summary refs log tree commit diff stats
path: root/lib/pure/math.nim
blob: ee32772b1b1bec1ed292faba9c43a767f357c552 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

##   Constructive mathematics is naturally typed. -- Simon Thompson
##
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad` and `radToDeg` provide conversion
## between radians and degrees.

include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
                       # of the standard library!

import bitops

proc binom*(n, k: int): int {.noSideEffect.} =
  ## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
  ##
  ## .. code-block:: nim
  ##  echo binom(6, 2) ## 15
  if k <= 0: return 1
  if 2*k > n: return binom(n, n-k)
  result = n
  for i in countup(2, k):
    result = (result * (n + 1 - i)) div i

proc createFactTable[N: static[int]]: array[N, int] =
  result[0] = 1
  for i in 1 ..< N:
    result[i] = result[i - 1] * i

proc fac*(n: int): int =
  ## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of a non-negative integer ``n``
  ##
  ## .. code-block:: nim
  ##  echo fac(4) ## 24
  const factTable =
    when sizeof(int) == 4:
      createFactTable[13]()
    else:
      createFactTable[21]()
  assert(n >= 0, $n & " must not be negative.")
  assert(n < factTable.len, $n & " is too large to look up in the table")
  factTable[n]

{.push checks:off, line_dir:off, stack_trace:off.}

when defined(Posix):
  {.passl: "-lm".}

const
  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
  TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
  E* = 2.71828182845904523536028747 ## Euler's number

  MaxFloat64Precision* = 16 ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float64`` type.
  MaxFloat32Precision* = 8  ## maximum number of meaningful digits
                            ## after the decimal point for Nim's
                            ## ``float32`` type.
  MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
                                           ## meaningful digits
                                           ## after the decimal point
                                           ## for Nim's ``float`` type.
  RadPerDeg = PI / 180.0 ## number of radians per degree

type
  FloatClass* = enum ## describes the class a floating point value belongs to.
                     ## This is the type that is returned by `classify`.
    fcNormal,    ## value is an ordinary nonzero floating point value
    fcSubnormal, ## value is a subnormal (a very small) floating point value
    fcZero,      ## value is zero
    fcNegZero,   ## value is the negative zero
    fcNan,       ## value is Not-A-Number (NAN)
    fcInf,       ## value is positive infinity
    fcNegInf     ## value is negative infinity

proc classify*(x: float): FloatClass =
  ## Classifies a floating point value. Returns ``x``'s class as specified by
  ## `FloatClass`.
  ##
  ## .. code-block:: nim
  ##  echo classify(0.3) ## fcNormal
  ##  echo classify(0.0) ## fcZero
  ##  echo classify(0.3/0.0) ## fcInf

  # JavaScript and most C compilers have no classify:
  if x == 0.0:
    if 1.0/x == Inf:
      return fcZero
    else:
      return fcNegZero
  if x*0.5 == x:
    if x > 0.0: return fcInf
    else: return fcNegInf
  if x != x: return fcNan
  return fcNormal
  # XXX: fcSubnormal is not detected!

proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
  ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
  ## Zero and negative numbers are not a power of two.
  ##
  ## .. code-block:: nim
  ##  echo isPowerOfTwo(5) ## false
  ##  echo isPowerOfTwo(8) ## true
  return (x > 0) and ((x and (x - 1)) == 0)

proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
  ## Returns ``x`` rounded up to the nearest power of two.
  ## Zero and negative numbers get rounded up to 1.
  ##
  ## .. code-block:: nim
  ##  echo nextPowerOfTwo(8) ## 8
  ##  echo nextPowerOfTwo(9) ## 16
  result = x - 1
  when defined(cpu64):
    result = result or (result shr 32)
  when sizeof(int) > 2:
    result = result or (result shr 16)
  when sizeof(int) > 1:
    result = result or (result shr 8)
  result = result or (result shr 4)
  result = result or (result shr 2)
  result = result or (result shr 1)
  result += 1 + ord(x<=0)

proc countBits32*(n: int32): int {.noSideEffect.} =
  ## Counts the set bits in ``n``.
  ##
  ## .. code-block:: nim
  ##  echo countBits32(13'i32) ## 3
  var v = n
  v = v -% ((v shr 1'i32) and 0x55555555'i32)
  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32

proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
  ## Computes the sum of the elements in ``x``.
  ## If ``x`` is empty, 0 is returned.
  ##
  ## .. code-block:: nim
  ##  echo sum([1.0, 2.5, -3.0, 4.3]) ## 4.8
  for i in items(x): result = result + i

proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
  ## Computes the product of the elements in ``x``.
  ## If ``x`` is empty, 1 is returned.
  ##
  ## .. code-block:: nim
  ##  echo prod([1.0, 3.0, -0.2]) ## -0.6
  result = 1.T
  for i in items(x): result = result * i

{.push noSideEffect.}
when not defined(JS): # C
  proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
  proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
    ## Computes the square root of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo sqrt(1.44) ## 1.2
  proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
  proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
    ## Computes the cubic root of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo cbrt(2.197) ## 1.3
  proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
  proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
    ## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo ln(exp(4.0)) ## 4.0
else: # JS
  proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
  proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}

  proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
  proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}

proc log*[T: SomeFloat](x, base: T): T =
  ## Computes the logarithm of ``x`` to base ``base``.
  ##
  ## .. code-block:: nim
  ##  echo log(9.0, 3.0) ## 2.0
  ln(x) / ln(base)

when not defined(JS): # C
  proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
  proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
    ## Computes the common logarithm (base 10) of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo log10(100.0) ## 2.0
  proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
  proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
    ## Computes the exponential function of ``x`` (pow(E, x)).
    ##
    ## .. code-block:: nim
    ##  echo exp(1.0) ## 2.718281828459045
    ##  echo ln(exp(4.0)) ## 4.0
  proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
  proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
    ## Computes the sine of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo sin(PI / 6) ## 0.4999999999999999
    ##  echo sin(degToRad(90.0)) ## 1.0
  proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
  proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
    ## Computes the cosine of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo cos(2 * PI) ## 1.0
    ##  echo cos(degToRad(60.0)) ## 0.5000000000000001
  proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
  proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
    ## Computes the tangent of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo tan(degToRad(45.0)) ## 0.9999999999999999
    ##  echo tan(PI / 4) ## 0.9999999999999999
  proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
  proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
    ## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo sinh(1.0) ## 1.175201193643801
  proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
  proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
    ## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo cosh(1.0) ## 1.543080634815244
  proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
  proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
    ## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo tanh(1.0) ## 0.7615941559557649

  proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
  proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
    ## Computes the arc cosine of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo arccos(1.0) ## 0.0
  proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
  proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
    ## Computes the arc sine of ``x``.
  proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
  proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
    ## Calculate the arc tangent of ``x``.
    ##
    ## .. code-block:: nim
    ##  echo arctan(1.0) ## 0.7853981633974483
    ##  echo radToDeg(arctan(1.0)) ## 45.0
  proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
  proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
    ## Calculate the arc tangent of ``y`` / ``x``.
    ## `arctan2` returns the arc tangent of ``y`` / ``x``; it produces correct
    ## results even when the resulting angle is near pi/2 or -pi/2
    ## (``x`` near 0).
    ##
    ## .. code-block:: nim
    ##  echo arctan2(1.0, 0.0) ## 1.570796326794897
    ##  echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
  proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
  proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
    ## Computes the inverse hyperbolic sine of ``x``.
  proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
  proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
    ## Computes the inverse hyperbolic cosine of ``x``.
  proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
  proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
    ## Computes the inverse hyperbolic tangent of ``x``.

else: # JS
  proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
  proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
  proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
  proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
  proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
  proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}

  proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
  proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
  proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}

  proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
  proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
  proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}

  proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
  proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
  proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
  proc arctan2*[T: float32|float64](y, x: T): T {.importC: "Math.atan2", nodecl.}

  proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
  proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
  proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}

proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
  ## Computes the cotangent of ``x``.
proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
  ## Computes the secant of ``x``.
proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
  ## Computes the cosecant of ``x``.

proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
  ## Computes the hyperbolic cotangent of ``x``.
proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
  ## Computes the hyperbolic secant of ``x``.
proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
  ## Computes the hyperbolic cosecant of ``x``.

proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
  ## Computes the inverse cotangent of ``x``.
proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
  ## Computes the inverse secant of ``x``.
proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
  ## Computes the inverse cosecant of ``x``.

proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
  ## Computes the inverse hyperbolic cotangent of ``x``.
proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
  ## Computes the inverse hyperbolic secant of ``x``.
proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
  ## Computes the inverse hyperbolic cosecant of ``x``.

const windowsCC89 = defined(windows) and defined(bcc)

when not defined(JS): # C
  proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
  proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
    ## Computes the hypotenuse of a right-angle triangle with ``x`` and
    ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
    ##
    ## .. code-block:: nim
    ##  echo hypot(4.0, 3.0) ## 5.0
  proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
  proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
    ## computes x to power raised of y.
    ##
    ## To compute power between integers, use ``^`` e.g. 2 ^ 6
    ##
    ## .. code-block:: nim
    ##  echo pow(16.0, 0.5) ## 4.0

  # TODO: add C89 version on windows
  when not windowsCC89:
    proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
    proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
      ## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
    proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
    proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
      ## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
    proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
    proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
      ## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
    proc tgamma*(x: float32): float32
      {.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
    proc tgamma*(x: float64): float64
      {.deprecated: "use gamma instead", importc: "tgamma", header: "<math.h>".}
      ## The gamma function
      ## **Deprecated since version 0.19.0**: Use ``gamma`` instead.
    proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
    proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
      ## Computes the natural log of the gamma function for ``x``.

  proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
  proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
    ## Computes the floor function (i.e., the largest integer not greater than ``x``).
    ##
    ## .. code-block:: nim
    ##  echo floor(-3.5) ## -4.0

  proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
  proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
    ## Computes the ceiling function (i.e., the smallest integer not less than ``x``).
    ##
    ## .. code-block:: nim
    ##  echo ceil(-2.1) ## -2.0

  when windowsCC89:
    # MSVC 2010 don't have trunc/truncf
    # this implementation was inspired by Go-lang Math.Trunc
    proc truncImpl(f: float64): float64 =
      const
        mask : uint64 = 0x7FF
        shift: uint64 = 64 - 12
        bias : uint64 = 0x3FF

      if f < 1:
        if f < 0: return -truncImpl(-f)
        elif f == 0: return f # Return -0 when f == -0
        else: return 0

      var x = cast[uint64](f)
      let e = (x shr shift) and mask - bias

      # Keep the top 12+e bits, the integer part; clear the rest.
      if e < 64-12:
        x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))

      result = cast[float64](x)

    proc truncImpl(f: float32): float32 =
      const
        mask : uint32 = 0xFF
        shift: uint32 = 32 - 9
        bias : uint32 = 0x7F

      if f < 1:
        if f < 0: return -truncImpl(-f)
        elif f == 0: return f # Return -0 when f == -0
        else: return 0

      var x = cast[uint32](f)
      let e = (x shr shift) and mask - bias

      # Keep the top 9+e bits, the integer part; clear the rest.
      if e < 32-9:
        x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))

      result = cast[float32](x)

    proc trunc*(x: float64): float64 =
      if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
      result = truncImpl(x)

    proc trunc*(x: float32): float32 =
      if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
      result = truncImpl(x)

    proc round*[T: float32|float64](x: T): T =
      ## Windows compilers prior to MSVC 2012 do not implement 'round',
      ## 'roundl' or 'roundf'.
      result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
  else:
    proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
    proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
      ## Rounds a float to zero decimal places.  Used internally by the round
      ## function when the specified number of places is 0.

    proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
    proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
      ## Truncates ``x`` to the decimal point.
      ##
      ## .. code-block:: nim
      ##  echo trunc(PI) # 3.0
      ##  echo trunc(-1.85) # -1.0

  proc fmod*(x, y: float32): float32 {.deprecated: "use mod instead", importc: "fmodf", header: "<math.h>".}
  proc fmod*(x, y: float64): float64 {.deprecated: "use mod instead", importc: "fmod", header: "<math.h>".}
    ## Computes the remainder of ``x`` divided by ``y``.
    ## **Deprecated since version 0.19.0**: Use the ``mod`` operator instead.

  proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
  proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
    ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
    ##
    ## .. code-block:: nim
    ##  ( 6.5 mod  2.5) ==  1.5
    ##  (-6.5 mod  2.5) == -1.5
    ##  ( 6.5 mod -2.5) ==  1.5
    ##  (-6.5 mod -2.5) == -1.5

else: # JS
  proc hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
  proc hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
  proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
  proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
  proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
  proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
  proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
  proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
  proc round*(x: float): float {.importc: "Math.round", nodecl.}
  proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
  proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}

  proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
  proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
    ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
    ##
    ## .. code-block:: nim
    ##  ( 6.5 mod  2.5) ==  1.5
    ##  (-6.5 mod  2.5) == -1.5
    ##  ( 6.5 mod -2.5) ==  1.5
    ##  (-6.5 mod -2.5) == -1.5

proc round*[T: float32|float64](x: T, places: int): T {.deprecated: "use format instead".} =
  ## Decimal rounding on a binary floating point number.
  ##
  ## This function is NOT reliable. Floating point numbers cannot hold
  ## non integer decimals precisely.  If ``places`` is 0 (or omitted),
  ## round to the nearest integral value following normal mathematical
  ## rounding rules (e.g.  ``round(54.5) -> 55.0``).  If ``places`` is
  ## greater than 0, round to the given number of decimal places,
  ## e.g. ``round(54.346, 2) -> 54.350000000000001421...``.  If ``places`` is negative, round
  ## to the left of the decimal place, e.g.  ``round(537.345, -1) ->
  ## 540.0``
  if places == 0:
    result = round(x)
  else:
    var mult = pow(10.0, places.T)
    result = round(x*mult)/mult

proc floorDiv*[T: SomeInteger](x, y: T): T =
  ## Floor division is conceptually defined as ``floor(x / y)``.
  ## This is different from the ``div`` operator, which is defined
  ## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
  ## rounds down.
  ##
  ## .. code-block:: nim
  ##  echo floorDiv( 13,  3) #  4
  ##  echo floorDiv(-13,  3) # -5
  ##  echo floorDiv( 13, -3) # -5
  ##  echo floorDiv(-13, -3) #  4
  result = x div y
  let r = x mod y
  if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1

proc floorMod*[T: SomeNumber](x, y: T): T =
  ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
  ## This proc behaves the same as the ``%`` operator in Python.
  ##
  ## .. code-block:: nim
  ##  echo floorMod( 13,  3) #  1
  ##  echo floorMod(-13,  3) #  2
  ##  echo floorMod( 13, -3) # -2
  ##  echo floorMod(-13, -3) # -1
  result = x mod y
  if (result > 0 and y < 0) or (result < 0 and y > 0): result += y

when not defined(JS):
  proc c_frexp*(x: float32, exponent: var int32): float32 {.
    importc: "frexp", header: "<math.h>".}
  proc c_frexp*(x: float64, exponent: var int32): float64 {.
    importc: "frexp", header: "<math.h>".}
  proc frexp*[T, U](x: T, exponent: var U): T =
    ## Split a number into mantissa and exponent.
    ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
    ## and less than 1) and the integer value n such that ``x`` (the original
    ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
    ## m.
    ##
    ## .. code-block:: nim
    ##  var x : int
    ##  echo frexp(5.0, x) # 0.625
    ##  echo x # 3
    var exp: int32
    result = c_frexp(x, exp)
    exponent = exp

  when windowsCC89:
    # taken from Go-lang Math.Log2
    const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
    template log2Impl[T](x: T): T =
      var exp: int32
      var frac = frexp(x, exp)
      # Make sure exact powers of two give an exact answer.
      # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
      if frac == 0.5: return T(exp - 1)
      log10(frac)*(1/ln2) + T(exp)

    proc log2*(x: float32): float32 = log2Impl(x)
    proc log2*(x: float64): float64 = log2Impl(x)
      ## Log2 returns the binary logarithm of x.
      ## The special cases are the same as for Log.

  else:
    proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
    proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
      ## Computes the binary logarithm (base 2) of ``x``

else:
  proc frexp*[T: float32|float64](x: T, exponent: var int): T =
    if x == 0.0:
      exponent = 0
      result = 0.0
    elif x < 0.0:
      result = -frexp(-x, exponent)
    else:
      var ex = trunc(log2(x))
      exponent = int(ex)
      result = x / pow(2.0, ex)
      if abs(result) >= 1:
        inc(exponent)
        result = result / 2
      if exponent == 1024 and result == 0.0:
        result = 0.99999999999999988898

proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
  ## Breaks ``x`` into an integer and a fractional part.
  ##
  ## Returns a tuple containing ``intpart`` and ``floatpart`` representing
  ## the integer part and the fractional part respectively.
  ##
  ## Both parts have the same sign as ``x``.  Analogous to the ``modf``
  ## function in C.
  ##
  ## .. code-block:: nim
  ##  echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
  var
    absolute: T
  absolute = abs(x)
  result.intpart = floor(absolute)
  result.floatpart = absolute - result.intpart
  if x < 0:
    result.intpart = -result.intpart
    result.floatpart = -result.floatpart

{.pop.}

proc degToRad*[T: float32|float64](d: T): T {.inline.} =
  ## Convert from degrees to radians
  ##
  ## .. code-block:: nim
  ##  echo degToRad(180.0) # 3.141592653589793
  result = T(d) * RadPerDeg

proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
  ## Convert from radians to degrees

  ## .. code-block:: nim
  ##  echo degToRad(2 * PI) # 360.0
  result = T(d) / RadPerDeg

proc sgn*[T: SomeNumber](x: T): int {.inline.} =
  ## Sign function. Returns -1 for negative numbers and ``NegInf``, 1 for
  ## positive numbers and ``Inf``, and 0 for positive zero, negative zero and
  ## ``NaN``.
  ##
  ## .. code-block:: nim
  ##  echo sgn(-5) # 1
  ##  echo sgn(-4.1) # -1
  ord(T(0) < x) - ord(x < T(0))

{.pop.}
{.pop.}

proc `^`*[T](x: T, y: Natural): T =
  ## Computes ``x`` to the power ``y``. ``x`` must be non-negative, use
  ## `pow <#pow,float,float>`_ for negative exponents.
  ##
  ## .. code-block:: nim
  ##  echo 2 ^ 3 # 8
  when compiles(y >= T(0)):
    assert y >= T(0)
  else:
    assert T(y) >= T(0)
  var (x, y) = (x, y)
  result = 1

  while true:
    if (y and 1) != 0:
      result *= x
    y = y shr 1
    if y == 0:
      break
    x *= x

proc gcd*[T](x, y: T): T =
  ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
  ## Note that for floats, the result cannot always be interpreted as
  ## "greatest decimal `z` such that ``z*N == x and z*M == y``
  ## where N and M are positive integers."
  var (x, y) = (x, y)
  while y != 0:
    x = x mod y
    swap x, y
  abs x

proc gcd*(x, y: SomeInteger): SomeInteger =
  ## Computes the greatest common (positive) divisor of ``x`` and ``y``.
  ## Using binary GCD (aka Stein's) algorithm.
  ##
  ## .. code-block:: nim
  ##  echo gcd(24, 30) # 6
  when x is SomeSignedInt:
    var x = abs(x)
  else:
    var x = x
  when y is SomeSignedInt:
    var y = abs(y)
  else:
    var y = y

  if x == 0:
    return y
  if y == 0:
    return x

  let shift = countTrailingZeroBits(x or y)
  y = y shr countTrailingZeroBits(y)
  while x != 0:
    x = x shr countTrailingZeroBits(x)
    if y > x:
      swap y, x
    x -= y
  y shl shift

proc lcm*[T](x, y: T): T =
  ## Computes the least common multiple of ``x`` and ``y``.
  ##
  ## .. code-block:: nim
  ##  echo lcm(24, 30) # 120
  x div gcd(x, y) * y

when isMainModule and not defined(JS) and not windowsCC89:
  # Check for no side effect annotation
  proc mySqrt(num: float): float {.noSideEffect.} =
    return sqrt(num)

  # check gamma function
  assert(gamma(5.0) == 24.0) # 4!
  assert($tgamma(5.0) == $24.0) # 4!
  assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
  assert(erf(6.0) > erf(5.0))
  assert(erfc(6.0) < erfc(5.0))

when isMainModule:
  # Function for approximate comparison of floats
  proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)

  block: # prod
    doAssert prod([1, 2, 3, 4]) == 24
    doAssert prod([1.5, 3.4]) == 5.1
    let x: seq[float] = @[]
    doAssert prod(x) == 1.0

  block: # round() tests
    # Round to 0 decimal places
    doAssert round(54.652) ==~ 55.0
    doAssert round(54.352) ==~ 54.0
    doAssert round(-54.652) ==~ -55.0
    doAssert round(-54.352) ==~ -54.0
    doAssert round(0.0) ==~ 0.0
    # Round to positive decimal places
    doAssert round(-547.652, 1) ==~ -547.7
    doAssert round(547.652, 1) ==~ 547.7
    doAssert round(-547.652, 2) ==~ -547.65
    doAssert round(547.652, 2) ==~ 547.65
    # Round to negative decimal places
    doAssert round(547.652, -1) ==~ 550.0
    doAssert round(547.652, -2) ==~ 500.0
    doAssert round(547.652, -3) ==~ 1000.0
    doAssert round(547.652, -4) ==~ 0.0
    doAssert round(-547.652, -1) ==~ -550.0
    doAssert round(-547.652, -2) ==~ -500.0
    doAssert round(-547.652, -3) ==~ -1000.0
    doAssert round(-547.652, -4) ==~ 0.0

  block: # splitDecimal() tests
    doAssert splitDecimal(54.674).intpart ==~ 54.0
    doAssert splitDecimal(54.674).floatpart ==~ 0.674
    doAssert splitDecimal(-693.4356).intpart ==~ -693.0
    doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
    doAssert splitDecimal(0.0).intpart ==~ 0.0
    doAssert splitDecimal(0.0).floatpart ==~ 0.0

  block: # trunc tests for vcc
    doAssert(trunc(-1.1) == -1)
    doAssert(trunc(1.1) == 1)
    doAssert(trunc(-0.1) == -0)
    doAssert(trunc(0.1) == 0)

    #special case
    doAssert(classify(trunc(1e1000000)) == fcInf)
    doAssert(classify(trunc(-1e1000000)) == fcNegInf)
    doAssert(classify(trunc(0.0/0.0)) == fcNan)
    doAssert(classify(trunc(0.0)) == fcZero)

    #trick the compiler to produce signed zero
    let
      f_neg_one = -1.0
      f_zero = 0.0
      f_nan = f_zero / f_zero

    doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)

    doAssert(trunc(-1.1'f32) == -1)
    doAssert(trunc(1.1'f32) == 1)
    doAssert(trunc(-0.1'f32) == -0)
    doAssert(trunc(0.1'f32) == 0)
    doAssert(classify(trunc(1e1000000'f32)) == fcInf)
    doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
    doAssert(classify(trunc(f_nan.float32)) == fcNan)
    doAssert(classify(trunc(0.0'f32)) == fcZero)

  block: # sgn() tests
    assert sgn(1'i8) == 1
    assert sgn(1'i16) == 1
    assert sgn(1'i32) == 1
    assert sgn(1'i64) == 1
    assert sgn(1'u8) == 1
    assert sgn(1'u16) == 1
    assert sgn(1'u32) == 1
    assert sgn(1'u64) == 1
    assert sgn(-12342.8844'f32) == -1
    assert sgn(123.9834'f64) == 1
    assert sgn(0'i32) == 0
    assert sgn(0'f32) == 0
    assert sgn(NegInf) == -1
    assert sgn(Inf) == 1
    assert sgn(NaN) == 0

  block: # fac() tests
    try:
      discard fac(-1)
    except AssertionError:
      discard

    doAssert fac(0) == 1
    doAssert fac(1) == 1
    doAssert fac(2) == 2
    doAssert fac(3) == 6
    doAssert fac(4) == 24

  block: # floorMod/floorDiv
    doAssert floorDiv(8, 3) == 2
    doAssert floorMod(8, 3) == 2

    doAssert floorDiv(8, -3) == -3
    doAssert floorMod(8, -3) == -1

    doAssert floorDiv(-8, 3) == -3
    doAssert floorMod(-8, 3) == 1

    doAssert floorDiv(-8, -3) == 2
    doAssert floorMod(-8, -3) == -2

    doAssert floorMod(8.0, -3.0) ==~ -1.0
    doAssert floorMod(-8.5, 3.0) ==~ 0.5

  block: # log
    doAssert log(4.0, 3.0) == ln(4.0) / ln(3.0)
    doAssert log2(8.0'f64) == 3.0'f64
    doAssert log2(4.0'f64) == 2.0'f64
    doAssert log2(2.0'f64) == 1.0'f64
    doAssert log2(1.0'f64) == 0.0'f64
    doAssert classify(log2(0.0'f64)) == fcNegInf

    doAssert log2(8.0'f32) == 3.0'f32
    doAssert log2(4.0'f32) == 2.0'f32
    doAssert log2(2.0'f32) == 1.0'f32
    doAssert log2(1.0'f32) == 0.0'f32
    doAssert classify(log2(0.0'f32)) == fcNegInf