the program
  ## under normal circumstances. When the program is terminated
  ## prematurelly using ``quit``, this value is ignored.

proc quit*(errorcode: int = QuitSuccess) {.
  magic: "Exit", importc: "exit", noDecl, noReturn.}
  ## stops the program immediately; before stopping the program the
  ## "quit procedures" are called in the opposite order they were added
  ## with ``addQuitProc``. ``quit`` never returns and ignores any
  ## exception that may have been raised by the quit procedures.
  ## It does *not* call the garbage collector to free all the memory,
  ## unless a quit procedure calls ``GC_collect``.

template sysAssert(cond: bool, msg: string) =
  when defined(useSysAssert):
    if not cond:
      echo "[SYSASSERT] ", msg
      quit 1
  nil

include "system/inclrtl"

when not defined(ecmascript) and not defined(nimrodVm) and hostOS != "standalone":
  include "system/cgprocs"

proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
  ## Generic proc for adding a data item `y` to a container `x`.
  ## For containers that have an order, `add` means *append*. New generic
  ## containers should also call their adding proc `add` for consistency.
  ## Generic code becomes much easier to write if the Nimrod naming scheme is
  ## respected.
  var xl = x.len
  setLen(x, xl + y.len)
  for i in 0..high(y): x[xl+i] = y[i]

proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
  ## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
  ## only changes the semantics for sequences and strings (and types which
  ## contain those). Be careful with the changed semantics though! There 
  ## is a reason why the default assignment does a deep copy of sequences
  ## and strings.

proc del*[T](x: var seq[T], i: int) {.noSideEffect.} = 
  ## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
  ## This is an O(1) operation.
  var xl = x.len
  shallowCopy(x[i], x[xl-1])
  setLen(x, xl-1)
  
proc delete*[T](x: var seq[T], i: int) {.noSideEffect.} = 
  ## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
  ## This is an O(n) operation.
  var xl = x.len
  for j in i..xl-2: shallowCopy(x[j], x[j+1]) 
  setLen(x, xl-1)
  
proc insert*[T](x: var seq[T], item: T, i = 0) {.noSideEffect.} = 
  ## inserts `item` into `x` at position `i`.
  var xl = x.len
  setLen(x, xl+1)
  var j = xl-1
  while j >= i:
    shallowCopy(x[j+1], x[j])
    dec(j)
  x[i] = item

proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
  ## takes any Nimrod variable and returns its string representation. It
  ## works even for complex data graphs with cycles. This is a great
  ## debugging tool.

type
  TAddress* = int
    ## is the signed integer type that should be used for converting
    ## pointers to integer addresses for readability.

  BiggestInt* = int64
    ## is an alias for the biggest signed integer type the Nimrod compiler
    ## supports. Currently this is ``int64``, but it is platform-dependant
    ## in general.

  BiggestFloat* = float64
    ## is an alias for the biggest floating point type the Nimrod
    ## compiler supports. Currently this is ``float64``, but it is
    ## platform-dependant in general.

type # these work for most platforms:
  cchar* {.importc: "char", nodecl.} = char
    ## This is the same as the type ``char`` in *C*.
  cschar* {.importc: "signed char", nodecl.} = byte
    ## This is the same as the type ``signed char`` in *C*.
  cshort* {.importc: "short", nodecl.} = int16
    ## This is the same as the type ``short`` in *C*.
  cint* {.importc: "int", nodecl.} = int32
    ## This is the same as the type ``int`` in *C*.
  clong* {.importc: "long", nodecl.} = int
    ## This is the same as the type ``long`` in *C*.
  clonglong* {.importc: "long long", nodecl.} = int64
    ## This is the same as the type ``long long`` in *C*.
  cfloat* {.importc: "float", nodecl.} = float32
    ## This is the same as the type ``float`` in *C*.
  cdouble* {.importc: "double", nodecl.} = float64
    ## This is the same as the type ``double`` in *C*.
  clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
    ## This is the same as the type ``long double`` in *C*.
    ## This C type is not supported by Nimrod's code generator

  cstringArray* {.importc: "char**", nodecl.} = ptr array [0..50_000, cstring]
    ## This is binary compatible to the type ``char**`` in *C*. The array's
    ## high value is large enough to disable bounds checking in practice.
    ## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.

  PFloat32* = ptr Float32 ## an alias for ``ptr float32``
  PFloat64* = ptr Float64 ## an alias for ``ptr float64``
  PInt64* = ptr Int64 ## an alias for ``ptr int64``
  PInt32* = ptr Int32 ## an alias for ``ptr int32``

proc toFloat*(i: int): float {.
  magic: "ToFloat", noSideEffect, importc: "toFloat".}
  ## converts an integer `i` into a ``float``. If the conversion
  ## fails, `EInvalidValue` is raised. However, on most platforms the
  ## conversion cannot fail.

proc toBiggestFloat*(i: biggestint): biggestfloat {.
  magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
  ## converts an biggestint `i` into a ``biggestfloat``. If the conversion
  ## fails, `EInvalidValue` is raised. However, on most platforms the
  ## conversion cannot fail.

proc toInt*(f: float): int {.
  magic: "ToInt", noSideEffect, importc: "toInt".}
  ## converts a floating point number `f` into an ``int``. Conversion
  ## rounds `f` if it does not contain an integer value. If the conversion
  ## fails (because `f` is infinite for example), `EInvalidValue` is raised.

proc toBiggestInt*(f: biggestfloat): biggestint {.
  magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
  ## converts a biggestfloat `f` into a ``biggestint``. Conversion
  ## rounds `f` if it does not contain an integer value. If the conversion
  ## fails (because `f` is infinite for example), `EInvalidValue` is raised.

proc addQuitProc*(QuitProc: proc() {.noconv.}) {.importc: "atexit", nodecl.}
  ## adds/registers a quit procedure. Each call to ``addQuitProc``
  ## registers another quit procedure. Up to 30 procedures can be
  ## registered. They are executed on a last-in, first-out basis
  ## (that is, the last function registered is the first to be executed).
  ## ``addQuitProc`` raises an EOutOfIndex if ``quitProc`` cannot be
  ## registered.

# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.

proc copy*(s: string, first = 0): string {.
  magic: "CopyStr", importc: "copyStr", noSideEffect, deprecated.}
proc copy*(s: string, first, last: int): string {.
  magic: "CopyStrLast", importc: "copyStrLast", noSideEffect, 
  deprecated.}
  ## copies a slice of `s` into a new string and returns this new
  ## string. The bounds `first` and `last` denote the indices of
  ## the first and last characters that shall be copied. If ``last``
  ## is omitted, it is treated as ``high(s)``.
  ## **Deprecated since version 0.8.12**: Use ``substr`` instead.

proc substr*(s: string, first = 0): string {.
  magic: "CopyStr", importc: "copyStr", noSideEffect.}
proc substr*(s: string, first, last: int): string {.
  magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.}
  ## copies a slice of `s` into a new string and returns this new
  ## string. The bounds `first` and `last` denote the indices of
  ## the first and last characters that shall be copied. If ``last``
  ## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
  ## is used instead: This means ``substr`` can also be used to `cut`:idx:
  ## or `limit`:idx: a string's length.

proc zeroMem*(p: Pointer, size: int) {.importc, noDecl.}
  ## overwrites the contents of the memory at ``p`` with the value 0.
  ## Exactly ``size`` bytes will be overwritten. Like any procedure
  ## dealing with raw memory this is *unsafe*.

proc copyMem*(dest, source: Pointer, size: int) {.importc: "memcpy", noDecl.}
  ## copies the contents from the memory at ``source`` to the memory
  ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
  ## regions may not overlap. Like any procedure dealing with raw
  ## memory this is *unsafe*.

proc moveMem*(dest, source: Pointer, size: int) {.importc: "memmove", noDecl.}
  ## copies the contents from the memory at ``source`` to the memory
  ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
  ## regions may overlap, ``moveMem`` handles this case appropriately
  ## and is thus somewhat more safe than ``copyMem``. Like any procedure
  ## dealing with raw memory this is still *unsafe*, though.

proc equalMem*(a, b: Pointer, size: int): bool {.
  importc: "equalMem", noDecl, noSideEffect.}
  ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
  ## be compared. If the blocks are equal, true is returned, false
  ## otherwise. Like any procedure dealing with raw memory this is
  ## *unsafe*.

proc alloc*(size: int): pointer {.noconv, rtl.}
  ## allocates a new memory block with at least ``size`` bytes. The
  ## block has to be freed with ``realloc(block, 0)`` or
  ## ``dealloc(block)``. The block is not initialized, so reading
  ## from it before writing to it is undefined behaviour!
  ## The allocated memory belongs to its allocating thread!
  ## Use `allocShared` to allocate from a shared heap.
proc alloc0*(size: int): pointer {.noconv, rtl.}
  ## allocates a new memory block with at least ``size`` bytes. The
  ## block has to be freed with ``realloc(block, 0)`` or
  ## ``dealloc(block)``. The block is initialized with all bytes
  ## containing zero, so it is somewhat safer than ``alloc``.
  ## The allocated memory belongs to its allocating thread!
  ## Use `allocShared0` to allocate from a shared heap.
proc realloc*(p: Pointer, newsize: int): pointer {.noconv, rtl.}
  ## grows or shrinks a given memory block. If p is **nil** then a new
  ## memory block is returned. In either way the block has at least
  ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil**
  ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
  ## be freed with ``dealloc``.
  ## The allocated memory belongs to its allocating thread!
  ## Use `reallocShared` to reallocate from a shared heap.
proc dealloc*(p: Pointer) {.noconv, rtl.}
  ## frees the memory allocated with ``alloc``, ``alloc0`` or
  ## ``realloc``. This procedure is dangerous! If one forgets to
  ## free the memory a leak occurs; if one tries to access freed
  ## memory (or just freeing it twice!) a core dump may happen
  ## or other memory may be corrupted. 
  ## The freed memory must belong to its allocating thread!
  ## Use `deallocShared` to deallocate from a shared heap.

proc allocShared*(size: int): pointer {.noconv, rtl.}
  ## allocates a new memory block on the shared heap with at
  ## least ``size`` bytes. The block has to be freed with
  ## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
  ## is not initialized, so reading from it before writing to it is 
  ## undefined behaviour!
proc allocShared0*(size: int): pointer {.noconv, rtl.}
  ## allocates a new memory block on the shared heap with at 
  ## least ``size`` bytes. The block has to be freed with
  ## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
  ## The block is initialized with all bytes
  ## containing zero, so it is somewhat safer than ``allocShared``.
proc reallocShared*(p: Pointer, newsize: int): pointer {.noconv, rtl.}
  ## grows or shrinks a given memory block on the heap. If p is **nil**
  ## then a new memory block is returned. In either way the block has at least
  ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil**
  ## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
  ## block has to be freed with ``deallocShared``.
proc deallocShared*(p: Pointer) {.noconv, rtl.}
  ## frees the memory allocated with ``allocShared``, ``allocShared0`` or
  ## ``reallocShared``. This procedure is dangerous! If one forgets to
  ## free the memory a leak occurs; if one tries to access freed
  ## memory (or just freeing it twice!) a core dump may happen
  ## or other memory may be corrupted.

proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
  ## swaps the values `a` and `b`. This is often more efficient than
  ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.

template `>=%` *(x, y: expr): expr {.immediate.} = y <=% x
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) >= unsigned(y)``.

template `>%` *(x, y: expr): expr {.immediate.} = y <% x
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) > unsigned(y)``.

proc `$` *(x: int): string {.magic: "IntToStr", noSideEffect.}
  ## The stingify operator for an integer argument. Returns `x`
  ## converted to a decimal string.

proc `$` *(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
  ## The stingify operator for an integer argument. Returns `x`
  ## converted to a decimal string.

proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.}
  ## The stingify operator for a float argument. Returns `x`
  ## converted to a decimal string.

proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.}
  ## The stingify operator for a boolean argument. Returns `x`
  ## converted to the string "false" or "true".

proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.}
  ## The stingify operator for a character argument. Returns `x`
  ## converted to a string.

proc `$` *(x: Cstring): string {.magic: "CStrToStr", noSideEffect.}
  ## The stingify operator for a CString argument. Returns `x`
  ## converted to a string.

proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.}
  ## The stingify operator for a string argument. Returns `x`
  ## as it is. This operator is useful for generic code, so
  ## that ``$expr`` also works if ``expr`` is already a string.

proc `$` *[T](x: ordinal[T]): string {.magic: "EnumToStr", noSideEffect.}
  ## The stingify operator for an enumeration argument. This works for
  ## any enumeration type thanks to compiler magic. If
  ## a ``$`` operator for a concrete enumeration is provided, this is
  ## used instead. (In other words: *Overwriting* is possible.)

# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect.}
  ## retrieves the reference count of an heap-allocated object. The
  ## value is implementation-dependent.

# new constants:
const
  inf* {.magic: "Inf".} = 1.0 / 0.0
    ## contains the IEEE floating point value of positive infinity.
  neginf* {.magic: "NegInf".} = -inf
    ## contains the IEEE floating point value of negative infinity.
  nan* {.magic: "NaN".} = 0.0 / 0.0
    ## contains an IEEE floating point value of *Not A Number*. Note
    ## that you cannot compare a floating point value to this value
    ## and expect a reasonable result - use the `classify` procedure
    ## in the module ``math`` for checking for NaN.

# GC interface:

proc getOccupiedMem*(): int {.rtl.}
  ## returns the number of bytes that are owned by the process and hold data.

proc getFreeMem*(): int {.rtl.}
  ## returns the number of bytes that are owned by the process, but do not
  ## hold any meaningful data.

proc getTotalMem*(): int {.rtl.}
  ## returns the number of bytes that are owned by the process.


iterator countdown*[T](a, b: T, step = 1): T {.inline.} =
  ## Counts from ordinal value `a` down to `b` with the given
  ## step count. `T` may be any ordinal type, `step` may only
  ## be positive.
  var res = a
  while res >= b:
    yield res
    dec(res, step)

iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
  ## Counts from ordinal value `a` up to `b` with the given
  ## step count. `S`, `T` may be any ordinal type, `step` may only
  ## be positive.
  var res: T = a
  while res <= b:
    yield res
    inc(res, step)

iterator `..`*[S, T](a: S, b: T): T {.inline.} =
  ## An alias for `countup`.
  var res: T = a
  while res <= b:
    yield res
    inc res

iterator `||`*[S, T](a: S, b: T, annotation=""): T {.
  inline, magic: "OmpParFor", sideEffect.} =
  ## parallel loop iterator. Same as `..` but the loop may run in parallel.
  ## `annotation` is an additional annotation for the code generator to use.
  ## Note that the compiler maps that to
  ## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
  ## such isn't aware of the parallelism in your code. Be careful.
  nil

proc min*(x, y: int): int {.magic: "MinI", noSideEffect.}
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int64): int64 {.magic: "MinI64", noSideEffect.}
  ## The minimum value of two integers.

proc min*[T](x: openarray[T]): T = 
  ## The minimum value of an openarray.
  result = x[0]
  for i in 1..high(x): result = min(result, x[i])

proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int64): int64 {.magic: "MaxI64", noSideEffect.}
  ## The maximum value of two integers.

proc max*[T](x: openarray[T]): T = 
  ## The maximum value of an openarray.
  result = x[0]
  for i in 1..high(x): result = max(result, x[i])

proc clamp*[T](x, a, b: T): T =
  ## limits the value ``x`` within the interval [a, b] 
  if x > a: return a
  if x < b: return b
  return x

iterator items*[T](a: openarray[T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield a[i]
      if i >= high(IX): break
      inc(i)

iterator items*[T](a: seq[T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

iterator items*(a: string): char {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

iterator items*[T](a: set[T]): T {.inline.} =
  ## iterates over each element of `a`. `items` iterates only over the
  ## elements that are really in the set (and not over the ones the set is
  ## able to hold).
  var i = low(T)
  if i <= high(T):
    while true:
      if i in a: yield i
      if i >= high(T): break
      inc(i)

iterator items*(a: cstring): char {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  while a[i] != '\0':
    yield a[i]
    inc(i)

iterator items*(E: typedesc{enum}): E =
  ## iterates over the values of the enum ``E``.
  for v in low(E)..high(E):
    yield v

iterator pairs*[T](a: openarray[T]): tuple[key: int, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield (i, a[i])
      if i >= high(IX): break
      inc(i)

iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)


proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
  ## Fast check whether `x` is nil. This is sometimes more efficient than
  ## ``== nil``.

proc `&` *[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
  newSeq(result, x.len + y.len)
  for i in 0..x.len-1:
    result[i] = x[i]
  for i in 0..y.len-1:
    result[i+x.len] = y[i]

proc `&` *[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
  newSeq(result, x.len + 1)
  for i in 0..x.len-1:
    result[i] = x[i]
  result[x.len] = y

proc `&` *[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
  newSeq(result, y.len + 1)
  for i in 0..y.len-1:
    result[i] = y[i]
  result[y.len] = x

when not defined(NimrodVM):
  when not defined(ECMAScript):
    proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
      result = cast[pointer](x)
  else:
    proc seqToPtr[T](x: seq[T]): pointer {.noStackFrame, nosideeffect.} =
      asm """return `x`"""
  
  proc `==` *[T: typeDesc](x, y: seq[T]): bool {.noSideEffect.} =
    ## Generic equals operator for sequences: relies on a equals operator for
    ## the element type `T`.
    if seqToPtr(x) == seqToPtr(y):
      result = true
    elif seqToPtr(x) == nil or seqToPtr(y) == nil:
      result = false
    elif x.len == y.len:
      for i in 0..x.len-1:
        if x[i] != y[i]: return false
      result = true

proc find*[T, S: typeDesc](a: T, item: S): int {.inline.}=
  ## Returns the first index of `item` in `a` or -1 if not found. This requires
  ## appropriate `items` and `==` operations to work.
  for i in items(a):
    if i == item: return
    inc(result)
  result = -1

proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
  ## Returns true if `item` is in `a` or false if not found. This is a shortcut
  ## for ``find(a, item) >= 0``.
  return find(a, item) >= 0

proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} = 
  ## returns the last item of `s` and decreases ``s.len`` by one. This treats
  ## `s` as a stack and implements the common *pop* operation.
  var L = s.len-1
  result = s[L]
  setLen(s, L)

proc each*[T, S](data: openArray[T], op: proc (x: T): S): seq[S] = 
  ## The well-known ``map`` operation from functional programming. Applies
  ## `op` to every item in `data` and returns the result as a sequence.
  newSeq(result, data.len)
  for i in 0..data.len-1: result[i] = op(data[i])

proc each*[T](data: var openArray[T], op: proc (x: var T)) =
  ## The well-known ``map`` operation from functional programming. Applies
  ## `op` to every item in `data`.
  for i in 0..data.len-1: op(data[i])

iterator fields*[T: tuple](x: T): TObject {.
  magic: "Fields", noSideEffect.}
  ## iterates over every field of `x`. Warning: This really transforms
  ## the 'for' and unrolls the loop. The current implementation also has a bug
  ## that affects symbol binding in the loop body.
iterator fields*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {.
  magic: "Fields", noSideEffect.}
  ## iterates over every field of `x` and `y`.
  ## Warning: This is really transforms the 'for' and unrolls the loop. 
  ## The current implementation also has a bug that affects symbol binding
  ## in the loop body.
iterator fieldPairs*[T: tuple](x: T): TObject {.
  magic: "FieldPairs", noSideEffect.}
  ## iterates over every field of `x`. Warning: This really transforms
  ## the 'for' and unrolls the loop. The current implementation also has a bug
  ## that affects symbol binding in the loop body.
iterator fieldPairs*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {.
  magic: "FieldPairs", noSideEffect.}
  ## iterates over every field of `x` and `y`.
  ## Warning: This really transforms the 'for' and unrolls the loop. 
  ## The current implementation also has a bug that affects symbol binding
  ## in the loop body.

proc `==`*[T: tuple](x, y: T): bool = 
  ## generic ``==`` operator for tuples that is lifted from the components
  ## of `x` and `y`.
  for a, b in fields(x, y):
    if a != b: return false
  return true

proc `<=`*[T: tuple](x, y: T): bool = 
  ## generic ``<=`` operator for tuples that is lifted from the components
  ## of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return true

proc `<`*[T: tuple](x, y: T): bool = 
  ## generic ``<`` operator for tuples that is lifted from the components
  ## of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return false

proc `$`*[T: tuple](x: T): string = 
  ## generic ``$`` operator for tuples that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nimrod
  ##   $(23, 45) == "(23, 45)"
  ##   $() == "()"
  result = "("
  for name, value in fieldPairs(x):
    if result.len > 1: result.add(", ")
    result.add(name)
    result.add(": ")
    result.add($value)
  result.add(")")

when false:
  proc `$`*[T](a: openArray[T]): string = 
    ## generic ``$`` operator for open arrays that is lifted from the elements
    ## of `a`. Example:
    ##
    ## .. code-block:: nimrod
    ##   $[23, 45] == "[23, 45]"
    result = "["
    for x in items(a):
      if result.len > 1: result.add(", ")
      result.add($x)
    result.add("]")

# ----------------- GC interface ---------------------------------------------

proc GC_disable*() {.rtl, inl.}
  ## disables the GC. If called n-times, n calls to `GC_enable` are needed to
  ## reactivate the GC. Note that in most circumstances one should only disable
  ## the mark and sweep phase with `GC_disableMarkAndSweep`.

proc GC_enable*() {.rtl, inl.}
  ## enables the GC again.

proc GC_fullCollect*() {.rtl.}
  ## forces a full garbage collection pass.
  ## Ordinary code does not need to call this (and should not).

type
  TGC_Strategy* = enum ## the strategy the GC should use for the application
    gcThroughput,      ## optimize for throughput
    gcResponsiveness,  ## optimize for responsiveness (default)
    gcOptimizeTime,    ## optimize for speed
    gcOptimizeSpace    ## optimize for memory footprint

proc GC_setStrategy*(strategy: TGC_Strategy) {.rtl, deprecated.}
  ## tells the GC the desired strategy for the application.
  ## **Deprecated** since version 0.8.14. This has always been a nop.

proc GC_enableMarkAndSweep*() {.rtl.}
proc GC_disableMarkAndSweep*() {.rtl.}
  ## the current implementation uses a reference counting garbage collector
  ## with a seldomly run mark and sweep phase to free cycles. The mark and
  ## sweep phase may take a long time and is not needed if the application
  ## does not create cycles. Thus the mark and sweep phase can be deactivated
  ## and activated separately from the rest of the GC.

proc GC_getStatistics*(): string {.rtl.}
  ## returns an informative string about the GC's activity. This may be useful
  ## for tweaking.
  
proc GC_ref*[T](x: ref T) {.magic: "GCref".}
proc GC_ref*[T](x: seq[T]) {.magic: "GCref".}
proc GC_ref*(x: string) {.magic: "GCref".}
  ## marks the object `x` as referenced, so that it will not be freed until
  ## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
  ## n calls to `GC_unref` are needed to unmark `x`. 
  
proc GC_unref*[T](x: ref T) {.magic: "GCunref".}
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref".}
proc GC_unref*(x: string) {.magic: "GCunref".}
  ## see the documentation of `GC_ref`.

template accumulateResult*(iter: expr) =
  ## helps to convert an iterator to a proc.
  result = @[]
  for x in iter: add(result, x)

# we have to compute this here before turning it off in except.nim anyway ...
const nimrodStackTrace = compileOption("stacktrace")

{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code

var
  dbgLineHook*: proc ()
    ## set this variable to provide a procedure that should be called before
    ## each executed instruction. This should only be used by debuggers!
    ## Only code compiled with the ``debugger:on`` switch calls this hook.
  globalRaiseHook*: proc (e: ref E_Base): bool
    ## with this hook you can influence exception handling on a global level.
    ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
    ## application code should never set this hook! You better know what you
    ## do when setting this. If ``globalRaiseHook`` returns false, the
    ## exception is caught and does not propagate further through the call
    ## stack.

  localRaiseHook* {.threadvar.}: proc (e: ref E_Base): bool
    ## with this hook you can influence exception handling on a
    ## thread local level.
    ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
    ## application code should never set this hook! You better know what you
    ## do when setting this. If ``localRaiseHook`` returns false, the exception
    ## is caught and does not propagate further through the call stack.
    
  outOfMemHook*: proc ()
    ## set this variable to provide a procedure that should be called 
    ## in case of an `out of memory`:idx: event. The standard handler
    ## writes an error message and terminates the program. `outOfMemHook` can
    ## be used to raise an exception in case of OOM like so:
    ## 
    ## .. code-block:: nimrod
    ##
    ##   var gOutOfMem: ref EOutOfMemory
    ##   new(gOutOfMem) # need to be allocated *before* OOM really happened!
    ##   gOutOfMem.msg = "out of memory"
    ## 
    ##   proc handleOOM() =
    ##     raise gOutOfMem
    ##
    ##   system.outOfMemHook = handleOOM
    ##
    ## If the handler does not raise an exception, ordinary control flow
    ## continues and the program is terminated.

type
  PFrame = ptr TFrame
  TFrame {.importc, nodecl, final.} = object
    prev: PFrame
    procname: CString
    line: int # current line number
    filename: CString
    len: int  # length of slots (when not debugging always zero)

when not defined(ECMAScript):
  {.push stack_trace:off.}
  proc add*(x: var string, y: cstring) {.noStackFrame.} =
    var i = 0
    while y[i] != '\0':
      add(x, y[i])
      inc(i)
  {.pop.}
else:
  proc add*(x: var string, y: cstring) {.noStackFrame.} =
    asm """
      var len = `x`[0].length-1;
      for (var i = 0; i < `y`.length; ++i) {
        `x`[0][len] = `y`.charCodeAt(i);
        ++len;
      }
      `x`[0][len] = 0
    """

  proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}

proc echo*[Ty](x: openarray[Ty]) {.magic: "Echo", noSideEffect.}
  ## special built-in that takes a variable number of arguments. Each argument
  ## is converted to a string via ``$``, so it works for user-defined
  ## types that have an overloaded ``$`` operator.
  ## It is roughly equivalent to ``writeln(stdout, x); flush(stdout)``, but
  ## available for the ECMAScript target too.
  ## Unlike other IO operations this is guaranteed to be thread-safe as
  ## ``echo`` is very often used for debugging convenience.

template newException*(exceptn: typeDesc, message: string): expr = 
  ## creates an exception object of type ``exceptn`` and sets its ``msg`` field
  ## to `message`. Returns the new exception object. 
  # block: # open a new scope
  var
    e: ref exceptn
  new(e)
  e.msg = message
  e

when not defined(EcmaScript) and not defined(NimrodVM):
  {.push stack_trace: off.}

  proc initGC()
  when not defined(boehmgc) and not defined(useMalloc):
    proc initAllocator() {.inline.}

  when not defined(nogc):
    proc initStackBottom() {.inline.} = 
      # WARNING: This is very fragile! An array size of 8 does not work on my
      # Linux 64bit system. Very strange, but we are at the will of GCC's 
      # optimizer...
      var locals {.volatile.}: pointer
      locals = addr(locals)
      setStackBottom(locals)

  var
    strDesc: TNimType

  strDesc.size = sizeof(string)
  strDesc.kind = tyString
  strDesc.flags = {ntfAcyclic}

  include "system/ansi_c"

  proc cmp(x, y: string): int =
    result = int(c_strcmp(x, y))

  const pccHack = if defined(pcc): "_" else: "" # Hack for PCC
  when defined(windows):
    # work-around C's sucking abstraction:
    # BUGFIX: stdin and stdout should be binary files!
    proc setmode(handle, mode: int) {.importc: pccHack & "setmode",
                                      header: "<io.h>".}
    proc fileno(f: C_TextFileStar): int {.importc: pccHack & "fileno",
                                          header: "<fcntl.h>".}
    var
      O_BINARY {.importc: pccHack & "O_BINARY", nodecl.}: int

    # we use binary mode in Windows:
    setmode(fileno(c_stdin), O_BINARY)
    setmode(fileno(c_stdout), O_BINARY)
  
  when defined(endb):
    proc endbStep()

  # ----------------- IO Part ------------------------------------------------

  type
    CFile {.importc: "FILE", nodecl, final.} = object  # empty record for
                                                       # data hiding
    TFile* = ptr CFile ## The type representing a file handle.

    TFileMode* = enum           ## The file mode when opening a file.
      fmRead,                   ## Open the file for read access only.
      fmWrite,                  ## Open the file for write access only.
      fmReadWrite,              ## Open the file for read and write access.
                                ## If the file does not exist, it will be
                                ## created.
      fmReadWriteExisting,      ## Open the file for read and write access.
                                ## If the file does not exist, it will not be
                                ## created.
      fmAppend                  ## Open the file for writing only; append data
                                ## at the end.

    TFileHandle* = cint ## type that represents an OS file handle; this is
                        ## useful for low-level file access

  # text file handling:
  var
    stdin* {.importc: "stdin", noDecl.}: TFile   ## The standard input stream.
    stdout* {.importc: "stdout", noDecl.}: TFile ## The standard output stream.
    stderr* {.importc: "stderr", noDecl.}: TFile
      ## The standard error stream.
      ##
      ## Note: In my opinion, this should not be used -- the concept of a
      ## separate error stream is a design flaw of UNIX. A seperate *message
      ## stream* is a good idea, but since it is named ``stderr`` there are few
      ## programs out there that distinguish properly between ``stdout`` and
      ## ``stderr``. So, that's what you get if you don't name your variables
      ## appropriately. It also annoys people if redirection
      ## via ``>output.txt`` does not work because the program writes
      ## to ``stderr``.

  proc Open*(f: var TFile, filename: string,
             mode: TFileMode = fmRead, bufSize: int = -1): Bool
    ## Opens a file named `filename` with given `mode`.
    ##
    ## Default mode is readonly. Returns true iff the file could be opened.
    ## This throws no exception if the file could not be opened.

  proc Open*(f: var TFile, filehandle: TFileHandle,
             mode: TFileMode = fmRead): Bool
    ## Creates a ``TFile`` from a `filehandle` with given `mode`.
    ##
    ## Default mode is readonly. Returns true iff the file could be opened.
    
  proc Open*(filename: string,
             mode: TFileMode = fmRead, bufSize: int = -1): TFile = 
    ## Opens a file named `filename` with given `mode`.
    ##
    ## Default mode is readonly. Raises an ``IO`` exception if the file
    ## could not be opened.
    if not open(result, filename, mode, bufSize):
      raise newException(EIO, "cannot open: " & filename)

  proc reopen*(f: TFile, filename: string, mode: TFileMode = fmRead): bool
    ## reopens the file `f` with given `filename` and `mode`. This 
    ## is often used to redirect the `stdin`, `stdout` or `stderr`
    ## file variables.
    ##
    ## Default mode is readonly. Returns true iff the file could be reopened.

  proc Close*(f: TFile) {.importc: "fclose", nodecl.}
    ## Closes the file.

  proc EndOfFile*(f: TFile): Bool
    ## Returns true iff `f` is at the end.
    
  proc readChar*(f: TFile): char {.importc: "fgetc", nodecl.}
    ## Reads a single character from the stream `f`. If the stream
    ## has no more characters, `EEndOfFile` is raised.
  proc FlushFile*(f: TFile) {.importc: "fflush", noDecl.}
    ## Flushes `f`'s buffer.

  proc readAll*(file: TFile): TaintedString
    ## Reads all data from the stream `file`. Raises an IO exception
    ## in case of an error
  
  proc readFile*(filename: string): TaintedString
    ## Opens a file named `filename` for reading. Then calls `readAll`
    ## and closes the file afterwards. Returns the string. 
    ## Raises an IO exception in case of an error.

  proc writeFile*(filename, content: string)
    ## Opens a file named `filename` for writing. Then writes the
    ## `content` completely to the file and closes the file afterwards.
    ## Raises an IO exception in case of an error.

  proc write*(f: TFile, r: float)
  proc write*(f: TFile, i: int)
  proc write*(f: TFile, i: biggestInt)
  proc write*(f: TFile, r: biggestFloat)
  proc write*(f: TFile, s: string)
  proc write*(f: TFile, b: Bool)
  proc write*(f: TFile, c: char)
  proc write*(f: TFile, c: cstring)
  proc write*(f: TFile, a: openArray[string])
    ## Writes a value to the file `f`. May throw an IO exception.

  proc readLine*(f: TFile): TaintedString
    ## reads a line of text from the file `f`. May throw an IO exception.
    ## A line of text may be delimited by ``CR``, ``LF`` or
    ## ``CRLF``. The newline character(s) are not part of the returned string.
  
  proc readLine*(f: TFile, line: var TaintedString): bool
    ## reads a line of text from the file `f` into `line`. `line` must not be
    ## ``nil``! May throw an IO exception.
    ## A line of text may be delimited by ``CR``, ``LF`` or
    ## ``CRLF``. The newline character(s) are not part of the returned string.
    ## Returns ``false`` if the end of the file has been reached, ``true``
    ## otherwise. If ``false`` is returned `line` contains no new data.
  proc writeln*[Ty](f: TFile, x: Ty) {.inline.}
    ## writes a value `x` to `f` and then writes "\n".
    ## May throw an IO exception.

  proc writeln*[Ty](f: TFile, x: openArray[Ty]) {.inline.}
    ## writes a value `x` to `f` and then writes "\n".
    ## May throw an IO exception.

  proc getFileSize*(f: TFile): int64
    ## retrieves the file size (in bytes) of `f`.

  proc ReadBytes*(f: TFile, a: var openarray[byte], start, len: int): int
    ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
    ## the actual number of bytes that have been read which may be less than
    ## `len` (if not as many bytes are remaining), but not greater.

  proc ReadChars*(f: TFile, a: var openarray[char], start, len: int): int
    ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
    ## the actual number of bytes that have been read which may be less than
    ## `len` (if not as many bytes are remaining), but not greater.

  proc readBuffer*(f: TFile, buffer: pointer, len: int): int
    ## reads `len` bytes into the buffer pointed to by `buffer`. Returns
    ## the actual number of bytes that have been read which may be less than
    ## `len` (if not as many bytes are remaining), but not greater.

  proc writeBytes*(f: TFile, a: openarray[byte], start, len: int): int
    ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
    ## the number of actual written bytes, which may be less than `len` in case
    ## of an error.

  proc writeChars*(f: tFile, a: openarray[char], start, len: int): int
    ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
    ## the number of actual written bytes, which may be less than `len` in case
    ## of an error.

  proc writeBuffer*(f: TFile, buffer: pointer, len: int): int
    ## writes the bytes of buffer pointed to by the parameter `buffer` to the
    ## file `f`. Returns the number of actual written bytes, which may be less
    ## than `len` in case of an error.

  proc setFilePos*(f: TFile, pos: int64)
    ## sets the position of the file pointer that is used for read/write
    ## operations. The file's first byte has the index zero.

  proc getFilePos*(f: TFile): int64
    ## retrieves the current position of the file pointer that is used to
    ## read from the file `f`. The file's first byte has the index zero.

  proc fileHandle*(f: TFile): TFileHandle {.importc: "fileno",
                                            header: "<stdio.h>"}
    ## returns the OS file handle of the file ``f``. This is only useful for
    ## platform specific programming.

  proc cstringArrayToSeq*(a: cstringArray, len: int): seq[string] =
    ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
    ## of length ``len``.
    newSeq(result, len)
    for i in 0..len-1: result[i] = $a[i]

  proc cstringArrayToSeq*(a: cstringArray): seq[string] =
    ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
    ## terminated by ``nil``.
    var L = 0
    while a[L] != nil: inc(L)
    result = cstringArrayToSeq(a, L)

  # -------------------------------------------------------------------------

  proc allocCStringArray*(a: openArray[string]): cstringArray =
    ## creates a NULL terminated cstringArray from `a`. The result has to
    ## be freed with `deallocCStringArray` after it's not needed anymore.
    result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
    for i in 0 .. a.high:
      # XXX get rid of this string copy here:
      var x = a[i]
      result[i] = cast[cstring](alloc0(x.len+1))
      copyMem(result[i], addr(x[0]), x.len)

  proc deallocCStringArray*(a: cstringArray) =
    ## frees a NULL terminated cstringArray.
    var i = 0
    while a[i] != nil:
      dealloc(a[i])
      inc(i)
    dealloc(a)

  proc atomicInc*(memLoc: var int, x: int = 1): int {.inline, discardable.}
    ## atomic increment of `memLoc`. Returns the value after the operation.
  
  proc atomicDec*(memLoc: var int, x: int = 1): int {.inline, discardable.}
    ## atomic decrement of `memLoc`. Returns the value after the operation.

  include "system/atomics"

  type
    PSafePoint = ptr TSafePoint
    TSafePoint {.compilerproc, final.} = object
      prev: PSafePoint # points to next safe point ON THE STACK
      status: int
      context: C_JmpBuf
  
  when defined(initAllocator):
    initAllocator()
  when hasThreadSupport:
    include "system/syslocks"
    include "system/threads"
  elif not defined(nogc):
    initStackBottom()
    initGC()

  proc setControlCHook*(hook: proc () {.noconv.})
    ## allows you to override the behaviour of your application when CTRL+C
    ## is pressed. Only one such hook is supported.
    
  proc writeStackTrace*()
    ## writes the current stack trace to ``stderr``. This is only works
    ## for debug builds.
  when hostOS != "standalone":
    proc getStackTrace*(): string
      ## gets the current stack trace. This is only works for debug builds.

    proc getStackTrace*(e: ref E_Base): string
      ## gets the stack trace associated with `e`, which is the stack that
      ## lead to the ``raise`` statement. This is only works for debug builds.
      
  {.push stack_trace: off.}
  when hostOS == "standalone":
    include "system/embedded"
  else:
    include "system/excpt"
    
  # we cannot compile this with stack tracing on
  # as it would recurse endlessly!
  include "system/arithm"
  {.pop.} # stack trace
  {.pop.} # stack trace
      
  when hostOS != "standalone": include "system/dyncalls"
  include "system/sets"

  const
    GenericSeqSize = (2 * sizeof(int))
    
  proc getDiscriminant(aa: Pointer, n: ptr TNimNode): int =
    sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
    var d: int
    var a = cast[TAddress](aa)
    case n.typ.size
    of 1: d = ze(cast[ptr int8](a +% n.offset)[])
    of 2: d = ze(cast[ptr int16](a +% n.offset)[])
    of 4: d = int(cast[ptr int32](a +% n.offset)[])
    else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
    return d

  proc selectBranch(aa: Pointer, n: ptr TNimNode): ptr TNimNode =
    var discr = getDiscriminant(aa, n)
    if discr <% n.len:
      result = n.sons[discr]
      if result == nil: result = n.sons[n.len]
      # n.sons[n.len] contains the ``else`` part (but may be nil)
    else:
      result = n.sons[n.len]

  include "system/mmdisp"
  {.push stack_trace: off.}
  when hostOS != "standalone": include "system/sysstr"
  {.pop.}

  include "system/sysio"
  when hasThreadSupport:
    include "system/channels"

  iterator lines*(filename: string): TaintedString =
    ## Iterate over any line in the file named `filename`.
    ## If the file does not exist `EIO` is raised.
    var f = open(filename)
    var res = TaintedString(newStringOfCap(80))
    while f.readLine(res): yield res
    close(f)

  iterator lines*(f: TFile): TaintedString =
    ## Iterate over any line in the file `f`.
    var res = TaintedString(newStringOfCap(80))
    while f.readLine(res): yield TaintedString(res)

  when hostOS != "standalone":
    include "system/assign"
    include "system/repr"

    proc getCurrentException*(): ref E_Base {.compilerRtl, inl.} =
      ## retrieves the current exception; if there is none, nil is returned.
      result = currException

    proc getCurrentExceptionMsg*(): string {.inline.} =
      ## retrieves the error message that was attached to the current
      ## exception; if there is none, "" is returned.
      var e = getCurrentException()
      return if e == nil: "" else: e.msg

  {.push stack_trace: off.}
  when defined(endb):
    include "system/debugger"

  when defined(profiler):
    include "system/profiler"
  {.pop.} # stacktrace

  proc likely*(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
    ## can be used to mark a condition to be likely. This is a hint for the 
    ## optimizer.
  
  proc unlikely*(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}
    ## can be used to mark a condition to be unlikely. This is a hint for the 
    ## optimizer.
    
  proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
    ## retrieves the raw proc pointer of the closure `x`. This is
    ## useful for interfacing closures with C.
    {.emit: """
    `result` = `x`.ClPrc;
    """.}

  proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
    ## retrieves the raw environment pointer of the closure `x`. This is
    ## useful for interfacing closures with C.
    {.emit: """
    `result` = `x`.ClEnv;
    """.}

elif defined(ecmaScript) or defined(NimrodVM):
  # Stubs:
  proc GC_disable() = nil
  proc GC_enable() = nil
  proc GC_fullCollect() = nil
  proc GC_setStrategy(strategy: TGC_Strategy) = nil
  proc GC_enableMarkAndSweep() = nil
  proc GC_disableMarkAndSweep() = nil
  proc GC_getStatistics(): string = return ""
  
  proc getOccupiedMem(): int = return -1
  proc getFreeMem(): int = return -1
  proc getTotalMem(): int = return -1

  proc dealloc(p: pointer) = nil
  proc alloc(size: int): pointer = nil
  proc alloc0(size: int): pointer = nil
  proc realloc(p: Pointer, newsize: int): pointer = nil

  proc allocShared(size: int): pointer = nil
  proc allocShared0(size: int): pointer = nil
  proc deallocShared(p: pointer) = nil
  proc reallocShared(p: pointer, newsize: int): pointer = nil

  when defined(ecmaScript):
    include "system/ecmasys"
    include "system/reprjs"
  elif defined(NimrodVM):
    proc cmp(x, y: string): int =
      if x == y: return 0
      if x < y: return -1
      return 1

proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
  ## a shorthand for ``echo(errormsg); quit(errorcode)``.
  echo(errormsg)
  quit(errorcode)

{.pop.} # checks
{.pop.} # hints

proc `/`*(x, y: int): float {.inline, noSideEffect.} =
  ## integer division that results in a float.
  result = toFloat(x) / toFloat(y)

template `-|`(b, s: expr): expr =
  (if b >= 0: b else: s.len + b)

proc `[]`*(s: string, x: TSlice[int]): string {.inline.} =
  ## slice operation for strings. Negative indexes are supported.
  result = s.substr(x.a-|s, x.b-|s)

template spliceImpl(s, a, L, b: expr): stmt {.immediate.} =
  # make room for additional elements or cut:
  var slen = s.len
  var shift = b.len - L
  var newLen = slen + shift
  if shift > 0:
    # enlarge:
    setLen(s, newLen)
    for i in countdown(newLen-1, a+shift+1): shallowCopy(s[i], s[i-shift])
  else:
    for i in countup(a+b.len, s.len-1+shift): shallowCopy(s[i], s[i-shift])
    # cut down:
    setLen(s, newLen)
  # fill the hole:
  for i in 0 .. <b.len: s[i+a] = b[i]  

proc `[]=`*(s: var string, x: TSlice[int], b: string) = 
  ## slice assignment for strings. Negative indexes are supported. If
  ## ``b.len`` is not exactly the number of elements that are referred to
  ## by `x`, a `splice`:idx: is performed:
  ##
  ## .. code-block:: nimrod
  ##   var s = "abcdef"
  ##   s[1 .. -2] = "xyz"
  ##   assert s == "axyzf"
  var a = x.a-|s
  var L = x.b-|s - a + 1
  if L == b.len:
    for i in 0 .. <L: s[i+a] = b[i]
  else:
    spliceImpl(s, a, L, b)

proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[int]): seq[T] =
  ## slice operation for arrays. Negative indexes are **not** supported
  ## because the array might have negative bounds.
  var L = x.b - x.a + 1
  newSeq(result, L)
  for i in 0.. <L: result[i] = a[i + x.a]

proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[int], b: openArray[T]) =
  ## slice assignment for arrays. Negative indexes are **not** supported
  ## because the array might have negative bounds.
  var L = x.b - x.a + 1
  if L == b.len:
    for i in 0 .. <L: a[i+x.a] = b[i]
  else:
    raise newException(EOutOfRange, "differing lengths for slice assignment")

proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[Idx]): seq[T] =
  ## slice operation for arrays. Negative indexes are **not** supported
  ## because the array might have negative bounds.
  var L = ord(x.b) - ord(x.a) + 1
  newSeq(result, L)
  var j = x.a
  for i in 0.. <L: 
    result[i] = a[j]
    inc(j)

proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[Idx], b: openArray[T]) =
  ## slice assignment for arrays. Negative indexes are **not** supported
  ## because the array might have negative bounds.
  var L = ord(x.b) - ord(x.a) + 1
  if L == b.len:
    var j = x.a
    for i in 0 .. <L: 
      a[j] = b[i]
      inc(j)
  else:
    raise newException(EOutOfRange, "differing lengths for slice assignment")

proc `[]`*[T](s: seq[T], x: TSlice[int]): seq[T] = 
  ## slice operation for sequences. Negative indexes are supported.
  var a = x.a-|s
  var L = x.b-|s - a + 1
  newSeq(result, L)
  for i in 0.. <L: result[i] = s[i + a]

proc `[]=`*[T](s: var seq[T], x: TSlice[int], b: openArray[T]) = 
  ## slice assignment for sequences. Negative indexes are supported. If
  ## ``b.len`` is not exactly the number of elements that are referred to
  ## by `x`, a `splice`:idx: is performed. 
  var a = x.a-|s
  var L = x.b-|s - a + 1
  if L == b.len:
    for i in 0 .. <L: s[i+a] = b[i]
  else:
    spliceImpl(s, a, L, b)

proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo".}
  ## get type information for `x`. Ordinary code should not use this, but
  ## the `typeinfo` module instead.
  
proc slurp*(filename: string): string {.magic: "Slurp".}
proc staticRead*(filename: string): string {.magic: "Slurp".}
  ## compile-time ``readFile`` proc for easy `resource`:idx: embedding:
  ## .. code-block:: nimrod
  ##
  ##   const myResource = staticRead"mydatafile.bin"
  ##

proc staticExec*(command: string, input = ""): string {.
  magic: "StaticExec".} = nil
  ## executes an external process at compile-time.
  ## if `input` is not an empty string, it will be passed as a standard input
  ## to the executed program.
  ## .. code-block:: nimrod
  ##
  ##   const buildInfo = "Revision " & staticExec("git rev-parse HEAD") & 
  ##                     "\nCompiled on " & staticExec("uname -v")
  ##

proc `+=`*[T](x, y: ordinal[T]) {.magic: "Inc", noSideEffect.}
  ## Increments an ordinal

proc `-=`*[T](x, y: ordinal[T]) {.magic: "Dec", noSideEffect.}
  ## Decrements an ordinal

proc `*=`*[T](x: var ordinal[T], y: ordinal[T]) {.inline, noSideEffect.} =
  ## Binary `*=` operator for ordinals
  x = x * y

proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.inline, noSideEffect.} =
  ## Increments in placee a floating point number
  x = x + y

proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.inline, noSideEffect.} =
  ## Decrements in place a floating point number
  x = x - y

proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.inline, noSideEffect.} =
  ## Multiplies in place a floating point number
  x = x * y

proc `/=`*[T: float|float32|float64] (x: var T, y: T) {.inline, noSideEffect.} =
  ## Divides in place a floating point number
  x = x / y

proc `&=`* (x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}

proc rand*(max: int): int {.magic: "Rand", sideEffect.}
  ## compile-time `random` function. Useful for debugging.

proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
  ## converts the AST of `x` into a string representation. This is very useful
  ## for debugging.
  
proc InstantiationInfo*(index = -1): tuple[filename: string, line: int] {.
  magic: "InstantiationInfo", noSideEffect.}
  ## provides access to the compiler's instantiation stack line information.
  ## This is only useful for advanced meta programming. See the implementation
  ## of `assert` for an example.
  
proc raiseAssert*(msg: string) {.noinline.} =
  raise newException(EAssertionFailed, msg)
  
template assert*(cond: bool, msg = "") =
  ## provides a means to implement `programming by contracts`:idx: in Nimrod.
  ## ``assert`` evaluates expression ``cond`` and if ``cond`` is false, it
  ## raises an ``EAssertionFailure`` exception. However, the compiler may
  ## not generate any code at all for ``assert`` if it is advised to do so.
  ## Use ``assert`` for debugging purposes only.
  bind InstantiationInfo
  when compileOption("assertions"):
    {.line.}:
      if not cond:
        raiseAssert(astToStr(cond) & ' ' & msg)

template doAssert*(cond: bool, msg = "") =
  ## same as `assert` but is always turned on and not affected by the
  ## ``--assertions`` command line switch.
  bind InstantiationInfo
  {.line: InstantiationInfo().}:
    if not cond:
      raiseAssert(astToStr(cond) & ' ' & msg)

template onFailedAssert*(msg: expr, code: stmt): stmt =
  ## Sets an assertion failure handler that will intercept any assert statements
  ## following `onFailedAssert` in the current lexical scope.
  ## Can be defined multiple times in a single function.
  ##  
  ## .. code-block:: nimrod
  ##
  ##   proc example(x: int): TErrorCode =
  ##     onFailedAssert(msg):
  ##       log msg
  ##       return E_FAIL
  ## 
  ##     assert(...)
  ##     
  ##     onFailedAssert(msg):
  ##       raise newException(EMyException, msg)
  ##
  ##     assert(...)
  ##
  template raiseAssert(msgIMPL: string): stmt =
    let `msg` = msgIMPL
    code

proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
  ## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
  ## perform deep copies of `s`. This is only useful for optimization 
  ## purposes.
  when not defined(EcmaScript) and not defined(NimrodVM):
    var s = cast[PGenericSeq](s)
    s.reserved = s.reserved or seqShallowFlag

proc shallow*(s: var string) {.noSideEffect, inline.} =
  ## marks a string `s` as `shallow`:idx:. Subsequent assignments will not
  ## perform deep copies of `s`. This is only useful for optimization 
  ## purposes.
  when not defined(EcmaScript) and not defined(NimrodVM):
    var s = cast[PGenericSeq](s)
    s.reserved = s.reserved or seqShallowFlag

type
  TNimrodNode {.final.} = object
  PNimrodNode* {.magic: "PNimrodNode".} = ref TNimrodNode
    ## represents a Nimrod AST node. Macros operate on this type.

template eval*(blk: stmt): stmt =
  ## executes a block of code at compile time just as if it was a macro
  ## optionally, the block can return an AST tree that will replace the 
  ## eval expression
  block:
    macro payload(x: stmt): stmt = blk
    payload()

proc insert*(x: var string, item: string, i = 0) {.noSideEffect.} = 
  ## inserts `item` into `x` at position `i`.
  var xl = x.len
  setLen(x, xl+item.len)
  var j = xl-1
  while j >= i:
    shallowCopy(x[j+item.len], x[j])
    dec(j)
  j = 0
  while j < item.len:
    x[j+i] = item[j]
    inc(j)

when defined(initDebugger):
  initDebugger()