summary refs log tree commit diff stats
path: root/lib/pure/math.nim
blob: bea655a0e17e8e641144cf843a9b574cd7664a58 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## *Constructive mathematics is naturally typed.* -- Simon Thompson
##
## Basic math routines for Nim.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
## provide conversion between radians and degrees.

runnableExamples:
  from std/fenv import epsilon
  from std/random import rand

  proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
    # Generates values from a normal distribution.
    # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
    var u1: float
    var u2: float
    while true:
      u1 = rand(1.0)
      u2 = rand(1.0)
      if u1 > epsilon(float): break
    let mag = sigma * sqrt(-2 * ln(u1))
    let z0 = mag * cos(2 * PI * u2) + mu
    let z1 = mag * sin(2 * PI * u2) + mu
    (z0, z1)

  echo generateGaussianNoise()

## This module is available for the `JavaScript target
## <backends.html#backends-the-javascript-target>`_.
##
## See also
## ========
## * `complex module <complex.html>`_ for complex numbers and their
##   mathematical operations
## * `rationals module <rationals.html>`_ for rational numbers and their
##   mathematical operations
## * `fenv module <fenv.html>`_ for handling of floating-point rounding
##   and exceptions (overflow, zero-divide, etc.)
## * `random module <random.html>`_ for a fast and tiny random number generator
## * `stats module <stats.html>`_ for statistical analysis
## * `strformat module <strformat.html>`_ for formatting floats for printing
## * `system module <system.html>`_ for some very basic and trivial math operators
##   (`shr`, `shl`, `xor`, `clamp`, etc.)


import std/private/since
{.push debugger: off.} # the user does not want to trace a part
                       # of the standard library!

import bitops, fenv

when defined(nimPreviewSlimSystem):
  import std/assertions


when defined(c) or defined(cpp):
  proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
    # a generic like `x: SomeFloat` might work too if this is implemented via a C macro.

  proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
  proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}

  proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}

  # don't export `c_frexp` in the future and remove `c_frexp2`.
  func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
      importc: "frexpf", header: "<math.h>".}
  func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
      importc: "frexp", header: "<math.h>".}

func binom*(n, k: int): int =
  ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
  runnableExamples:
    doAssert binom(6, 2) == 15
    doAssert binom(-6, 2) == 1
    doAssert binom(6, 0) == 1

  if k <= 0: return 1
  if 2 * k > n: return binom(n, n - k)
  result = n
  for i in countup(2, k):
    result = (result * (n + 1 - i)) div i

func createFactTable[N: static[int]]: array[N, int] =
  result[0] = 1
  for i in 1 ..< N:
    result[i] = result[i - 1] * i

func fac*(n: int): int =
  ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
  ## a non-negative integer `n`.
  ##
  ## **See also:**
  ## * `prod func <#prod,openArray[T]>`_
  runnableExamples:
    doAssert fac(0) == 1
    doAssert fac(4) == 24
    doAssert fac(10) == 3628800

  const factTable =
    when sizeof(int) == 2:
      createFactTable[5]()
    elif sizeof(int) == 4:
      createFactTable[13]()
    else:
      createFactTable[21]()
  assert(n >= 0, $n & " must not be negative.")
  assert(n < factTable.len, $n & " is too large to look up in the table")
  factTable[n]

{.push checks: off, line_dir: off, stack_trace: off.}

when defined(posix) and not defined(genode):
  {.passl: "-lm".}

const
  PI* = 3.1415926535897932384626433          ## The circle constant PI (Ludolph's number).
  TAU* = 2.0 * PI                            ## The circle constant TAU (= 2 * PI).
  E* = 2.71828182845904523536028747          ## Euler's number.

  MaxFloat64Precision* = 16                  ## Maximum number of meaningful digits
                                             ## after the decimal point for Nim's
                                             ## `float64` type.
  MaxFloat32Precision* = 8                   ## Maximum number of meaningful digits
                                             ## after the decimal point for Nim's
                                             ## `float32` type.
  MaxFloatPrecision* = MaxFloat64Precision   ## Maximum number of
                                             ## meaningful digits
                                             ## after the decimal point
                                             ## for Nim's `float` type.
  MinFloatNormal* = 2.225073858507201e-308   ## Smallest normal number for Nim's
                                             ## `float` type (= 2^-1022).
  RadPerDeg = PI / 180.0                     ## Number of radians per degree.

type
  FloatClass* = enum ## Describes the class a floating point value belongs to.
                     ## This is the type that is returned by the
                     ## `classify func <#classify,float>`_.
    fcNormal,        ## value is an ordinary nonzero floating point value
    fcSubnormal,     ## value is a subnormal (a very small) floating point value
    fcZero,          ## value is zero
    fcNegZero,       ## value is the negative zero
    fcNan,           ## value is Not a Number (NaN)
    fcInf,           ## value is positive infinity
    fcNegInf         ## value is negative infinity

func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
  ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
  ## Works even with `--passc:-ffast-math`.
  runnableExamples:
    doAssert NaN.isNaN
    doAssert not Inf.isNaN
    doAssert not isNaN(3.1415926)

  template fn: untyped = result = x != x
  when nimvm: fn()
  else:
    when defined(js): fn()
    else: result = c_isnan(x)

when defined(js):
  import std/private/jsutils

  proc toBitsImpl(x: float): array[2, uint32] =
    let buffer = newArrayBuffer(8)
    let a = newFloat64Array(buffer)
    let b = newUint32Array(buffer)
    a[0] = x
    {.emit: "`result` = `b`;".}
    # result = cast[array[2, uint32]](b)

  proc jsSetSign(x: float, sgn: bool): float =
    let buffer = newArrayBuffer(8)
    let a = newFloat64Array(buffer)
    let b = newUint32Array(buffer)
    a[0] = x
    asm """
    function updateBit(num, bitPos, bitVal) {
      return (num & ~(1 << bitPos)) | (bitVal << bitPos);
    }
    `b`[1] = updateBit(`b`[1], 31, `sgn`);
    `result` = `a`[0]
    """

proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
  ## Returns true if `x` is negative, false otherwise.
  runnableExamples:
    doAssert not signbit(0.0)
    doAssert signbit(-0.0)
    doAssert signbit(-0.1)
    doAssert not signbit(0.1)

  when defined(js):
    let uintBuffer = toBitsImpl(x)
    result = (uintBuffer[1] shr 31) != 0
  else:
    result = c_signbit(x) != 0

func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
  ## Returns a value with the magnitude of `x` and the sign of `y`;
  ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
  runnableExamples:
    doAssert copySign(10.0, 1.0) == 10.0
    doAssert copySign(10.0, -1.0) == -10.0
    doAssert copySign(-Inf, -0.0) == -Inf
    doAssert copySign(NaN, 1.0).isNaN
    doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0

  # TODO: use signbit for examples
  when defined(js):
    let uintBuffer = toBitsImpl(y)
    let sgn = (uintBuffer[1] shr 31) != 0
    result = jsSetSign(x, sgn)
  else:
    when nimvm: # not exact but we have a vmops for recent enough nim
      if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
        result = abs(x)
      elif y <= 0.0:
        result = -abs(x)
      else: # must be NaN
        result = abs(x)
    else: result = c_copysign(x, y)

func classify*(x: float): FloatClass =
  ## Classifies a floating point value.
  ##
  ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
  ## Doesn't work with `--passc:-ffast-math`.
  runnableExamples:
    doAssert classify(0.3) == fcNormal
    doAssert classify(0.0) == fcZero
    doAssert classify(0.3 / 0.0) == fcInf
    doAssert classify(-0.3 / 0.0) == fcNegInf
    doAssert classify(5.0e-324) == fcSubnormal

  # JavaScript and most C compilers have no classify:
  if x == 0.0:
    if 1.0 / x == Inf:
      return fcZero
    else:
      return fcNegZero
  if x * 0.5 == x:
    if x > 0.0: return fcInf
    else: return fcNegInf
  if x != x: return fcNan
  if abs(x) < MinFloatNormal:
    return fcSubnormal
  return fcNormal

func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
    since: (1, 5), inline.} =
  ## Checks if two float values are almost equal, using the
  ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
  ##
  ## `unitsInLastPlace` is the max number of
  ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
  ## difference tolerated when comparing two numbers. The larger the value, the
  ## more error is allowed. A `0` value means that two numbers must be exactly the
  ## same to be considered equal.
  ##
  ## The machine epsilon has to be scaled to the magnitude of the values used
  ## and multiplied by the desired precision in ULPs unless the difference is
  ## subnormal.
  ##
  # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
  runnableExamples:
    doAssert almostEqual(PI, 3.14159265358979)
    doAssert almostEqual(Inf, Inf)
    doAssert not almostEqual(NaN, NaN)

  if x == y:
    # short circuit exact equality -- needed to catch two infinities of
    # the same sign. And perhaps speeds things up a bit sometimes.
    return true
  let diff = abs(x - y)
  result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
      diff < minimumPositiveValue(T)

func isPowerOfTwo*(x: int): bool =
  ## Returns `true`, if `x` is a power of two, `false` otherwise.
  ##
  ## Zero and negative numbers are not a power of two.
  ##
  ## **See also:**
  ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
  runnableExamples:
    doAssert isPowerOfTwo(16)
    doAssert not isPowerOfTwo(5)
    doAssert not isPowerOfTwo(0)
    doAssert not isPowerOfTwo(-16)

  return (x > 0) and ((x and (x - 1)) == 0)

func nextPowerOfTwo*(x: int): int =
  ## Returns `x` rounded up to the nearest power of two.
  ##
  ## Zero and negative numbers get rounded up to 1.
  ##
  ## **See also:**
  ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
  runnableExamples:
    doAssert nextPowerOfTwo(16) == 16
    doAssert nextPowerOfTwo(5) == 8
    doAssert nextPowerOfTwo(0) == 1
    doAssert nextPowerOfTwo(-16) == 1

  result = x - 1
  when defined(cpu64):
    result = result or (result shr 32)
  when sizeof(int) > 2:
    result = result or (result shr 16)
  when sizeof(int) > 1:
    result = result or (result shr 8)
  result = result or (result shr 4)
  result = result or (result shr 2)
  result = result or (result shr 1)
  result += 1 + ord(x <= 0)

func sum*[T](x: openArray[T]): T =
  ## Computes the sum of the elements in `x`.
  ##
  ## If `x` is empty, 0 is returned.
  ##
  ## **See also:**
  ## * `prod func <#prod,openArray[T]>`_
  ## * `cumsum func <#cumsum,openArray[T]>`_
  ## * `cumsummed func <#cumsummed,openArray[T]>`_
  runnableExamples:
    doAssert sum([1, 2, 3, 4]) == 10
    doAssert sum([-4, 3, 5]) == 4

  for i in items(x): result = result + i

func prod*[T](x: openArray[T]): T =
  ## Computes the product of the elements in `x`.
  ##
  ## If `x` is empty, 1 is returned.
  ##
  ## **See also:**
  ## * `sum func <#sum,openArray[T]>`_
  ## * `fac func <#fac,int>`_
  runnableExamples:
    doAssert prod([1, 2, 3, 4]) == 24
    doAssert prod([-4, 3, 5]) == -60

  result = T(1)
  for i in items(x): result = result * i

func cumsummed*[T](x: openArray[T]): seq[T] =
  ## Returns the cumulative (aka prefix) summation of `x`.
  ##
  ## If `x` is empty, `@[]` is returned.
  ##
  ## **See also:**
  ## * `sum func <#sum,openArray[T]>`_
  ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
  runnableExamples:
    doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]

  let xLen = x.len
  if xLen == 0:
    return @[]
  result.setLen(xLen)
  result[0] = x[0]
  for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]

func cumsum*[T](x: var openArray[T]) =
  ## Transforms `x` in-place (must be declared as `var`) into its
  ## cumulative (aka prefix) summation.
  ##
  ## **See also:**
  ## * `sum func <#sum,openArray[T]>`_
  ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
  ##   returns a cumsummed sequence
  runnableExamples:
    var a = [1, 2, 3, 4]
    cumsum(a)
    doAssert a == @[1, 3, 6, 10]

  for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]

when not defined(js): # C
  func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
  func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
    ## Computes the square root of `x`.
    ##
    ## **See also:**
    ## * `cbrt func <#cbrt,float64>`_ for the cube root
    runnableExamples:
      doAssert almostEqual(sqrt(4.0), 2.0)
      doAssert almostEqual(sqrt(1.44), 1.2)
  func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
  func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
    ## Computes the cube root of `x`.
    ##
    ## **See also:**
    ## * `sqrt func <#sqrt,float64>`_ for the square root
    runnableExamples:
      doAssert almostEqual(cbrt(8.0), 2.0)
      doAssert almostEqual(cbrt(2.197), 1.3)
      doAssert almostEqual(cbrt(-27.0), -3.0)
  func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
  func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
    ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
    ## of `x`.
    ##
    ## **See also:**
    ## * `log func <#log,T,T>`_
    ## * `log10 func <#log10,float64>`_
    ## * `log2 func <#log2,float64>`_
    ## * `exp func <#exp,float64>`_
    runnableExamples:
      doAssert almostEqual(ln(exp(4.0)), 4.0)
      doAssert almostEqual(ln(1.0), 0.0)
      doAssert almostEqual(ln(0.0), -Inf)
      doAssert ln(-7.0).isNaN
else: # JS
  func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
  func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}

  func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
  func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}

  func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
  func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}

func log*[T: SomeFloat](x, base: T): T =
  ## Computes the logarithm of `x` to base `base`.
  ##
  ## **See also:**
  ## * `ln func <#ln,float64>`_
  ## * `log10 func <#log10,float64>`_
  ## * `log2 func <#log2,float64>`_
  runnableExamples:
    doAssert almostEqual(log(9.0, 3.0), 2.0)
    doAssert almostEqual(log(0.0, 2.0), -Inf)
    doAssert log(-7.0, 4.0).isNaN
    doAssert log(8.0, -2.0).isNaN

  ln(x) / ln(base)

when not defined(js): # C
  func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
  func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
    ## Computes the common logarithm (base 10) of `x`.
    ##
    ## **See also:**
    ## * `ln func <#ln,float64>`_
    ## * `log func <#log,T,T>`_
    ## * `log2 func <#log2,float64>`_
    runnableExamples:
      doAssert almostEqual(log10(100.0) , 2.0)
      doAssert almostEqual(log10(0.0), -Inf)
      doAssert log10(-100.0).isNaN
  func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
  func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
    ## Computes the exponential function of `x` (`e^x`).
    ##
    ## **See also:**
    ## * `ln func <#ln,float64>`_
    runnableExamples:
      doAssert almostEqual(exp(1.0), E)
      doAssert almostEqual(ln(exp(4.0)), 4.0)
      doAssert almostEqual(exp(0.0), 1.0)
  func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
  func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
    ## Computes the sine of `x`.
    ##
    ## **See also:**
    ## * `arcsin func <#arcsin,float64>`_
    runnableExamples:
      doAssert almostEqual(sin(PI / 6), 0.5)
      doAssert almostEqual(sin(degToRad(90.0)), 1.0)
  func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
  func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
    ## Computes the cosine of `x`.
    ##
    ## **See also:**
    ## * `arccos func <#arccos,float64>`_
    runnableExamples:
      doAssert almostEqual(cos(2 * PI), 1.0)
      doAssert almostEqual(cos(degToRad(60.0)), 0.5)
  func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
  func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
    ## Computes the tangent of `x`.
    ##
    ## **See also:**
    ## * `arctan func <#arctan,float64>`_
    runnableExamples:
      doAssert almostEqual(tan(degToRad(45.0)), 1.0)
      doAssert almostEqual(tan(PI / 4), 1.0)
  func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
  func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
    ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
    ##
    ## **See also:**
    ## * `arcsinh func <#arcsinh,float64>`_
    runnableExamples:
      doAssert almostEqual(sinh(0.0), 0.0)
      doAssert almostEqual(sinh(1.0), 1.175201193643801)
  func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
  func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
    ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
    ##
    ## **See also:**
    ## * `arccosh func <#arccosh,float64>`_
    runnableExamples:
      doAssert almostEqual(cosh(0.0), 1.0)
      doAssert almostEqual(cosh(1.0), 1.543080634815244)
  func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
  func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
    ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
    ##
    ## **See also:**
    ## * `arctanh func <#arctanh,float64>`_
    runnableExamples:
      doAssert almostEqual(tanh(0.0), 0.0)
      doAssert almostEqual(tanh(1.0), 0.7615941559557649)
  func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
  func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
    ## Computes the arc sine of `x`.
    ##
    ## **See also:**
    ## * `sin func <#sin,float64>`_
    runnableExamples:
      doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
      doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
  func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
  func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
    ## Computes the arc cosine of `x`.
    ##
    ## **See also:**
    ## * `cos func <#cos,float64>`_
    runnableExamples:
      doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
      doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
  func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
  func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
    ## Calculate the arc tangent of `x`.
    ##
    ## **See also:**
    ## * `arctan2 func <#arctan2,float64,float64>`_
    ## * `tan func <#tan,float64>`_
    runnableExamples:
      doAssert almostEqual(arctan(1.0), 0.7853981633974483)
      doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
  func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
  func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
    ## Calculate the arc tangent of `y/x`.
    ##
    ## It produces correct results even when the resulting angle is near
    ## `PI/2` or `-PI/2` (`x` near 0).
    ##
    ## **See also:**
    ## * `arctan func <#arctan,float64>`_
    runnableExamples:
      doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
      doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
  func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
  func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
    ## Computes the inverse hyperbolic sine of `x`.
    ##
    ## **See also:**
    ## * `sinh func <#sinh,float64>`_
  func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
  func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
    ## Computes the inverse hyperbolic cosine of `x`.
    ##
    ## **See also:**
    ## * `cosh func <#cosh,float64>`_
  func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
  func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
    ## Computes the inverse hyperbolic tangent of `x`.
    ##
    ## **See also:**
    ## * `tanh func <#tanh,float64>`_

else: # JS
  func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
  func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
  func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
  func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
  func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
  func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}

  func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
  func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
  func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}

  func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
  func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
  func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}

  func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
    # keep this as generic or update test in `tvmops.nim` to make sure we
    # keep testing that generic importc procs work
  func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
  func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
  func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}

  func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
  func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
  func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}

func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
  ## Computes the cotangent of `x` (`1/tan(x)`).
func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
  ## Computes the secant of `x` (`1/cos(x)`).
func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
  ## Computes the cosecant of `x` (`1/sin(x)`).

func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
  ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
  ## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
  ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).

func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
  ## Computes the inverse cotangent of `x` (`arctan(1/x)`).
func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
  ## Computes the inverse secant of `x` (`arccos(1/x)`).
func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
  ## Computes the inverse cosecant of `x` (`arcsin(1/x)`).

func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
  ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
  ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
  ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).

const windowsCC89 = defined(windows) and defined(bcc)

when not defined(js): # C
  func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
  func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
    ## Computes the length of the hypotenuse of a right-angle triangle with
    ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
    runnableExamples:
      doAssert almostEqual(hypot(3.0, 4.0), 5.0)
  func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
  func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
    ## Computes `x` raised to the power of `y`.
    ##
    ## To compute the power between integers (e.g. 2^6),
    ## use the `^ func <#^,T,Natural>`_.
    ##
    ## **See also:**
    ## * `^ func <#^,T,Natural>`_
    ## * `sqrt func <#sqrt,float64>`_
    ## * `cbrt func <#cbrt,float64>`_
    runnableExamples:
      doAssert almostEqual(pow(100, 1.5), 1000.0)
      doAssert almostEqual(pow(16.0, 0.5), 4.0)

  # TODO: add C89 version on windows
  when not windowsCC89:
    func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
    func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
      ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
      ##
      ## **Note:** Not available for the JS backend.
    func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
    func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
      ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
      ##
      ## **Note:** Not available for the JS backend.
    func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
    func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
      ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
      ##
      ## **Note:** Not available for the JS backend.
      ##
      ## **See also:**
      ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
      runnableExamples:
        doAssert almostEqual(gamma(1.0), 1.0)
        doAssert almostEqual(gamma(4.0), 6.0)
        doAssert almostEqual(gamma(11.0), 3628800.0)
    func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
    func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
      ## Computes the natural logarithm of the gamma function for `x`.
      ##
      ## **Note:** Not available for the JS backend.
      ##
      ## **See also:**
      ## * `gamma func <#gamma,float64>`_ for gamma function

  func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
  func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
    ## Computes the floor function (i.e. the largest integer not greater than `x`).
    ##
    ## **See also:**
    ## * `ceil func <#ceil,float64>`_
    ## * `round func <#round,float64>`_
    ## * `trunc func <#trunc,float64>`_
    runnableExamples:
      doAssert floor(2.1)  == 2.0
      doAssert floor(2.9)  == 2.0
      doAssert floor(-3.5) == -4.0

  func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
  func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
    ## Computes the ceiling function (i.e. the smallest integer not smaller
    ## than `x`).
    ##
    ## **See also:**
    ## * `floor func <#floor,float64>`_
    ## * `round func <#round,float64>`_
    ## * `trunc func <#trunc,float64>`_
    runnableExamples:
      doAssert ceil(2.1)  == 3.0
      doAssert ceil(2.9)  == 3.0
      doAssert ceil(-2.1) == -2.0

  when windowsCC89:
    # MSVC 2010 don't have trunc/truncf
    # this implementation was inspired by Go-lang Math.Trunc
    func truncImpl(f: float64): float64 =
      const
        mask: uint64 = 0x7FF
        shift: uint64 = 64 - 12
        bias: uint64 = 0x3FF

      if f < 1:
        if f < 0: return -truncImpl(-f)
        elif f == 0: return f # Return -0 when f == -0
        else: return 0

      var x = cast[uint64](f)
      let e = (x shr shift) and mask - bias

      # Keep the top 12+e bits, the integer part; clear the rest.
      if e < 64 - 12:
        x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))

      result = cast[float64](x)

    func truncImpl(f: float32): float32 =
      const
        mask: uint32 = 0xFF
        shift: uint32 = 32 - 9
        bias: uint32 = 0x7F

      if f < 1:
        if f < 0: return -truncImpl(-f)
        elif f == 0: return f # Return -0 when f == -0
        else: return 0

      var x = cast[uint32](f)
      let e = (x shr shift) and mask - bias

      # Keep the top 9+e bits, the integer part; clear the rest.
      if e < 32 - 9:
        x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))

      result = cast[float32](x)

    func trunc*(x: float64): float64 =
      if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
      result = truncImpl(x)

    func trunc*(x: float32): float32 =
      if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
      result = truncImpl(x)

    func round*[T: float32|float64](x: T): T =
      ## Windows compilers prior to MSVC 2012 do not implement 'round',
      ## 'roundl' or 'roundf'.
      result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
  else:
    func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
    func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
      ## Rounds a float to zero decimal places.
      ##
      ## Used internally by the `round func <#round,T,int>`_
      ## when the specified number of places is 0.
      ##
      ## **See also:**
      ## * `round func <#round,T,int>`_ for rounding to the specific
      ##   number of decimal places
      ## * `floor func <#floor,float64>`_
      ## * `ceil func <#ceil,float64>`_
      ## * `trunc func <#trunc,float64>`_
      runnableExamples:
        doAssert round(3.4) == 3.0
        doAssert round(3.5) == 4.0
        doAssert round(4.5) == 5.0

    func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
    func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
      ## Truncates `x` to the decimal point.
      ##
      ## **See also:**
      ## * `floor func <#floor,float64>`_
      ## * `ceil func <#ceil,float64>`_
      ## * `round func <#round,float64>`_
      runnableExamples:
        doAssert trunc(PI) == 3.0
        doAssert trunc(-1.85) == -1.0

  func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
  func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
    ##
    ## **See also:**
    ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
    runnableExamples:
      doAssert  6.5 mod  2.5 ==  1.5
      doAssert -6.5 mod  2.5 == -1.5
      doAssert  6.5 mod -2.5 ==  1.5
      doAssert -6.5 mod -2.5 == -1.5

else: # JS
  func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
  func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
  func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
  func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
  func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
  func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
  func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
  func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}

  when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
    func round*(x: float): float {.importc: "Math.round", nodecl.}
  else:
    func jsRound(x: float): float {.importc: "Math.round", nodecl.}
    func round*[T: float64 | float32](x: T): T =
      if x >= 0: result = jsRound(x)
      else:
        result = ceil(x)
        if result - x >= T(0.5):
          result -= T(1.0)
  func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
  func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}

  func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
  func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
    ## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
    runnableExamples:
      doAssert  6.5 mod  2.5 ==  1.5
      doAssert -6.5 mod  2.5 == -1.5
      doAssert  6.5 mod -2.5 ==  1.5
      doAssert -6.5 mod -2.5 == -1.5

func round*[T: float32|float64](x: T, places: int): T =
  ## Decimal rounding on a binary floating point number.
  ##
  ## This function is NOT reliable. Floating point numbers cannot hold
  ## non integer decimals precisely. If `places` is 0 (or omitted),
  ## round to the nearest integral value following normal mathematical
  ## rounding rules (e.g.  `round(54.5) -> 55.0`). If `places` is
  ## greater than 0, round to the given number of decimal places,
  ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
  ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
  runnableExamples:
    doAssert round(PI, 2) == 3.14
    doAssert round(PI, 4) == 3.1416

  if places == 0:
    result = round(x)
  else:
    var mult = pow(10.0, T(places))
    result = round(x * mult) / mult

func floorDiv*[T: SomeInteger](x, y: T): T =
  ## Floor division is conceptually defined as `floor(x / y)`.
  ##
  ## This is different from the `system.div <system.html#div,int,int>`_
  ## operator, which is defined as `trunc(x / y)`.
  ## That is, `div` rounds towards `0` and `floorDiv` rounds down.
  ##
  ## **See also:**
  ## * `system.div proc <system.html#div,int,int>`_ for integer division
  ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
  runnableExamples:
    doAssert floorDiv( 13,  3) ==  4
    doAssert floorDiv(-13,  3) == -5
    doAssert floorDiv( 13, -3) == -5
    doAssert floorDiv(-13, -3) ==  4

  result = x div y
  let r = x mod y
  if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1

func floorMod*[T: SomeNumber](x, y: T): T =
  ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
  ##
  ## This func behaves the same as the `%` operator in Python.
  ##
  ## **See also:**
  ## * `mod func <#mod,float64,float64>`_
  ## * `floorDiv func <#floorDiv,T,T>`_
  runnableExamples:
    doAssert floorMod( 13,  3) ==  1
    doAssert floorMod(-13,  3) ==  2
    doAssert floorMod( 13, -3) == -2
    doAssert floorMod(-13, -3) == -1

  result = x mod y
  if (result > 0 and y < 0) or (result < 0 and y > 0): result += y

func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
  ## Returns euclidean division of `x` by `y`.
  runnableExamples:
    doAssert euclDiv(13, 3) == 4
    doAssert euclDiv(-13, 3) == -5
    doAssert euclDiv(13, -3) == -4
    doAssert euclDiv(-13, -3) == 5

  result = x div y
  if x mod y < 0:
    if y > 0:
      dec result
    else:
      inc result

func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
  ## Returns euclidean modulo of `x` by `y`.
  ## `euclMod(x, y)` is non-negative.
  runnableExamples:
    doAssert euclMod(13, 3) == 1
    doAssert euclMod(-13, 3) == 2
    doAssert euclMod(13, -3) == 1
    doAssert euclMod(-13, -3) == 2

  result = x mod y
  if result < 0:
    result += abs(y)

func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
  ## Ceil division is conceptually defined as `ceil(x / y)`.
  ##
  ## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
  ##
  ## This is different from the `system.div <system.html#div,int,int>`_
  ## operator, which works like `trunc(x / y)`.
  ## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
  ##
  ## This function has the above input limitation, because that allows the
  ## compiler to generate faster code and it is rarely used with
  ## negative values or unsigned integers close to `high(T)/2`.
  ## If you need a `ceilDiv` that works with any input, see:
  ## https://github.com/demotomohiro/divmath.
  ##
  ## **See also:**
  ## * `system.div proc <system.html#div,int,int>`_ for integer division
  ## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
  runnableExamples:
    assert ceilDiv(12, 3) ==  4
    assert ceilDiv(13, 3) ==  5

  when sizeof(T) == 8:
    type UT = uint64
  elif sizeof(T) == 4:
    type UT = uint32
  elif sizeof(T) == 2:
    type UT = uint16
  elif sizeof(T) == 1:
    type UT = uint8
  else:
    {.fatal: "Unsupported int type".}

  assert x >= 0 and y > 0
  when T is SomeUnsignedInt:
    assert x + y - 1 >= x

  # If the divisor is const, the backend C/C++ compiler generates code without a `div`
  # instruction, as it is slow on most CPUs.
  # If the divisor is a power of 2 and a const unsigned integer type, the
  # compiler generates faster code.
  # If the divisor is const and a signed integer, generated code becomes slower
  # than the code with unsigned integers, because division with signed integers
  # need to works for both positive and negative value without `idiv`/`sdiv`.
  # That is why this code convert parameters to unsigned.
  # This post contains a comparison of the performance of signed/unsigned integers:
  # https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
  # If signed integer arguments were not converted to unsigned integers,
  # `ceilDiv` wouldn't work for any positive signed integer value, because
  # `x + (y - 1)` can overflow.
  ((x.UT + (y.UT - 1.UT)) div y.UT).T

func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
  ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
  ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
  ## cases shown below.
  runnableExamples:
    doAssert frexp(8.0) == (0.5, 4)
    doAssert frexp(-8.0) == (-0.5, 4)
    doAssert frexp(0.0) == (0.0, 0)

    # special cases:
    when sizeof(int) == 8:
      doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
      doAssert frexp(Inf).frac == Inf # +- Inf preserved
      doAssert frexp(NaN).frac.isNaN

  when not defined(js):
    var exp: cint
    result.frac = c_frexp2(x, exp)
    result.exp = exp
  else:
    if x == 0.0:
      # reuse signbit implementation
      let uintBuffer = toBitsImpl(x)
      if (uintBuffer[1] shr 31) != 0:
        # x is -0.0
        result = (-0.0, 0)
      else:
        result = (0.0, 0)
    elif x < 0.0:
      result = frexp(-x)
      result.frac = -result.frac
    else:
      var ex = trunc(log2(x))
      result.exp = int(ex)
      result.frac = x / pow(2.0, ex)
      if abs(result.frac) >= 1:
        inc(result.exp)
        result.frac = result.frac / 2
      if result.exp == 1024 and result.frac == 0.0:
        result.frac = 0.99999999999999988898

func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
  ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
  runnableExamples:
    var x: int
    doAssert frexp(5.0, x) == 0.625
    doAssert x == 3

  (result, exponent) = frexp(x)


when not defined(js):
  when windowsCC89:
    # taken from Go-lang Math.Log2
    const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
    template log2Impl[T](x: T): T =
      var exp: int
      var frac = frexp(x, exp)
      # Make sure exact powers of two give an exact answer.
      # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
      if frac == 0.5: return T(exp - 1)
      log10(frac) * (1 / ln2) + T(exp)

    func log2*(x: float32): float32 = log2Impl(x)
    func log2*(x: float64): float64 = log2Impl(x)
      ## Log2 returns the binary logarithm of x.
      ## The special cases are the same as for Log.

  else:
    func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
    func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
      ## Computes the binary logarithm (base 2) of `x`.
      ##
      ## **See also:**
      ## * `log func <#log,T,T>`_
      ## * `log10 func <#log10,float64>`_
      ## * `ln func <#ln,float64>`_
      runnableExamples:
        doAssert almostEqual(log2(8.0), 3.0)
        doAssert almostEqual(log2(1.0), 0.0)
        doAssert almostEqual(log2(0.0), -Inf)
        doAssert log2(-2.0).isNaN

func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
  ## Breaks `x` into an integer and a fractional part.
  ##
  ## Returns a tuple containing `intpart` and `floatpart`, representing
  ## the integer part and the fractional part, respectively.
  ##
  ## Both parts have the same sign as `x`.  Analogous to the `modf`
  ## function in C.
  runnableExamples:
    doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
    doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)

  var
    absolute: T
  absolute = abs(x)
  result.intpart = floor(absolute)
  result.floatpart = absolute - result.intpart
  if x < 0:
    result.intpart = -result.intpart
    result.floatpart = -result.floatpart


func degToRad*[T: float32|float64](d: T): T {.inline.} =
  ## Converts from degrees to radians.
  ##
  ## **See also:**
  ## * `radToDeg func <#radToDeg,T>`_
  runnableExamples:
    doAssert almostEqual(degToRad(180.0), PI)

  result = d * T(RadPerDeg)

func radToDeg*[T: float32|float64](d: T): T {.inline.} =
  ## Converts from radians to degrees.
  ##
  ## **See also:**
  ## * `degToRad func <#degToRad,T>`_
  runnableExamples:
    doAssert almostEqual(radToDeg(2 * PI), 360.0)

  result = d / T(RadPerDeg)

func sgn*[T: SomeNumber](x: T): int {.inline.} =
  ## Sign function.
  ##
  ## Returns:
  ## * `-1` for negative numbers and `NegInf`,
  ## * `1` for positive numbers and `Inf`,
  ## * `0` for positive zero, negative zero and `NaN`
  runnableExamples:
    doAssert sgn(5) == 1
    doAssert sgn(0) == 0
    doAssert sgn(-4.1) == -1

  ord(T(0) < x) - ord(x < T(0))

{.pop.}
{.pop.}

func `^`*[T: SomeNumber](x: T, y: Natural): T =
  ## Computes `x` to the power of `y`.
  ##
  ## The exponent `y` must be non-negative, use
  ## `pow <#pow,float64,float64>`_ for negative exponents.
  ##
  ## **See also:**
  ## * `pow func <#pow,float64,float64>`_ for negative exponent or
  ##   floats
  ## * `sqrt func <#sqrt,float64>`_
  ## * `cbrt func <#cbrt,float64>`_
  runnableExamples:
    doAssert -3 ^ 0 == 1
    doAssert -3 ^ 1 == -3
    doAssert -3 ^ 2 == 9

  case y
  of 0: result = 1
  of 1: result = x
  of 2: result = x * x
  of 3: result = x * x * x
  else:
    var (x, y) = (x, y)
    result = 1
    while true:
      if (y and 1) != 0:
        result *= x
      y = y shr 1
      if y == 0:
        break
      x *= x

func gcd*[T](x, y: T): T =
  ## Computes the greatest common (positive) divisor of `x` and `y`.
  ##
  ## Note that for floats, the result cannot always be interpreted as
  ## "greatest decimal `z` such that `z*N == x and z*M == y`
  ## where N and M are positive integers".
  ##
  ## **See also:**
  ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
  ## * `lcm func <#lcm,T,T>`_
  runnableExamples:
    doAssert gcd(13.5, 9.0) == 4.5

  var (x, y) = (x, y)
  while y != 0:
    x = x mod y
    swap x, y
  abs x

func gcd*(x, y: SomeInteger): SomeInteger =
  ## Computes the greatest common (positive) divisor of `x` and `y`,
  ## using the binary GCD (aka Stein's) algorithm.
  ##
  ## **See also:**
  ## * `gcd func <#gcd,T,T>`_ for a float version
  ## * `lcm func <#lcm,T,T>`_
  runnableExamples:
    doAssert gcd(12, 8) == 4
    doAssert gcd(17, 63) == 1

  when x is SomeSignedInt:
    var x = abs(x)
  else:
    var x = x
  when y is SomeSignedInt:
    var y = abs(y)
  else:
    var y = y

  if x == 0:
    return y
  if y == 0:
    return x

  let shift = countTrailingZeroBits(x or y)
  y = y shr countTrailingZeroBits(y)
  while x != 0:
    x = x shr countTrailingZeroBits(x)
    if y > x:
      swap y, x
    x -= y
  y shl shift

func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
  ## Computes the greatest common (positive) divisor of the elements of `x`.
  ##
  ## **See also:**
  ## * `gcd func <#gcd,T,T>`_ for a version with two arguments
  runnableExamples:
    doAssert gcd(@[13.5, 9.0]) == 4.5

  result = x[0]
  for i in 1 ..< x.len:
    result = gcd(result, x[i])

func lcm*[T](x, y: T): T =
  ## Computes the least common multiple of `x` and `y`.
  ##
  ## **See also:**
  ## * `gcd func <#gcd,T,T>`_
  runnableExamples:
    doAssert lcm(24, 30) == 120
    doAssert lcm(13, 39) == 39

  x div gcd(x, y) * y

func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
  ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
  runnableExamples:
    assert clamp(10, 1 .. 5) == 5
    assert clamp(1, 1 .. 3) == 1
    type A = enum a0, a1, a2, a3, a4, a5
    assert a1.clamp(a2..a4) == a2
    assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
    doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
  assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
  clamp(val, bounds.a, bounds.b)

func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
  ## Computes the least common multiple of the elements of `x`.
  ##
  ## **See also:**
  ## * `lcm func <#lcm,T,T>`_ for a version with two arguments
  runnableExamples:
    doAssert lcm(@[24, 30]) == 120

  result = x[0]
  for i in 1 ..< x.len:
    result = lcm(result, x[i])