summary refs log tree commit diff stats
path: root/lib/pure/math.nim
blob: a9e9010f653e739e1264566ee4bdbe3124751a61 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

##   Constructive mathematics is naturally typed. -- Simon Thompson
## 
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.

include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
                       # of the standard library!

{.push checks:off, line_dir:off, stack_trace:off.}

when defined(Posix) and not defined(haiku):
  {.passl: "-lm".}
when not defined(js):
  import times

const
  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
  E* = 2.71828182845904523536028747 ## Euler's number

  MaxFloat64Precision* = 16 ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float64`` type.
  MaxFloat32Precision* = 8  ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float32`` type.
  MaxFloatPrecision* = MaxFloat64Precision ## maximum number of 
                                           ## meaningful digits
                                           ## after the decimal point 
                                           ## for Nim's ``float`` type.

type
  FloatClass* = enum ## describes the class a floating point value belongs to.
                     ## This is the type that is returned by `classify`.
    fcNormal,    ## value is an ordinary nonzero floating point value
    fcSubnormal, ## value is a subnormal (a very small) floating point value
    fcZero,      ## value is zero
    fcNegZero,   ## value is the negative zero
    fcNan,       ## value is Not-A-Number (NAN)
    fcInf,       ## value is positive infinity
    fcNegInf     ## value is negative infinity

proc classify*(x: float): FloatClass = 
  ## classifies a floating point value. Returns `x`'s class as specified by
  ## `FloatClass`.
  
  # JavaScript and most C compilers have no classify:
  if x == 0.0:
    if 1.0/x == Inf:
      return fcZero
    else:
      return fcNegZero
  if x*0.5 == x:
    if x > 0.0: return fcInf
    else: return fcNegInf
  if x != x: return fcNan
  return fcNormal
  # XXX: fcSubnormal is not detected!


proc binom*(n, k: int): int {.noSideEffect.} = 
  ## computes the binomial coefficient
  if k <= 0: return 1
  if 2*k > n: return binom(n, n-k)
  result = n
  for i in countup(2, k):
    result = (result * (n + 1 - i)) div i
    
proc fac*(n: int): int {.noSideEffect.} = 
  ## computes the faculty/factorial function.
  result = 1
  for i in countup(2, n):
    result = result * i

proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
  ## returns true, if `x` is a power of two, false otherwise.
  ## Zero and negative numbers are not a power of two.
  return (x > 0) and ((x and (x - 1)) == 0)

proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
  ## returns `x` rounded up to the nearest power of two.
  ## Zero and negative numbers get rounded up to 1.
  result = x - 1 
  when defined(cpu64):
    result = result or (result shr 32)
  when sizeof(int) > 2:
    result = result or (result shr 16)
  when sizeof(int) > 1:
    result = result or (result shr 8)
  result = result or (result shr 4)
  result = result or (result shr 2)
  result = result or (result shr 1)
  result += 1 + ord(x<=0)

proc countBits32*(n: int32): int {.noSideEffect.} =
  ## counts the set bits in `n`.
  var v = n
  v = v -% ((v shr 1'i32) and 0x55555555'i32)
  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32

proc sum*[T](x: openArray[T]): T {.noSideEffect.} = 
  ## computes the sum of the elements in `x`. 
  ## If `x` is empty, 0 is returned.
  for i in items(x): result = result + i

template toFloat(f: float): float = f

proc mean*[T](x: openArray[T]): float {.noSideEffect.} =
  ## computes the mean of the elements in `x`, which are first converted to floats.
  ## If `x` is empty, NaN is returned.
  ## ``toFloat(x: T): float`` must be defined.
  for i in items(x): result = result + toFloat(i)
  result = result / toFloat(len(x))

proc variance*[T](x: openArray[T]): float {.noSideEffect.} =
  ## computes the variance of the elements in `x`. 
  ## If `x` is empty, NaN is returned.
  ## ``toFloat(x: T): float`` must be defined.
  result = 0.0
  var m = mean(x)
  for i in items(x):
    var diff = toFloat(i) - m
    result = result + diff*diff
  result = result / toFloat(len(x))

proc random*(max: int): int {.benign.}
  ## returns a random number in the range 0..max-1. The sequence of
  ## random number is always the same, unless `randomize` is called
  ## which initializes the random number generator with a "random"
  ## number, i.e. a tickcount.

proc random*(max: float): float {.benign.}
  ## returns a random number in the range 0..<max. The sequence of
  ## random number is always the same, unless `randomize` is called
  ## which initializes the random number generator with a "random"
  ## number, i.e. a tickcount. This has a 16-bit resolution on windows
  ## and a 48-bit resolution on other platforms.

proc randomize*() {.benign.}
  ## initializes the random number generator with a "random"
  ## number, i.e. a tickcount. Note: Does nothing for the JavaScript target,
  ## as JavaScript does not support this.
  
proc randomize*(seed: int) {.benign.}
  ## initializes the random number generator with a specific seed.
  ## Note: Does nothing for the JavaScript target,
  ## as JavaScript does not support this.

{.push noSideEffect.}
when not defined(JS):
  proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
    ## computes the square root of `x`.
  
  proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
    ## computes ln(x).
  proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
  proc log2*(x: float): float = return ln(x) / ln(2.0)
  proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
    ## computes e**x.
  
  proc frexp*(x: float, exponent: var int): float {.
    importc: "frexp", header: "<math.h>".}
    ## Split a number into mantissa and exponent.
    ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
    ## and less than 1) and the integer value n such that `x` (the original
    ## float value) equals m * 2**n. frexp stores n in `exponent` and returns
    ## m.
  
  proc round*(x: float): int {.importc: "lrint", header: "<math.h>".}
    ## converts a float to an int by rounding.  
  
  proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
  proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
  proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
  proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
    ## Calculate the arc tangent of `y` / `x`.
    ## `atan2` returns the arc tangent of `y` / `x`; it produces correct
    ## results even when the resulting angle is near pi/2 or -pi/2
    ## (`x` near 0).
  
  proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
  proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
  proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
    ## same as ``sqrt(x*x + y*y)``.
  
  proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
  proc sin*(x: float): float {.importc: "sin", header: "<math.h>".}
  proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
  proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
  proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
    ## computes x to power raised of y.
    
  # C procs:
  proc srand(seed: cint) {.importc: "srand", header: "<stdlib.h>".}
  proc rand(): cint {.importc: "rand", header: "<stdlib.h>".}
  
  when not defined(windows):
    proc srand48(seed: clong) {.importc: "srand48", header: "<stdlib.h>".}
    proc drand48(): float {.importc: "drand48", header: "<stdlib.h>".}
    proc random(max: float): float =
      result = drand48() * max
  when defined(windows):
    proc random(max: float): float =
      # we are hardcodeing this because
      # importcing macros is extremely problematic
      # and because the value is publicly documented
      # on MSDN and very unlikely to change
      const rand_max = 32767
      result = (float(rand()) / float(rand_max)) * max
  proc randomize() =
    randomize(cast[int](epochTime()))

  proc randomize(seed: int) =
    srand(cint(seed))
    when declared(srand48): srand48(seed)
  proc random(max: int): int =
    result = int(rand()) mod max

  proc trunc*(x: float): float {.importc: "trunc", header: "<math.h>".}
  proc floor*(x: float): float {.importc: "floor", header: "<math.h>".}
  proc ceil*(x: float): float {.importc: "ceil", header: "<math.h>".}

  proc fmod*(x, y: float): float {.importc: "fmod", header: "<math.h>".}

else:
  proc mathrandom(): float {.importc: "Math.random", nodecl.}
  proc floor*(x: float): float {.importc: "Math.floor", nodecl.}
  proc ceil*(x: float): float {.importc: "Math.ceil", nodecl.}
  proc random(max: int): int =
    result = int(floor(mathrandom() * float(max)))
  proc random(max: float): float =
    result = float(mathrandom() * float(max))
  proc randomize() = discard
  proc randomize(seed: int) = discard
  
  proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
  proc ln*(x: float): float {.importc: "Math.log", nodecl.}
  proc log10*(x: float): float = return ln(x) / ln(10.0)
  proc log2*(x: float): float = return ln(x) / ln(2.0)

  proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
  proc round*(x: float): int {.importc: "Math.round", nodecl.}
  proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
  
  proc frexp*(x: float, exponent: var int): float =
    if x == 0.0:
      exponent = 0
      result = 0.0
    elif x < 0.0:
      result = -frexp(-x, exponent)
    else:
      var ex = floor(log2(x))
      exponent = round(ex)
      result = x / pow(2.0, ex)

  proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
  proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
  proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
  proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
  
  proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
  proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
  proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
  proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
  proc sin*(x: float): float {.importc: "Math.sin", nodecl.}
  proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
  proc tanh*(x: float): float =
    var y = exp(2.0*x)
    return (y-1.0)/(y+1.0)

{.pop.}

proc `mod`*(x, y: float): float =
  result = if y == 0.0: x else: x - y * (x/y).floor

proc random*[T](x: Slice[T]): T =
  ## For a slice `a .. b` returns a value in the range `a .. b-1`.
  result = random(x.b - x.a) + x.a

proc random*[T](a: openArray[T]): T =
  ## returns a random element from the openarray `a`.
  result = a[random(a.low..a.len)]

type
  RunningStat* = object                 ## an accumulator for statistical data
    n*: int                             ## number of pushed data
    sum*, min*, max*, mean*: float      ## self-explaining
    oldM, oldS, newS: float

{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}

proc push*(s: var RunningStat, x: float) = 
  ## pushes a value `x` for processing
  inc(s.n)
  # See Knuth TAOCP vol 2, 3rd edition, page 232
  if s.n == 1:
    s.min = x
    s.max = x
    s.oldM = x
    s.mean = x
    s.oldS = 0.0
  else:
    if s.min > x: s.min = x
    if s.max < x: s.max = x
    s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
    s.newS = s.oldS + (x - s.oldM)*(x - s.mean)

    # set up for next iteration:
    s.oldM = s.mean
    s.oldS = s.newS
  s.sum = s.sum + x
  
proc push*(s: var RunningStat, x: int) = 
  ## pushes a value `x` for processing. `x` is simply converted to ``float``
  ## and the other push operation is called.
  push(s, toFloat(x))
  
proc variance*(s: RunningStat): float = 
  ## computes the current variance of `s`
  if s.n > 1: result = s.newS / (toFloat(s.n - 1))

proc standardDeviation*(s: RunningStat): float = 
  ## computes the current standard deviation of `s`
  result = sqrt(variance(s))

{.pop.}
{.pop.}

proc `^`*[T](x, y: T): T =
  ## Computes ``x`` to the power ``y`. ``x`` must be non-negative, use
  ## `pow <#pow,float,float>` for negative exponents.
  assert y >= 0
  var (x, y) = (x, y)
  result = 1

  while y != 0:
    if (y and 1) != 0:
      result *= x
    y = y shr 1
    x *= x

proc gcd*[T](x, y: T): T =
  ## Computes the greatest common divisor of ``x`` and ``y``.
  ## Note that for floats, the result cannot always be interpreted as
  ## "greatest decimal `z` such that ``z*N == x and z*M == y``
  ## where N and M are positive integers."
  var (x,y) = (x,y)
  while y != 0:
    x = x mod y
    swap x, y
  abs x

proc lcm*[T](x, y: T): T =
  ## Computes the least common multiple of ``x`` and ``y``.
  x div gcd(x, y) * y

when isMainModule and not defined(JS):
  proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}

  # Verifies random seed initialization.
  let seed = gettime(nil)
  randomize(seed)
  const SIZE = 10
  var buf : array[0..SIZE, int]
  # Fill the buffer with random values
  for i in 0..SIZE-1:
    buf[i] = random(high(int))
  # Check that the second random calls are the same for each position.
  randomize(seed)
  for i in 0..SIZE-1:
    assert buf[i] == random(high(int)), "non deterministic random seeding"

  when not defined(testing):
    echo "random values equal after reseeding"

  # Check for no side effect annotation
  proc mySqrt(num: float): float {.noSideEffect.} =
    return sqrt(num)