summary refs log tree commit diff stats
path: root/lib/pure/memfiles.nim
blob: 9b2d25267563d3d8d8e924fd7128c7ebb4ba46ec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Nim Contributors
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## :Authors: Zahary Karadjov, Andreas Rumpf
##
## This module provides support for `memory mapped files`:idx:
## (Posix's `mmap`:idx:) on the different operating systems.
##
## It also provides some fast iterators over lines in text files (or
## other "line-like", variable length, delimited records).

when defined(windows):
  import winlean
elif defined(posix):
  import posix
else:
  {.error: "the memfiles module is not supported on your operating system!".}

import os

type
  MemFile* = object  ## represents a memory mapped file
    mem*: pointer    ## a pointer to the memory mapped file. The pointer
                     ## can be used directly to change the contents of the
                     ## file, if it was opened with write access.
    size*: int       ## size of the memory mapped file

    when defined(windows):
      fHandle: Handle
      mapHandle: Handle
      wasOpened: bool   ## only close if wasOpened
    else:
      handle: cint

{.deprecated: [TMemFile: MemFile].}

proc mapMem*(m: var MemFile, mode: FileMode = fmRead,
             mappedSize = -1, offset = 0): pointer =
  ## returns a pointer to a mapped portion of MemFile `m`
  ##
  ## ``mappedSize`` of ``-1`` maps to the whole file, and
  ## ``offset`` must be multiples of the PAGE SIZE of your OS
  var readonly = mode == fmRead
  when defined(windows):
    result = mapViewOfFileEx(
      m.mapHandle,
      if readonly: FILE_MAP_READ else: FILE_MAP_WRITE,
      int32(offset shr 32),
      int32(offset and 0xffffffff),
      if mappedSize == -1: 0 else: mappedSize,
      nil)
    if result == nil:
      raiseOSError(osLastError())
  else:
    assert mappedSize > 0
    result = mmap(
      nil,
      mappedSize,
      if readonly: PROT_READ else: PROT_READ or PROT_WRITE,
      if readonly: (MAP_PRIVATE or MAP_POPULATE) else: (MAP_SHARED or MAP_POPULATE),
      m.handle, offset)
    if result == cast[pointer](MAP_FAILED):
      raiseOSError(osLastError())


proc unmapMem*(f: var MemFile, p: pointer, size: int) =
  ## unmaps the memory region ``(p, <p+size)`` of the mapped file `f`.
  ## All changes are written back to the file system, if `f` was opened
  ## with write access.
  ##
  ## ``size`` must be of exactly the size that was requested
  ## via ``mapMem``.
  when defined(windows):
    if unmapViewOfFile(p) == 0: raiseOSError(osLastError())
  else:
    if munmap(p, size) != 0: raiseOSError(osLastError())


proc open*(filename: string, mode: FileMode = fmRead,
           mappedSize = -1, offset = 0, newFileSize = -1,
           allowRemap = false): MemFile =
  ## opens a memory mapped file. If this fails, ``EOS`` is raised.
  ##
  ## ``newFileSize`` can only be set if the file does not exist and is opened
  ## with write access (e.g., with fmReadWrite).
  ##
  ##``mappedSize`` and ``offset``
  ## can be used to map only a slice of the file.
  ##
  ## ``offset`` must be multiples of the PAGE SIZE of your OS
  ## (usually 4K or 8K but is unique to your OS)
  ##
  ## ``allowRemap`` only needs to be true if you want to call ``mapMem`` on
  ## the resulting MemFile; else file handles are not kept open.
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##   var
  ##     mm, mm_full, mm_half: MemFile
  ##
  ##   mm = memfiles.open("/tmp/test.mmap", mode = fmWrite, newFileSize = 1024)    # Create a new file
  ##   mm.close()
  ##
  ##   # Read the whole file, would fail if newFileSize was set
  ##   mm_full = memfiles.open("/tmp/test.mmap", mode = fmReadWrite, mappedSize = -1)
  ##
  ##   # Read the first 512 bytes
  ##   mm_half = memfiles.open("/tmp/test.mmap", mode = fmReadWrite, mappedSize = 512)

  # The file can be resized only when write mode is used:
  assert newFileSize == -1 or mode != fmRead
  var readonly = mode == fmRead

  template rollback =
    result.mem = nil
    result.size = 0

  when defined(windows):
    template fail(errCode: OSErrorCode, msg: untyped) =
      rollback()
      if result.fHandle != 0: discard closeHandle(result.fHandle)
      if result.mapHandle != 0: discard closeHandle(result.mapHandle)
      raiseOSError(errCode)
      # return false
      #raise newException(EIO, msg)

    template callCreateFile(winApiProc, filename): untyped =
      winApiProc(
        filename,
        # GENERIC_ALL != (GENERIC_READ or GENERIC_WRITE)
        if readonly: GENERIC_READ else: GENERIC_READ or GENERIC_WRITE,
        FILE_SHARE_READ,
        nil,
        if newFileSize != -1: CREATE_ALWAYS else: OPEN_EXISTING,
        if readonly: FILE_ATTRIBUTE_READONLY else: FILE_ATTRIBUTE_TEMPORARY,
        0)

    when useWinUnicode:
      result.fHandle = callCreateFile(createFileW, newWideCString(filename))
    else:
      result.fHandle = callCreateFile(createFileA, filename)

    if result.fHandle == INVALID_HANDLE_VALUE:
      fail(osLastError(), "error opening file")

    if newFileSize != -1:
      var
        sizeHigh = int32(newFileSize shr 32)
        sizeLow  = int32(newFileSize and 0xffffffff)

      var status = setFilePointer(result.fHandle, sizeLow, addr(sizeHigh),
                                  FILE_BEGIN)
      let lastErr = osLastError()
      if (status == INVALID_SET_FILE_POINTER and lastErr.int32 != NO_ERROR) or
         (setEndOfFile(result.fHandle) == 0):
        fail(lastErr, "error setting file size")

    # since the strings are always 'nil', we simply always call
    # CreateFileMappingW which should be slightly faster anyway:
    result.mapHandle = createFileMappingW(
      result.fHandle, nil,
      if readonly: PAGE_READONLY else: PAGE_READWRITE,
      0, 0, nil)

    if result.mapHandle == 0:
      fail(osLastError(), "error creating mapping")

    result.mem = mapViewOfFileEx(
      result.mapHandle,
      if readonly: FILE_MAP_READ else: FILE_MAP_WRITE,
      int32(offset shr 32),
      int32(offset and 0xffffffff),
      if mappedSize == -1: 0 else: mappedSize,
      nil)

    if result.mem == nil:
      fail(osLastError(), "error mapping view")

    var hi, low: int32
    low = getFileSize(result.fHandle, addr(hi))
    if low == INVALID_FILE_SIZE:
      fail(osLastError(), "error getting file size")
    else:
      var fileSize = (int64(hi) shl 32) or int64(uint32(low))
      if mappedSize != -1: result.size = min(fileSize, mappedSize).int
      else: result.size = fileSize.int

    result.wasOpened = true
    if not allowRemap and result.fHandle != INVALID_HANDLE_VALUE:
      if closeHandle(result.fHandle) == 0:
        result.fHandle = INVALID_HANDLE_VALUE

  else:
    template fail(errCode: OSErrorCode, msg: string) =
      rollback()
      if result.handle != -1: discard close(result.handle)
      raiseOSError(errCode)

    var flags = if readonly: O_RDONLY else: O_RDWR

    if newFileSize != -1:
      flags = flags or O_CREAT or O_TRUNC
      var permissions_mode = S_IRUSR or S_IWUSR
      result.handle = open(filename, flags, permissions_mode)
    else:
      result.handle = open(filename, flags)

    if result.handle == -1:
      # XXX: errno is supposed to be set here
      # Is there an exception that wraps it?
      fail(osLastError(), "error opening file")

    if newFileSize != -1:
      if ftruncate(result.handle, newFileSize) == -1:
        fail(osLastError(), "error setting file size")

    if mappedSize != -1:
      result.size = mappedSize
    else:
      var stat: Stat
      if fstat(result.handle, stat) != -1:
        # XXX: Hmm, this could be unsafe
        # Why is mmap taking int anyway?
        result.size = int(stat.st_size)
      else:
        fail(osLastError(), "error getting file size")

    result.mem = mmap(
      nil,
      result.size,
      if readonly: PROT_READ else: PROT_READ or PROT_WRITE,
      if readonly: (MAP_PRIVATE or MAP_POPULATE) else: (MAP_SHARED or MAP_POPULATE),
      result.handle,
      offset)

    if result.mem == cast[pointer](MAP_FAILED):
      fail(osLastError(), "file mapping failed")

    if not allowRemap and result.handle != -1:
      if close(result.handle) == 0:
        result.handle = -1

proc close*(f: var MemFile) =
  ## closes the memory mapped file `f`. All changes are written back to the
  ## file system, if `f` was opened with write access.

  var error = false
  var lastErr: OSErrorCode

  when defined(windows):
    if f.wasOpened:
      error = unmapViewOfFile(f.mem) == 0
      lastErr = osLastError()
      error = (closeHandle(f.mapHandle) == 0) or error
      if f.fHandle != INVALID_HANDLE_VALUE:
        error = (closeHandle(f.fHandle) == 0) or error
  else:
    error = munmap(f.mem, f.size) != 0
    lastErr = osLastError()
    if f.handle != -1:
      error = (close(f.handle) != 0) or error

  f.size = 0
  f.mem = nil

  when defined(windows):
    f.fHandle = 0
    f.mapHandle = 0
    f.wasOpened = false
  else:
    f.handle = -1

  if error: raiseOSError(lastErr)

type MemSlice* = object  ## represent slice of a MemFile for iteration over delimited lines/records
  data*: pointer
  size*: int

proc `==`*(x, y: MemSlice): bool =
  ## Compare a pair of MemSlice for strict equality.
  proc memcmp(a, b: pointer, n:int):int {.importc: "memcmp",header: "string.h".}
  result = (x.size == y.size and memcmp(x.data, y.data, x.size) == 0)

proc `$`*(ms: MemSlice): string {.inline.} =
  ## Return a Nim string built from a MemSlice.
  var buf = newString(ms.size)
  copyMem(addr(buf[0]), ms.data, ms.size)
  buf[ms.size] = '\0'
  result = buf

iterator memSlices*(mfile: MemFile, delim='\l', eat='\r'): MemSlice {.inline.} =
  ## Iterates over [optional `eat`] `delim`-delimited slices in MemFile `mfile`.
  ##
  ## Default parameters parse lines ending in either Unix(\\l) or Windows(\\r\\l)
  ## style on on a line-by-line basis.  I.e., not every line needs the same ending.
  ## Unlike readLine(File) & lines(File), archaic MacOS9 \\r-delimited lines
  ## are not supported as a third option for each line.  Such archaic MacOS9
  ## files can be handled by passing delim='\\r', eat='\\0', though.
  ##
  ## Delimiters are not part of the returned slice.  A final, unterminated line
  ## or record is returned just like any other.
  ##
  ## Non-default delimiters can be passed to allow iteration over other sorts
  ## of "line-like" variable length records.  Pass eat='\\0' to be strictly
  ## `delim`-delimited. (Eating an optional prefix equal to '\\0' is not
  ## supported.)
  ##
  ## This zero copy, memchr-limited interface is probably the fastest way to
  ## iterate over line-like records in a file.  However, returned (data,size)
  ## objects are not Nim strings, bounds checked Nim arrays, or even terminated
  ## C strings.  So, care is required to access the data (e.g., think C mem*
  ## functions, not str* functions).
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##   var count = 0
  ##   for slice in memSlices(memfiles.open("foo")):
  ##     if slice.size > 0 and cast[cstring](slice.data)[0] != '#':
  ##       inc(count)
  ##   echo count

  proc c_memchr(cstr: pointer, c: char, n: csize): pointer {.
       importc: "memchr", header: "<string.h>" .}
  proc `-!`(p, q: pointer): int {.inline.} = return cast[int](p) -% cast[int](q)
  var ms: MemSlice
  var ending: pointer
  ms.data = mfile.mem
  var remaining = mfile.size
  while remaining > 0:
    ending = c_memchr(ms.data, delim, remaining)
    if ending == nil:                               # unterminated final slice
      ms.size = remaining                           # Weird case..check eat?
      yield ms
      break
    ms.size = ending -! ms.data                     # delim is NOT included
    if eat != '\0' and ms.size > 0 and cast[cstring](ms.data)[ms.size - 1] == eat:
      dec(ms.size)                                  # trim pre-delim char
    yield ms
    ms.data = cast[pointer](cast[int](ending) +% 1)     # skip delim
    remaining = mfile.size - (ms.data -! mfile.mem)

iterator lines*(mfile: MemFile, buf: var TaintedString, delim='\l', eat='\r'): TaintedString {.inline.} =
  ## Replace contents of passed buffer with each new line, like
  ## `readLine(File) <system.html#readLine,File,TaintedString>`_.
  ## `delim`, `eat`, and delimiting logic is exactly as for
  ## `memSlices <#memSlices>`_, but Nim strings are returned.
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##   var buffer: TaintedString = ""
  ##   for line in lines(memfiles.open("foo"), buffer):
  ##     echo line

  for ms in memSlices(mfile, delim, eat):
    buf.setLen(ms.size)
    copyMem(addr(buf[0]), ms.data, ms.size)
    buf[ms.size] = '\0'
    yield buf

iterator lines*(mfile: MemFile, delim='\l', eat='\r'): TaintedString {.inline.} =
  ## Return each line in a file as a Nim string, like
  ## `lines(File) <system.html#lines.i,File>`_.
  ## `delim`, `eat`, and delimiting logic is exactly as for
  ## `memSlices <#memSlices>`_, but Nim strings are returned.
  ##
  ## Example:
  ##
  ## .. code-block:: nim
  ##   for line in lines(memfiles.open("foo")):
  ##     echo line

  var buf = TaintedString(newStringOfCap(80))
  for line in lines(mfile, buf, delim, eat):
    yield buf
id='n2417' href='#n2417'>2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.
##
## Module system
## =============
##

# That lonesome header above is to prevent :idx: entries from being mentioned
# in the global index as part of the previous header (Exception hierarchy).

type
  int* {.magic: Int.} ## default integer type; bitwidth depends on
                      ## architecture, but is always the same as a pointer
  int8* {.magic: Int8.} ## signed 8 bit integer type
  int16* {.magic: Int16.} ## signed 16 bit integer type
  int32* {.magic: Int32.} ## signed 32 bit integer type
  int64* {.magic: Int64.} ## signed 64 bit integer type
  uint* {.magic: UInt.} ## unsigned default integer type
  uint8* {.magic: UInt8.} ## unsigned 8 bit integer type
  uint16* {.magic: UInt16.} ## unsigned 16 bit integer type
  uint32* {.magic: UInt32.} ## unsigned 32 bit integer type
  uint64* {.magic: UInt64.} ## unsigned 64 bit integer type
  float* {.magic: Float.} ## default floating point type
  float32* {.magic: Float32.} ## 32 bit floating point type
  float64* {.magic: Float.} ## 64 bit floating point type

# 'float64' is now an alias to 'float'; this solves many problems

type # we need to start a new type section here, so that ``0`` can have a type
  bool* {.magic: Bool.} = enum ## built-in boolean type
    false = 0, true = 1

type
  char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
  string* {.magic: String.} ## built-in string type
  cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
  pointer* {.magic: Pointer.} ## built-in pointer type, use the ``addr``
                              ## operator to get a pointer to a variable

  typedesc* {.magic: TypeDesc.} ## meta type to denote a type description

const
  on* = true    ## alias for ``true``
  off* = false  ## alias for ``false``

{.push warning[GcMem]: off, warning[Uninit]: off.}
{.push hints: off.}

proc `or`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `or` meta class

proc `and`*(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `and` meta class

proc `not`*(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
  ## Constructs an `not` meta class

type
  Ordinal* {.magic: Ordinal.}[T] ## Generic ordinal type. Includes integer,
                                 ## bool, character, and enumeration types
                                 ## as well as their subtypes. Note `uint`
                                 ## and `uint64` are not ordinal types for
                                 ## implementation reasons
  `ptr`* {.magic: Pointer.}[T] ## built-in generic untraced pointer type
  `ref`* {.magic: Pointer.}[T] ## built-in generic traced pointer type

  `nil` {.magic: "Nil".}

  void* {.magic: "VoidType".}   ## meta type to denote the absence of any type
  auto* {.magic: Expr.} ## meta type for automatic type determination
  any* = distinct auto ## meta type for any supported type
  untyped* {.magic: Expr.} ## meta type to denote an expression that
                           ## is not resolved (for templates)
  typed* {.magic: Stmt.}   ## meta type to denote an expression that
                           ## is resolved (for templates)

  SomeSignedInt* = int|int8|int16|int32|int64
    ## type class matching all signed integer types

  SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
    ## type class matching all unsigned integer types

  SomeInteger* = SomeSignedInt|SomeUnsignedInt
    ## type class matching all integer types

  SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint8|uint16|uint32
    ## type class matching all ordinal types; however this includes enums with
    ## holes.

  SomeFloat* = float|float32|float64
    ## type class matching all floating point number types

  SomeNumber* = SomeInteger|SomeFloat
    ## type class matching all number types

proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
  ## Special compile-time procedure that checks whether `x` is
  ## defined.
  ## `x` is an external symbol introduced through the compiler's
  ## `-d:x switch <nimc.html#compile-time-symbols>`_ to enable build time
  ## conditionals:
  ##
  ## .. code-block:: Nim
  ##   when not defined(release):
  ##     # Do here programmer friendly expensive sanity checks.
  ##   # Put here the normal code

when defined(nimHasRunnableExamples):
  proc runnableExamples*(body: untyped) {.magic: "RunnableExamples".}
    ## A section you should use to mark `runnable example`:idx: code with.
    ##
    ## - In normal debug and release builds code within
    ##   a ``runnableExamples`` section is ignored.
    ## - The documentation generator is aware of these examples and considers them
    ##   part of the ``##`` doc comment. As the last step of documentation
    ##   generation the examples are put into an ``$file_example.nim`` file,
    ##   compiled and tested. The collected examples are
    ##   put into their own module to ensure the examples do not refer to
    ##   non-exported symbols.
else:
  template runnableExamples*(body: untyped) =
    discard

proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
  ## Special compile-time procedure that checks whether `x` is
  ## declared. `x` has to be an identifier or a qualified identifier.
  ## This can be used to check whether a library provides a certain
  ## feature or not:
  ##
  ## .. code-block:: Nim
  ##   when not declared(strutils.toUpper):
  ##     # provide our own toUpper proc here, because strutils is
  ##     # missing it.

when defined(useNimRtl):
  {.deadCodeElim: on.}  # dce option deprecated

proc declaredInScope*(x: untyped): bool {.
  magic: "DefinedInScope", noSideEffect, compileTime.}
  ## Special compile-time procedure that checks whether `x` is
  ## declared in the current scope. `x` has to be an identifier.

proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
  ## Builtin 'addr' operator for taking the address of a memory location.
  ## Cannot be overloaded.
  ##
  ## .. code-block:: nim
  ##  var
  ##    buf: seq[char] = @['a','b','c']
  ##    p: pointer = buf[1].addr
  ##  echo cast[ptr char](p)[]    # b
  discard

proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
  ## Builtin 'addr' operator for taking the address of a memory
  ## location.  This works even for ``let`` variables or parameters
  ## for better interop with C and so it is considered even more
  ## unsafe than the ordinary ``addr``.  When you use it to write a
  ## wrapper for a C library, you should always check that the
  ## original library does never write to data behind the pointer that
  ## is returned from this procedure.
  ## Cannot be overloaded.
  discard

when defined(nimNewTypedesc):
  type
    `static`* {.magic: "Static".}[T]
      ## meta type representing all values that can be evaluated at compile-time.
      ##
      ## The type coercion ``static(x)`` can be used to force the compile-time
      ## evaluation of the given expression ``x``.

    `type`* {.magic: "Type".}[T]
      ## meta type representing the type of all type values.
      ##
      ## The coercion ``type(x)`` can be used to obtain the type of the given
      ## expression ``x``.
else:
  proc `type`*(x: untyped): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
    ## Builtin 'type' operator for accessing the type of an expression.
    ## Cannot be overloaded.
    discard

when defined(nimHasTypeof):
  type
    TypeOfMode* = enum ## Possible modes of `typeof`.
      typeOfProc,      ## Prefer the interpretation that means `x` is a proc call.
      typeOfIter       ## Prefer the interpretation that means `x` is an iterator call.
  proc typeof*(x: untyped; mode = typeOfIter): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
    ## Builtin 'typeof' operation for accessing the type of an expression. Since version 0.20.0.
    discard

proc `not`*(x: bool): bool {.magic: "Not", noSideEffect.}
  ## Boolean not; returns true iff ``x == false``.

proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
  ## Boolean ``and``; returns true iff ``x == y == true``.
  ## Evaluation is lazy: if ``x`` is false,
  ## ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
  ## Boolean ``or``; returns true iff ``not (not x and not y)``.
  ## Evaluation is lazy: if ``x`` is true,
  ## ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
  ## Boolean `exclusive or`; returns true iff ``x != y``.

const ThisIsSystem = true

proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
  ## leaked implementation detail. Do not use.

proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
  magic: "NewFinalize", noSideEffect.}
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it in ``a``. When the garbage collector frees the object,
  ## `finalizer` is called. The `finalizer` may not keep a reference to the
  ## object pointed to by `x`. The `finalizer` cannot prevent the GC from
  ## freeing the object. Note: The `finalizer` refers to the type `T`, not to
  ## the object! This means that for each object of type `T` the finalizer
  ## will be called!

proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
  ## resets an object `obj` to its initial (binary zero) value. This needs to
  ## be called before any possible `object branch transition`:idx:.

when defined(nimNewRuntime):
  proc wasMoved*[T](obj: var T) {.magic: "WasMoved", noSideEffect.} =
    ## resets an object `obj` to its initial (binary zero) value to signify
    ## it was "moved" and to signify its destructor should do nothing and
    ## ideally be optimized away.
    discard

  proc move*[T](x: var T): T {.magic: "Move", noSideEffect.} =
    result = x
    wasMoved(x)

type
  range*{.magic: "Range".}[T] ## Generic type to construct range types.
  array*{.magic: "Array".}[I, T]  ## Generic type to construct
                                  ## fixed-length arrays.
  openArray*{.magic: "OpenArray".}[T]  ## Generic type to construct open arrays.
                                       ## Open arrays are implemented as a
                                       ## pointer to the array data and a
                                       ## length field.
  varargs*{.magic: "Varargs".}[T] ## Generic type to construct a varargs type.
  seq*{.magic: "Seq".}[T]  ## Generic type to construct sequences.
  set*{.magic: "Set".}[T]  ## Generic type to construct bit sets.

when defined(nimUncheckedArrayTyp):
  type
    UncheckedArray*{.magic: "UncheckedArray".}[T]
    ## Array with no bounds checking
else:
  type
    UncheckedArray*{.unchecked.}[T] = array[0,T]
    ## Array with no bounds checking

when defined(nimHasOpt):
  type opt*{.magic: "Opt".}[T]

when defined(nimNewRuntime):
  type sink*{.magic: "BuiltinType".}[T]
  type lent*{.magic: "BuiltinType".}[T]

proc high*[T: Ordinal](x: T): T {.magic: "High", noSideEffect.}
  ## returns the highest possible value of an ordinal value `x`. As a special
  ## semantic rule, `x` may also be a type identifier.
  ##
  ## .. code-block:: nim
  ##  high(2) #=> 9223372036854775807

proc high*[T: Ordinal|enum](x: typeDesc[T]): T {.magic: "High", noSideEffect.}
  ## returns the highest possible value of an ordinal or enum type.
  ## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
  ##
  ## .. code-block:: nim
  ##  high(int) #=> 9223372036854775807

proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
  ## returns the highest possible index of a sequence `x`.
  ##
  ## .. code-block:: nim
  ##  var s = @[1,2,3,4,5,6,7]
  ##  high(s) #=> 6
  ##  for i in low(s)..high(s):
  ##    echo s[i]

proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
  ## returns the highest possible index of an array `x`.
  ##
  ## .. code-block:: nim
  ##  var arr = [1,2,3,4,5,6,7]
  ##  high(arr) #=> 6
  ##  for i in low(arr)..high(arr):
  ##    echo arr[i]

proc high*[I, T](x: typeDesc[array[I, T]]): I {.magic: "High", noSideEffect.}
  ## returns the highest possible index of an array type.
  ##
  ## .. code-block:: nim
  ##  high(array[7, int]) #=> 6

proc high*(x: cstring): int {.magic: "High", noSideEffect.}
  ## returns the highest possible index of a compatible string `x`.
  ## This is sometimes an O(n) operation.

proc high*(x: string): int {.magic: "High", noSideEffect.}
  ## returns the highest possible index of a string `x`.
  ##
  ## .. code-block:: nim
  ##  var str = "Hello world!"
  ##  high(str) #=> 11

proc low*[T: Ordinal|enum](x: typeDesc[T]): T {.magic: "Low", noSideEffect.}
  ## returns the lowest possible value of an ordinal or enum type.
  ## ``low(int)`` is Nim's way of writing `INT_MIN`:idx: or `MIN_INT`:idx:.
  ##
  ## .. code-block:: nim
  ##  low(int) #=> -9223372036854775808

proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of a sequence `x`.
  ##
  ## .. code-block:: nim
  ##  var s = @[1,2,3,4,5,6,7]
  ##  low(s) #=> 0

proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of an array `x`.
  ##
  ## .. code-block:: nim
  ##  var arr = [1,2,3,4,5,6,7]
  ##  low(arr) #=> 0

proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
  ## returns the lowest possible value of an ordinal value `x`. As a special
  ## semantic rule, `x` may also be a type identifier.
  ##
  ## .. code-block:: nim
  ##  low(2) #=> -9223372036854775808

proc low*[I, T](x: typeDesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of an array type.
  ##
  ## .. code-block:: nim
  ##  low(array[7, int]) #=> 0

proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of a compatible string `x`.

proc low*(x: string): int {.magic: "Low", noSideEffect.}
  ## returns the lowest possible index of a string `x`.
  ##
  ## .. code-block:: nim
  ##  var str = "Hello world!"
  ##  low(str) #=> 0

proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
  ## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
  ## only changes the semantics for sequences and strings (and types which
  ## contain those). Be careful with the changed semantics though! There
  ## is a reason why the default assignment does a deep copy of sequences
  ## and strings.

when defined(nimArrIdx):
  # :array|openarray|string|seq|cstring|tuple
  proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
    noSideEffect, magic: "ArrGet".}
  proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
    x: S) {.noSideEffect, magic: "ArrPut".}
  proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}

  proc arrGet[I: Ordinal;T](a: T; i: I): T {.
    noSideEffect, magic: "ArrGet".}
  proc arrPut[I: Ordinal;T,S](a: T; i: I;
    x: S) {.noSideEffect, magic: "ArrPut".}

  when defined(nimNewRuntime):
    proc `=destroy`*[T](x: var T) {.inline, magic: "Destroy".} =
      ## generic `destructor`:idx: implementation that can be overriden.
      discard
    proc `=sink`*[T](x: var T; y: T) {.inline, magic: "Asgn".} =
      ## generic `sink`:idx: implementation that can be overriden.
      shallowCopy(x, y)

type
  HSlice*[T, U] = object ## "heterogenous" slice type
    a*: T        ## the lower bound (inclusive)
    b*: U        ## the upper bound (inclusive)
  Slice*[T] = HSlice[T, T] ## an alias for ``HSlice[T, T]``

proc `..`*[T, U](a: T, b: U): HSlice[T, U] {.noSideEffect, inline, magic: "DotDot".} =
  ## binary `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
  ## and `b` are inclusive. Slices can also be used in the set constructor
  ## and in ordinal case statements, but then they are special-cased by the
  ## compiler.
  result.a = a
  result.b = b

proc `..`*[T](b: T): HSlice[int, T] {.noSideEffect, inline, magic: "DotDot".} =
  ## unary `slice`:idx: operator that constructs an interval ``[default(int), b]``
  result.b = b

when not defined(niminheritable):
  {.pragma: inheritable.}
when not defined(nimunion):
  {.pragma: unchecked.}

# comparison operators:
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
  ## Checks whether values within the *same enum* have the same underlying value
  ##
  ## .. code-block:: nim
  ##  type
  ##    Enum1 = enum
  ##      Field1 = 3, Field2
  ##    Enum2 = enum
  ##      Place1, Place2 = 3
  ##  var
  ##    e1 = Field1
  ##    e2 = Enum1(Place2)
  ##  echo (e1 == e2) # true
  ##  echo (e1 == Place2) # raises error
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
  ## .. code-block:: nim
  ##  var # this is a wildly dangerous example
  ##    a = cast[pointer](0)
  ##    b = cast[pointer](nil)
  ##  echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
  ## Checks for equality between two `string` variables

proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
  ## Checks for equality between two `char` variables
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
  ## Checks for equality between two `bool` variables
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
  ## Checks for equality between two variables of type `set`
  ##
  ## .. code-block:: nim
  ##  var a = {1, 2, 2, 3} # duplication in sets is ignored
  ##  var b = {1, 2, 3}
  ##  echo (a == b) # true
proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
  ## Checks that two `ref` variables refer to the same item
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
  ## Checks that two `ptr` variables refer to the same item
proc `==`*[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
  ## Checks that two `proc` variables refer to the same procedure

proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.}
proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.}
proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}

proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.}
proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.}
proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}

template `!=`*(x, y: untyped): untyped =
  ## unequals operator. This is a shorthand for ``not (x == y)``.
  not (x == y)

template `>=`*(x, y: untyped): untyped =
  ## "is greater or equals" operator. This is the same as ``y <= x``.
  y <= x

template `>`*(x, y: untyped): untyped =
  ## "is greater" operator. This is the same as ``y < x``.
  y < x

const
  appType* {.magic: "AppType"}: string = ""
    ## a string that describes the application type. Possible values:
    ## "console", "gui", "lib".

include "system/inclrtl"

const NoFakeVars* = defined(nimscript) ## true if the backend doesn't support \
  ## "fake variables" like 'var EBADF {.importc.}: cint'.

when not defined(JS) and not defined(gcDestructors):
  type
    TGenericSeq {.compilerproc, pure, inheritable.} = object
      len, reserved: int
      when defined(gogc):
        elemSize: int
    PGenericSeq {.exportc.} = ptr TGenericSeq
    # len and space without counting the terminating zero:
    NimStringDesc {.compilerproc, final.} = object of TGenericSeq
      data: UncheckedArray[char]
    NimString = ptr NimStringDesc

when not defined(JS) and not defined(nimscript):
  when not defined(gcDestructors):
    template space(s: PGenericSeq): int {.dirty.} =
      s.reserved and not (seqShallowFlag or strlitFlag)
  include "system/hti"

type
  byte* = uint8 ## this is an alias for ``uint8``, that is an unsigned
                ## int 8 bits wide.

  Natural* = range[0..high(int)]
    ## is an int type ranging from zero to the maximum value
    ## of an int. This type is often useful for documentation and debugging.

  Positive* = range[1..high(int)]
    ## is an int type ranging from one to the maximum value
    ## of an int. This type is often useful for documentation and debugging.

  RootObj* {.compilerProc, inheritable.} =
    object ## the root of Nim's object hierarchy. Objects should
           ## inherit from RootObj or one of its descendants. However,
           ## objects that have no ancestor are allowed.
  RootRef* = ref RootObj ## reference to RootObj

  RootEffect* {.compilerproc.} = object of RootObj ## \
    ## base effect class; each effect should
    ## inherit from `RootEffect` unless you know what
    ## you doing.
  TimeEffect* = object of RootEffect   ## Time effect.
  IOEffect* = object of RootEffect     ## IO effect.
  ReadIOEffect* = object of IOEffect   ## Effect describing a read IO operation.
  WriteIOEffect* = object of IOEffect  ## Effect describing a write IO operation.
  ExecIOEffect* = object of IOEffect   ## Effect describing an executing IO operation.

  StackTraceEntry* = object ## In debug mode exceptions store the stack trace that led
                            ## to them. A StackTraceEntry is a single entry of the
                            ## stack trace.
    procname*: cstring  ## name of the proc that is currently executing
    line*: int          ## line number of the proc that is currently executing
    filename*: cstring  ## filename of the proc that is currently executing

  Exception* {.compilerproc, magic: "Exception".} = object of RootObj ## \
    ## Base exception class.
    ##
    ## Each exception has to inherit from `Exception`. See the full `exception
    ## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
    parent*: ref Exception ## parent exception (can be used as a stack)
    name*: cstring ## The exception's name is its Nim identifier.
                   ## This field is filled automatically in the
                   ## ``raise`` statement.
    msg* {.exportc: "message".}: string ## the exception's message. Not
                                        ## providing an exception message
                                        ## is bad style.
    when defined(js):
      trace: string
    else:
      trace: seq[StackTraceEntry]
    when defined(nimBoostrapCsources0_19_0):
      # see #10315, bootstrap with `nim cpp` from csources gave error:
      # error: no member named 'raise_id' in 'Exception'
      raise_id: uint # set when exception is raised
    else:
      raiseId: uint # set when exception is raised
    up: ref Exception # used for stacking exceptions. Not exported!

  Defect* = object of Exception ## \
    ## Abstract base class for all exceptions that Nim's runtime raises
    ## but that are strictly uncatchable as they can also be mapped to
    ## a ``quit`` / ``trap`` / ``exit`` operation.

  CatchableError* = object of Exception ## \
    ## Abstract class for all exceptions that are catchable.
  IOError* = object of CatchableError ## \
    ## Raised if an IO error occurred.
  EOFError* = object of IOError ## \
    ## Raised if an IO "end of file" error occurred.
  OSError* = object of CatchableError ## \
    ## Raised if an operating system service failed.
    errorCode*: int32 ## OS-defined error code describing this error.
  LibraryError* = object of OSError ## \
    ## Raised if a dynamic library could not be loaded.
  ResourceExhaustedError* = object of CatchableError ## \
    ## Raised if a resource request could not be fulfilled.
  ArithmeticError* = object of Defect ## \
    ## Raised if any kind of arithmetic error occurred.
  DivByZeroError* = object of ArithmeticError ## \
    ## Raised for runtime integer divide-by-zero errors.

  OverflowError* = object of ArithmeticError ## \
    ## Raised for runtime integer overflows.
    ##
    ## This happens for calculations whose results are too large to fit in the
    ## provided bits.
  AccessViolationError* = object of Defect ## \
    ## Raised for invalid memory access errors
  AssertionError* = object of Defect ## \
    ## Raised when assertion is proved wrong.
    ##
    ## Usually the result of using the `assert() template <#assert>`_.
  ValueError* = object of CatchableError ## \
    ## Raised for string and object conversion errors.
  KeyError* = object of ValueError ## \
    ## Raised if a key cannot be found in a table.
    ##
    ## Mostly used by the `tables <tables.html>`_ module, it can also be raised
    ## by other collection modules like `sets <sets.html>`_ or `strtabs
    ## <strtabs.html>`_.
  OutOfMemError* = object of Defect ## \
    ## Raised for unsuccessful attempts to allocate memory.
  IndexError* = object of Defect ## \
    ## Raised if an array index is out of bounds.

  FieldError* = object of Defect ## \
    ## Raised if a record field is not accessible because its dicriminant's
    ## value does not fit.
  RangeError* = object of Defect ## \
    ## Raised if a range check error occurred.
  StackOverflowError* = object of Defect ## \
    ## Raised if the hardware stack used for subroutine calls overflowed.
  ReraiseError* = object of Defect ## \
    ## Raised if there is no exception to reraise.
  ObjectAssignmentError* = object of Defect ## \
    ## Raised if an object gets assigned to its parent's object.
  ObjectConversionError* = object of Defect ## \
    ## Raised if an object is converted to an incompatible object type.
    ## You can use ``of`` operator to check if conversion will succeed.
  FloatingPointError* = object of Defect ## \
    ## Base class for floating point exceptions.
  FloatInvalidOpError* = object of FloatingPointError ## \
    ## Raised by invalid operations according to IEEE.
    ##
    ## Raised by ``0.0/0.0``, for example.
  FloatDivByZeroError* = object of FloatingPointError ## \
    ## Raised by division by zero.
    ##
    ## Divisor is zero and dividend is a finite nonzero number.
  FloatOverflowError* = object of FloatingPointError ## \
    ## Raised for overflows.
    ##
    ## The operation produced a result that exceeds the range of the exponent.
  FloatUnderflowError* = object of FloatingPointError ## \
    ## Raised for underflows.
    ##
    ## The operation produced a result that is too small to be represented as a
    ## normal number.
  FloatInexactError* = object of FloatingPointError ## \
    ## Raised for inexact results.
    ##
    ## The operation produced a result that cannot be represented with infinite
    ## precision -- for example: ``2.0 / 3.0, log(1.1)``
    ##
    ## **NOTE**: Nim currently does not detect these!
  DeadThreadError* = object of Defect ## \
    ## Raised if it is attempted to send a message to a dead thread.
  NilAccessError* = object of Defect ## \
    ## Raised on dereferences of ``nil`` pointers.
    ##
    ## This is only raised if the ``segfaults.nim`` module was imported!

when defined(nimNewRuntime):
  type
    MoveError* = object of Defect ## \
      ## Raised on attempts to re-sink an already consumed ``sink`` parameter.

when defined(js) or defined(nimdoc):
  type
    JsRoot* = ref object of RootObj
      ## Root type of the JavaScript object hierarchy

proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it in ``a``. This is **unsafe** as it allocates an object
  ## of the passed ``size``. This should only be used for optimization
  ## purposes when you know what you're doing!

proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
  ## returns the size of ``x`` in bytes. Since this is a low-level proc,
  ## its usage is discouraged - using ``new`` for the most cases suffices
  ## that one never needs to know ``x``'s size. As a special semantic rule,
  ## ``x`` may also be a type identifier (``sizeof(int)`` is valid).
  ##
  ## Limitations: If used for types that are imported from C or C++,
  ## sizeof should fallback to the ``sizeof`` in the C compiler. The
  ## result isn't available for the Nim compiler and therefore can't
  ## be used inside of macros.
  ##
  ## .. code-block:: nim
  ##  sizeof('A') #=> 1
  ##  sizeof(2) #=> 8

when defined(nimHasalignOf):
  proc alignof*[T](x: T): int {.magic: "AlignOf", noSideEffect.}
  proc alignof*(x: typedesc): int {.magic: "AlignOf", noSideEffect.}

  proc offsetOfDotExpr(typeAccess: typed): int {.magic: "OffsetOf", noSideEffect, compileTime.}

  template offsetOf*[T](t: typedesc[T]; member: untyped): int =
    var tmp: T
    offsetOfDotExpr(tmp.member)

  template offsetOf*[T](value: T; member: untyped): int =
    offsetOfDotExpr(value.member)

  #proc offsetOf*(memberaccess: typed): int {.magic: "OffsetOf", noSideEffect.}

when defined(nimtypedescfixed):
  proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}

proc `<`*[T](x: Ordinal[T]): T {.magic: "UnaryLt", noSideEffect, deprecated.}
  ## unary ``<`` that can be used for nice looking excluding ranges:
  ##
  ## .. code-block:: nim
  ##   for i in 0 .. <10: echo i #=> 0 1 2 3 4 5 6 7 8 9
  ##
  ## Semantically this is the same as ``pred``.
  ##
  ## **Deprecated since version 0.18.0**. For the common excluding range
  ## write ``0 ..< 10`` instead of ``0 .. < 10`` (look at the spacing).
  ## For ``<x`` write ``pred(x)``.

proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
  ## returns the ``y``-th successor of the value ``x``. ``T`` has to be
  ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
  ## or a compile time error occurs.

proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
  ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
  ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
  ## or a compile time error occurs.

proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
  ## increments the ordinal ``x`` by ``y``. If such a value does not
  ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
  ## short notation for: ``x = succ(x, y)``.
  ##
  ## .. code-block:: nim
  ##  var i = 2
  ##  inc(i) #=> 3
  ##  inc(i, 3) #=> 6

proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
  ## decrements the ordinal ``x`` by ``y``. If such a value does not
  ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
  ## short notation for: ``x = pred(x, y)``.
  ##
  ## .. code-block:: nim
  ##  var i = 2
  ##  dec(i) #=> 1
  ##  dec(i, 3) #=> -2

proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
  ## creates a new sequence of type ``seq[T]`` with length ``len``.
  ## This is equivalent to ``s = @[]; setlen(s, len)``, but more
  ## efficient since no reallocation is needed.
  ##
  ## Note that the sequence will be filled with zeroed entries, which can be a
  ## problem for sequences containing strings since their value will be
  ## ``nil``. After the creation of the sequence you should assign entries to
  ## the sequence instead of adding them. Example:
  ##
  ## .. code-block:: nim
  ##   var inputStrings : seq[string]
  ##   newSeq(inputStrings, 3)
  ##   inputStrings[0] = "The fourth"
  ##   inputStrings[1] = "assignment"
  ##   inputStrings[2] = "would crash"
  ##   #inputStrings[3] = "out of bounds"

proc newSeq*[T](len = 0.Natural): seq[T] =
  ## creates a new sequence of type ``seq[T]`` with length ``len``.
  ##
  ## Note that the sequence will be filled with zeroed entries, which can be a
  ## problem for sequences containing strings since their value will be
  ## ``nil``. After the creation of the sequence you should assign entries to
  ## the sequence instead of adding them. Example:
  ##
  ## .. code-block:: nim
  ##   var inputStrings = newSeq[string](3)
  ##   inputStrings[0] = "The fourth"
  ##   inputStrings[1] = "assignment"
  ##   inputStrings[2] = "would crash"
  ##   #inputStrings[3] = "out of bounds"
  newSeq(result, len)

proc newSeqOfCap*[T](cap: Natural): seq[T] {.
  magic: "NewSeqOfCap", noSideEffect.} =
  ## creates a new sequence of type ``seq[T]`` with length 0 and capacity
  ## ``cap``.
  discard

when not defined(JS) and not defined(gcDestructors):
  # XXX enable this for --gc:destructors
  proc newSeqUninitialized*[T: SomeNumber](len: Natural): seq[T] =
    ## creates a new sequence of type ``seq[T]`` with length ``len``.
    ##
    ## Only available for numbers types. Note that the sequence will be
    ## uninitialized. After the creation of the sequence you should assign
    ## entries to the sequence instead of adding them.

    result = newSeqOfCap[T](len)
    var s = cast[PGenericSeq](result)
    s.len = len

proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
  magic: "LengthOpenArray", noSideEffect.}
  ## returns the length of an openarray.
  ##
  ## .. code-block:: nim
  ##  var s = [1,1,1,1,1]
  ##  len(s) #=> 5

proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
  ## returns the length of a string.
  ##
  ## .. code-block:: nim
  ##  var str = "Hello world!"
  ##  len(str) #=> 12

proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
  ## returns the length of a compatible string. This is sometimes
  ## an O(n) operation.
  ##
  ## .. code-block:: nim
  ##  var str: cstring = "Hello world!"
  ##  len(str) #=> 12

proc len*(x: (type array)|array): int {.magic: "LengthArray", noSideEffect.}
  ## returns the length of an array or an array type.
  ## This is roughly the same as ``high(T)-low(T)+1``.
  ##
  ## .. code-block:: nim
  ##  var arr = [1,1,1,1,1]
  ##  len(arr) #=> 5
  ##  len(array[3..8, int]) #=> 6

proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
  ## returns the length of a sequence.
  ##
  ## .. code-block:: nim
  ##  var s = @[1,1,1,1,1]
  ##  len(s) #=> 5

# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
  ## includes element ``y`` to the set ``x``. This is the same as
  ## ``x = x + {y}``, but it might be more efficient.
  ##
  ## .. code-block:: nim
  ##  var a = initSet[int](4)
  ##  a.incl(2) #=> {2}
  ##  a.incl(3) #=> {2, 3}

template incl*[T](s: var set[T], flags: set[T]) =
  ## includes the set of flags to the set ``x``.
  s = s + flags

proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
  ## excludes element ``y`` to the set ``x``. This is the same as
  ## ``x = x - {y}``, but it might be more efficient.
  ##
  ## .. code-block:: nim
  ##  var b = {2,3,5,6,12,545}
  ##  b.excl(5)  #=> {2,3,6,12,545}

template excl*[T](s: var set[T], flags: set[T]) =
  ## excludes the set of flags to ``x``.
  s = s - flags

proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
  ## returns the cardinality of the set ``x``, i.e. the number of elements
  ## in the set.
  ##
  ## .. code-block:: nim
  ##  var i = {1,2,3,4}
  ##  card(i) #=> 4

proc ord*[T: Ordinal|enum](x: T): int {.magic: "Ord", noSideEffect.}
  ## returns the internal int value of an ordinal value ``x``.
  ##
  ## .. code-block:: nim
  ##  ord('A') #=> 65

proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
  ## converts an int in the range 0..255 to a character.
  ##
  ## .. code-block:: nim
  ##  chr(65) #=> A

# --------------------------------------------------------------------------
# built-in operators

when not defined(JS):
  proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
    ## zero extends a smaller integer type to ``int``. This treats `x` as
    ## unsigned.
  proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
    ## zero extends a smaller integer type to ``int``. This treats `x` as
    ## unsigned.

  proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
    ## zero extends a smaller integer type to ``int64``. This treats `x` as
    ## unsigned.
  proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
    ## zero extends a smaller integer type to ``int64``. This treats `x` as
    ## unsigned.

  proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
    ## zero extends a smaller integer type to ``int64``. This treats `x` as
    ## unsigned.
  proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect.}
    ## zero extends a smaller integer type to ``int64``. This treats `x` as
    ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
    ## (This is the case on 64 bit processors.)

  proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
    ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
    ## from `x`.
  proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
    ## treats `x` as unsigned and converts it to an ``int16`` by taking the last
    ## 16 bits from `x`.
  proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
    ## treats `x` as unsigned and converts it to an ``int32`` by taking the
    ## last 32 bits from `x`.

# integer calculations:
proc `+`*(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+`*(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
  ## Unary `+` operator for an integer. Has no effect.

proc `-`*(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
  ## Unary `-` operator for an integer. Negates `x`.

proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
  ## computes the `bitwise complement` of the integer `x`.

when defined(nimnomagic64):
  proc `not`*(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
else:
  proc `not`*(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}

proc `+`*(x, y: int): int {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+`*(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
  ## Binary `+` operator for an integer.

when defined(nimnomagic64):
  proc `+`*(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
else:
  proc `+`*(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}

proc `-`*(x, y: int): int {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-`*(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
  ## Binary `-` operator for an integer.

when defined(nimnomagic64):
  proc `-`*(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
else:
  proc `-`*(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}

proc `*`*(x, y: int): int {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
  ## Binary `*` operator for an integer.

when defined(nimnomagic64):
  proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
else:
  proc `*`*(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}

proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
  ## computes the integer division. This is roughly the same as
  ## ``trunc(x/y)``.
  ##
  ## .. code-block:: Nim
  ##   ( 1 div  2) ==  0
  ##   ( 2 div  2) ==  1
  ##   ( 3 div  2) ==  1
  ##   ( 7 div  3) ==  2
  ##   (-7 div  3) == -2
  ##   ( 7 div -3) == -2
  ##   (-7 div -3) ==  2

when defined(nimnomagic64):
  proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
else:
  proc `div`*(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}

proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
  ## computes the integer modulo operation (remainder).
  ## This is the same as
  ## ``x - (x div y) * y``.
  ##
  ## .. code-block:: Nim
  ##   ( 7 mod  5) ==  2
  ##   (-7 mod  5) == -2
  ##   ( 7 mod -5) ==  2
  ##   (-7 mod -5) == -2

when defined(nimnomagic64):
  proc `mod`*(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
else:
  proc `mod`*(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}

when defined(nimNewShiftOps):
  proc `shr`*(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect.}
    ## computes the `shift right` operation of `x` and `y`, filling
    ## vacant bit positions with zeros.
    ##
    ## .. code-block:: Nim
    ##   0b0001_0000'i8 shr 2 == 0b0000_0100'i8
    ##   0b1000_0000'i8 shr 8 == 0b0000_0000'i8
    ##   0b0000_0001'i8 shr 1 == 0b0000_0000'i8


  proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
    ## computes the `shift left` operation of `x` and `y`.
    ##
    ## .. code-block:: Nim
    ##  1'i32 shl 4 == 0x0000_0010
    ##  1'i64 shl 4 == 0x0000_0000_0000_0010
else:
  proc `shr`*(x, y: int): int {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
  proc `shr`*(x, y: int64): int64 {.magic: "ShrI", noSideEffect.}

  proc `shl`*(x, y: int): int {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
  proc `shl`*(x, y: int64): int64 {.magic: "ShlI", noSideEffect.}

when defined(nimAshr):
  proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
  proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
  proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
  proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
  proc ashr*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
    ## Shifts right by pushing copies of the leftmost bit in from the left,
    ## and let the rightmost bits fall off.
    ##
    ## .. code-block:: Nim
    ##   0b0001_0000'i8 shr 2 == 0b0000_0100'i8
    ##   0b1000_0000'i8 shr 8 == 0b1111_1111'i8
    ##   0b1000_0000'i8 shr 1 == 0b1100_0000'i8
else:
  # used for bootstrapping the compiler
  proc ashr*[T](x: T, y: SomeInteger): T = discard

proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
  ## computes the `bitwise and` of numbers `x` and `y`.
  ##
  ## .. code-block:: Nim
  ##  (0xffff'i16 and 0x0010'i16) == 0x0010

proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
  ## computes the `bitwise or` of numbers `x` and `y`.
  ##
  ## .. code-block:: Nim
  ##  (0x0005'i16 or 0x0010'i16) == 0x0015

proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
  ## computes the `bitwise xor` of numbers `x` and `y`.
  ##
  ## .. code-block:: Nim
  ##  (0x1011'i16 xor 0x0101'i16) == 0x1110

proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
  ## Compares two integers for equality.

proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
  ## Returns true iff `x` is less than or equal to `y`.

proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
  ## Returns true iff `x` is less than `y`.

type
  IntMax32 = int|int8|int16|int32

proc `+%`*(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
proc `+%`*(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
  ## treats `x` and `y` as unsigned and adds them. The result is truncated to
  ## fit into the result. This implements modulo arithmetic. No overflow
  ## errors are possible.

proc `-%`*(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
proc `-%`*(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
  ## treats `x` and `y` as unsigned and subtracts them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `*%`*(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
proc `*%`*(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
  ## treats `x` and `y` as unsigned and multiplies them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `/%`*(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
proc `/%`*(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
  ## treats `x` and `y` as unsigned and divides them. The result is
  ## truncated to fit into the result. This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `%%`*(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
proc `%%`*(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
  ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
  ## The result is truncated to fit into the result.
  ## This implements modulo arithmetic.
  ## No overflow errors are possible.

proc `<=%`*(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
proc `<=%`*(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) <= unsigned(y)``.

proc `<%`*(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
proc `<%`*(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) < unsigned(y)``.

# unsigned integer operations:
proc `not`*[T: SomeUnsignedInt](x: T): T {.magic: "BitnotI", noSideEffect.}
  ## computes the `bitwise complement` of the integer `x`.

when defined(nimNewShiftOps):
  proc `shr`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShrI", noSideEffect.}
    ## computes the `shift right` operation of `x` and `y`.

  proc `shl`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShlI", noSideEffect.}
    ## computes the `shift left` operation of `x` and `y`.
else:
  proc `shr`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShrI", noSideEffect.}
    ## computes the `shift right` operation of `x` and `y`.

  proc `shl`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShlI", noSideEffect.}
    ## computes the `shift left` operation of `x` and `y`.

proc `and`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitandI", noSideEffect.}
  ## computes the `bitwise and` of numbers `x` and `y`.

proc `or`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitorI", noSideEffect.}
  ## computes the `bitwise or` of numbers `x` and `y`.

proc `xor`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitxorI", noSideEffect.}
  ## computes the `bitwise xor` of numbers `x` and `y`.

proc `==`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "EqI", noSideEffect.}
  ## Compares two unsigned integers for equality.

proc `+`*[T: SomeUnsignedInt](x, y: T): T {.magic: "AddU", noSideEffect.}
  ## Binary `+` operator for unsigned integers.

proc `-`*[T: SomeUnsignedInt](x, y: T): T {.magic: "SubU", noSideEffect.}
  ## Binary `-` operator for unsigned integers.

proc `*`*[T: SomeUnsignedInt](x, y: T): T {.magic: "MulU", noSideEffect.}
  ## Binary `*` operator for unsigned integers.

proc `div`*[T: SomeUnsignedInt](x, y: T): T {.magic: "DivU", noSideEffect.}
  ## computes the integer division. This is roughly the same as
  ## ``trunc(x/y)``.
  ##
  ## .. code-block:: Nim
  ##  (7 div 5) == 1

proc `mod`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ModU", noSideEffect.}
  ## computes the integer modulo operation (remainder).
  ## This is the same as
  ## ``x - (x div y) * y``.
  ##
  ## .. code-block:: Nim
  ##   (7 mod 5) == 2

proc `<=`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LeU", noSideEffect.}
  ## Returns true iff ``x <= y``.

proc `<`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LtU", noSideEffect.}
  ## Returns true iff ``unsigned(x) < unsigned(y)``.

# floating point operations:
proc `+`*(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}

proc `+`*(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-`*(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+`*(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-`*(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*`*(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/`*(x, y: float): float {.magic: "DivF64", noSideEffect.}
  ## computes the floating point division

proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
proc `<`  *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}

proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}

# set operators
proc `*`*[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
  ## This operator computes the intersection of two sets.
proc `+`*[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
  ## This operator computes the union of two sets.
proc `-`*[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
  ## This operator computes the difference of two sets.

proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
  ## One should overload this proc if one wants to overload the ``in`` operator.
  ## The parameters are in reverse order! ``a in b`` is a template for
  ## ``contains(b, a)``.
  ## This is because the unification algorithm that Nim uses for overload
  ## resolution works from left to right.
  ## But for the ``in`` operator that would be the wrong direction for this
  ## piece of code:
  ##
  ## .. code-block:: Nim
  ##   var s: set[range['a'..'z']] = {'a'..'c'}
  ##   writeLine(stdout, 'b' in s)
  ##
  ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
  ## have been bound to ``char``. But ``s`` is not compatible to type
  ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
  ## is achieved by reversing the parameters for ``contains``; ``in`` then
  ## passes its arguments in reverse order.

proc contains*[U, V, W](s: HSlice[U, V], value: W): bool {.noSideEffect, inline.} =
  ## Checks if `value` is within the range of `s`; returns true iff
  ## `value >= s.a and value <= s.b`
  ##
  ## .. code-block:: Nim
  ##   assert((1..3).contains(1) == true)
  ##   assert((1..3).contains(2) == true)
  ##   assert((1..3).contains(4) == false)
  result = s.a <= value and value <= s.b

template `in`*(x, y: untyped): untyped {.dirty.} = contains(y, x)
  ## Sugar for contains
  ##
  ## .. code-block:: Nim
  ##   assert(1 in (1..3) == true)
  ##   assert(5 in (1..3) == false)
template `notin`*(x, y: untyped): untyped {.dirty.} = not contains(y, x)
  ## Sugar for not containing
  ##
  ## .. code-block:: Nim
  ##   assert(1 notin (1..3) == false)
  ##   assert(5 notin (1..3) == true)

proc `is`*[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
  ## Checks if T is of the same type as S
  ##
  ## .. code-block:: Nim
  ##   proc test[T](a: T): int =
  ##     when (T is int):
  ##       return a
  ##     else:
  ##       return 0
  ##
  ##   assert(test[int](3) == 3)
  ##   assert(test[string]("xyz") == 0)
template `isnot`*(x, y: untyped): untyped = not (x is y)
  ## Negated version of `is`. Equivalent to ``not(x is y)``.

proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it in ``a``.

proc new*(t: typedesc): auto =
  ## creates a new object of type ``T`` and returns a safe (traced)
  ## reference to it as result value.
  ##
  ## When ``T`` is a ref type then the resulting type will be ``T``,
  ## otherwise it will be ``ref T``.
  when (t is ref):
    var r: t
  else:
    var r: ref t
  new(r)
  return r

proc `of`*[T, S](x: typeDesc[T], y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of`*[T, S](x: T, y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of`*[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
  ## Checks if `x` has a type of `y`
  ##
  ## .. code-block:: Nim
  ##   assert(FloatingPointError of Exception)
  ##   assert(DivByZeroError of Exception)

proc cmp*[T](x, y: T): int {.procvar.} =
  ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
  ## and 0 iff x == y. This is useful for writing generic algorithms without
  ## performance loss. This generic implementation uses the `==` and `<`
  ## operators.
  ##
  ## .. code-block:: Nim
  ##  import algorithm
  ##  echo sorted(@[4,2,6,5,8,7], cmp[int])
  if x == y: return 0
  if x < y: return -1
  return 1

proc cmp*(x, y: string): int {.noSideEffect, procvar.}
  ## Compare proc for strings. More efficient than the generic version.
  ## **Note**: The precise result values depend on the used C runtime library and
  ## can differ between operating systems!

proc `@`* [IDX, T](a: array[IDX, T]): seq[T] {.
  magic: "ArrToSeq", nosideeffect.}
  ## turns an array into a sequence. This most often useful for constructing
  ## sequences with the array constructor: ``@[1, 2, 3]`` has the type
  ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.

proc setLen*[T](s: var seq[T], newlen: Natural) {.
  magic: "SetLengthSeq", noSideEffect.}
  ## sets the length of `s` to `newlen`.
  ## ``T`` may be any sequence type.
  ## If the current length is greater than the new length,
  ## ``s`` will be truncated.

proc setLen*(s: var string, newlen: Natural) {.
  magic: "SetLengthStr", noSideEffect.}
  ## sets the length of `s` to `newlen`.
  ## If the current length is greater than the new length,
  ## ``s`` will be truncated.
  ##
  ## .. code-block:: Nim
  ##  var myS = "Nim is great!!"
  ##  myS.setLen(3)
  ##  echo myS, " is fantastic!!"

proc newString*(len: Natural): string {.
  magic: "NewString", importc: "mnewString", noSideEffect.}
  ## returns a new string of length ``len`` but with uninitialized
  ## content. One needs to fill the string character after character
  ## with the index operator ``s[i]``. This procedure exists only for
  ## optimization purposes; the same effect can be achieved with the
  ## ``&`` operator or with ``add``.

proc newStringOfCap*(cap: Natural): string {.
  magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
  ## returns a new string of length ``0`` but with capacity `cap`.This
  ## procedure exists only for optimization purposes; the same effect can
  ## be achieved with the ``&`` operator or with ``add``.

proc `&`*(x: string, y: char): string {.
  magic: "ConStrStr", noSideEffect, merge.}
  ## Concatenates `x` with `y`
  ##
  ## .. code-block:: Nim
  ##   assert("ab" & 'c' == "abc")
proc `&`*(x, y: char): string {.
  magic: "ConStrStr", noSideEffect, merge.}
  ## Concatenates `x` and `y` into a string
  ##
  ## .. code-block:: Nim
  ##   assert('a' & 'b' == "ab")
proc `&`*(x, y: string): string {.
  magic: "ConStrStr", noSideEffect, merge.}
  ## Concatenates `x` and `y`
  ##
  ## .. code-block:: Nim
  ##   assert("ab" & "cd" == "abcd")
proc `&`*(x: char, y: string): string {.
  magic: "ConStrStr", noSideEffect, merge.}
  ## Concatenates `x` with `y`
  ##
  ## .. code-block:: Nim
  ##   assert('a' & "bc" == "abc")

# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.

proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
  ## Appends `y` to `x` in place
  ##
  ## .. code-block:: Nim
  ##   var tmp = ""
  ##   tmp.add('a')
  ##   tmp.add('b')
  ##   assert(tmp == "ab")
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
  ## Concatenates `x` and `y` in place
  ##
  ## .. code-block:: Nim
  ##   var tmp = ""
  ##   tmp.add("ab")
  ##   tmp.add("cd")
  ##   assert(tmp == "abcd")


type
  Endianness* = enum ## is a type describing the endianness of a processor.
    littleEndian, bigEndian

const
  isMainModule* {.magic: "IsMainModule".}: bool = false
    ## is true only when accessed in the main module. This works thanks to
    ## compiler magic. It is useful to embed testing code in a module.

  CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
    ## is the date (in UTC) of compilation as a string of the form
    ## ``YYYY-MM-DD``. This works thanks to compiler magic.

  CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
    ## is the time (in UTC) of compilation as a string of the form
    ## ``HH:MM:SS``. This works thanks to compiler magic.

  cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
    ## is the endianness of the target CPU. This is a valuable piece of
    ## information for low-level code only. This works thanks to compiler
    ## magic.

  hostOS* {.magic: "HostOS".}: string = ""
    ## a string that describes the host operating system. Possible values:
    ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
    ## "aix", "haiku", "standalone".

  hostCPU* {.magic: "HostCPU".}: string = ""
    ## a string that describes the host CPU. Possible values:
    ## "i386", "alpha", "powerpc", "powerpc64", "powerpc64el", "sparc",
    ## "amd64", "mips", "mipsel", "arm", "arm64", "mips64", "mips64el",
    ## "riscv64".

  seqShallowFlag = low(int)
  strlitFlag = 1 shl (sizeof(int)*8 - 2) # later versions of the codegen \
  # emit this flag
  # for string literals, it allows for some optimizations.

{.push profiler: off.}
let nimvm* {.magic: "Nimvm", compileTime.}: bool = false
  ## may be used only in "when" expression.
  ## It is true in Nim VM context and false otherwise
{.pop.}

proc compileOption*(option: string): bool {.
  magic: "CompileOption", noSideEffect.}
  ## can be used to determine an on|off compile-time option. Example:
  ##
  ## .. code-block:: nim
  ##   when compileOption("floatchecks"):
  ##     echo "compiled with floating point NaN and Inf checks"

proc compileOption*(option, arg: string): bool {.
  magic: "CompileOptionArg", noSideEffect.}
  ## can be used to determine an enum compile-time option. Example:
  ##
  ## .. code-block:: nim
  ##   when compileOption("opt", "size") and compileOption("gc", "boehm"):
  ##     echo "compiled with optimization for size and uses Boehm's GC"

const
  hasThreadSupport = compileOption("threads") and not defined(nimscript)
  hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
  taintMode = compileOption("taintmode")
  nimEnableCovariance* = defined(nimEnableCovariance) # or true

when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
  # tcc doesn't support TLS
  {.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}

when defined(boehmgc):
  when defined(windows):
    const boehmLib = "boehmgc.dll"
  elif defined(macosx):
    const boehmLib = "libgc.dylib"
  else:
    const boehmLib = "libgc.so.1"
  {.pragma: boehmGC, noconv, dynlib: boehmLib.}

when taintMode:
  type TaintedString* = distinct string ## a distinct string type that
                                        ## is `tainted`:idx:, see `taint mode
                                        ## <manual.html#taint-mode>`_ for
                                        ## details. It is an alias for
                                        ## ``string`` if the taint mode is not
                                        ## turned on.

  proc len*(s: TaintedString): int {.borrow.}
else:
  type TaintedString* = string          ## a distinct string type that
                                        ## is `tainted`:idx:, see `taint mode
                                        ## <manual.html#taint-mode>`_ for
                                        ## details. It is an alias for
                                        ## ``string`` if the taint mode is not
                                        ## turned on.

when defined(profiler) and not defined(nimscript):
  proc nimProfile() {.compilerProc, noinline.}
when hasThreadSupport:
  {.pragma: rtlThreadVar, threadvar.}
else:
  {.pragma: rtlThreadVar.}

const
  QuitSuccess* = 0
    ## is the value that should be passed to `quit <#quit>`_ to indicate
    ## success.

  QuitFailure* = 1
    ## is the value that should be passed to `quit <#quit>`_ to indicate
    ## failure.

when defined(nodejs) and not defined(nimscript):
  var programResult* {.importc: "process.exitCode".}: int
  programResult = 0
else:
  var programResult* {.exportc: "nim_program_result".}: int
    ## modify this variable to specify the exit code of the program
    ## under normal circumstances. When the program is terminated
    ## prematurely using ``quit``, this value is ignored.

when defined(nimdoc):
  proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
    ## Stops the program immediately with an exit code.
    ##
    ## Before stopping the program the "quit procedures" are called in the
    ## opposite order they were added with `addQuitProc <#addQuitProc>`_.
    ## ``quit`` never returns and ignores any exception that may have been raised
    ## by the quit procedures.  It does *not* call the garbage collector to free
    ## all the memory, unless a quit procedure calls `GC_fullCollect
    ## <#GC_fullCollect>`_.
    ##
    ## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
    ## program finishes without incident for platforms where this is the
    ## expected behavior. A raised unhandled exception is
    ## equivalent to calling ``quit(QuitFailure)``.
    ##
    ## Note that this is a *runtime* call and using ``quit`` inside a macro won't
    ## have any compile time effect. If you need to stop the compiler inside a
    ## macro, use the `error <manual.html#pragmas-error-pragma>`_ or `fatal
    ## <manual.html#pragmas-fatal-pragma>`_ pragmas.

elif defined(genode):
  include genode/env

  var systemEnv {.exportc: runtimeEnvSym.}: GenodeEnvPtr

  type GenodeEnv* = GenodeEnvPtr
    ## Opaque type representing Genode environment.

  proc quit*(env: GenodeEnv; errorcode: int) {.magic: "Exit", noreturn,
    importcpp: "#->parent().exit(@); Genode::sleep_forever()", header: "<base/sleep.h>".}

  proc quit*(errorcode: int = QuitSuccess) =
    systemEnv.quit(errorCode)



elif defined(nodejs) and not defined(nimscript):
  proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit",
    importc: "process.exit", noreturn.}

else:
  proc quit*(errorcode: int = QuitSuccess) {.
    magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}

template sysAssert(cond: bool, msg: string) =
  when defined(useSysAssert):
    if not cond:
      echo "[SYSASSERT] ", msg
      quit 1

const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)

when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
  include "system/cgprocs"
when not defined(JS) and not defined(nimscript) and hasAlloc and not defined(gcDestructors):
  proc addChar(s: NimString, c: char): NimString {.compilerProc, benign.}

when defined(gcDestructors):
  proc add*[T](x: var seq[T], y: sink T) {.magic: "AppendSeqElem", noSideEffect.} =
    let xl = x.len
    setLen(x, xl + 1)
    x[xl] = y
else:
  proc add*[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
proc add*[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
  ## Generic proc for adding a data item `y` to a container `x`.
  ## For containers that have an order, `add` means *append*. New generic
  ## containers should also call their adding proc `add` for consistency.
  ## Generic code becomes much easier to write if the Nim naming scheme is
  ## respected.
  ##
  ## .. code-block:: nim
  ##   var s: seq[string] = @["test2","test2"]
  ##   s.add("test") #=> @[test2, test2, test]
  let xl = x.len
  setLen(x, xl + y.len)
  for i in 0..high(y): x[xl+i] = y[i]

proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
  ## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
  ## This is an O(1) operation.
  ##
  ## .. code-block:: nim
  ##  var i = @[1, 2, 3, 4, 5]
  ##  i.del(2) #=> @[1, 2, 5, 4]
  let xl = x.len - 1
  shallowCopy(x[i], x[xl])
  setLen(x, xl)

proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
  ## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
  ## This is an O(n) operation.
  ##
  ## .. code-block:: nim
  ##  var i = @[1, 2, 3, 4, 5]
  ##  i.delete(2) #=> @[1, 2, 4, 5]
  template defaultImpl =
    let xl = x.len
    for j in i.int..xl-2: shallowCopy(x[j], x[j+1])
    setLen(x, xl-1)

  when nimvm:
    defaultImpl()
  else:
    when defined(js):
      {.emit: "`x`.splice(`i`, 1);".}
    else:
      defaultImpl()

proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
  ## inserts `item` into `x` at position `i`.
  ##
  ## .. code-block:: nim
  ##  var i = @[1, 2, 3, 4, 5]
  ##  i.insert(2, 4) #=> @[1, 2, 3, 4, 2, 5]
  template defaultImpl =
    let xl = x.len
    setLen(x, xl+1)
    var j = xl-1
    while j >= i:
      shallowCopy(x[j+1], x[j])
      dec(j)
  when nimvm:
    defaultImpl()
  else:
    when defined(js):
      var it : T
      {.emit: "`x` = `x` || []; `x`.splice(`i`, 0, `it`);".}
    else:
      defaultImpl()
  x[i] = item

proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
  ## takes any Nim variable and returns its string representation. It
  ## works even for complex data graphs with cycles. This is a great
  ## debugging tool.
  ##
  ## .. code-block:: nim
  ##  var s: seq[string] = @["test2", "test2"]
  ##  var i = @[1, 2, 3, 4, 5]
  ##  repr(s) #=> 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
  ##  repr(i) #=> 0x1055ed050[1, 2, 3, 4, 5]

type
  ByteAddress* = int
    ## is the signed integer type that should be used for converting
    ## pointers to integer addresses for readability.

  BiggestInt* = int64
    ## is an alias for the biggest signed integer type the Nim compiler
    ## supports. Currently this is ``int64``, but it is platform-dependant
    ## in general.

  BiggestFloat* = float64
    ## is an alias for the biggest floating point type the Nim
    ## compiler supports. Currently this is ``float64``, but it is
    ## platform-dependant in general.

when defined(JS):
  type BiggestUInt* = uint32
    ## is an alias for the biggest unsigned integer type the Nim compiler
    ## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
    ## targets.
else:
  type BiggestUInt* = uint64
    ## is an alias for the biggest unsigned integer type the Nim compiler
    ## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
    ## targets.

when defined(windows):
  type
    clong* {.importc: "long", nodecl.} = int32
      ## This is the same as the type ``long`` in *C*.
    culong* {.importc: "unsigned long", nodecl.} = uint32
      ## This is the same as the type ``unsigned long`` in *C*.
else:
  type
    clong* {.importc: "long", nodecl.} = int
      ## This is the same as the type ``long`` in *C*.
    culong* {.importc: "unsigned long", nodecl.} = uint
      ## This is the same as the type ``unsigned long`` in *C*.

type # these work for most platforms:
  cchar* {.importc: "char", nodecl.} = char
    ## This is the same as the type ``char`` in *C*.
  cschar* {.importc: "signed char", nodecl.} = int8
    ## This is the same as the type ``signed char`` in *C*.
  cshort* {.importc: "short", nodecl.} = int16
    ## This is the same as the type ``short`` in *C*.
  cint* {.importc: "int", nodecl.} = int32
    ## This is the same as the type ``int`` in *C*.
  csize* {.importc: "size_t", nodecl.} = int
    ## This is the same as the type ``size_t`` in *C*.
  clonglong* {.importc: "long long", nodecl.} = int64
    ## This is the same as the type ``long long`` in *C*.
  cfloat* {.importc: "float", nodecl.} = float32
    ## This is the same as the type ``float`` in *C*.
  cdouble* {.importc: "double", nodecl.} = float64
    ## This is the same as the type ``double`` in *C*.
  clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
    ## This is the same as the type ``long double`` in *C*.
    ## This C type is not supported by Nim's code generator.

  cuchar* {.importc: "unsigned char", nodecl.} = char
    ## This is the same as the type ``unsigned char`` in *C*.
  cushort* {.importc: "unsigned short", nodecl.} = uint16
    ## This is the same as the type ``unsigned short`` in *C*.
  cuint* {.importc: "unsigned int", nodecl.} = uint32
    ## This is the same as the type ``unsigned int`` in *C*.
  culonglong* {.importc: "unsigned long long", nodecl.} = uint64
    ## This is the same as the type ``unsigned long long`` in *C*.

  cstringArray* {.importc: "char**", nodecl.} = ptr UncheckedArray[cstring]
    ## This is binary compatible to the type ``char**`` in *C*. The array's
    ## high value is large enough to disable bounds checking in practice.
    ## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.

  PFloat32* = ptr float32 ## an alias for ``ptr float32``
  PFloat64* = ptr float64 ## an alias for ``ptr float64``
  PInt64* = ptr int64 ## an alias for ``ptr int64``
  PInt32* = ptr int32 ## an alias for ``ptr int32``

proc toFloat*(i: int): float {.
  magic: "ToFloat", noSideEffect, importc: "toFloat".}
  ## converts an integer `i` into a ``float``. If the conversion
  ## fails, `ValueError` is raised. However, on most platforms the
  ## conversion cannot fail.

proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.
  magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
  ## converts a biggestint `i` into a ``biggestfloat``. If the conversion
  ## fails, `ValueError` is raised. However, on most platforms the
  ## conversion cannot fail.

proc toInt*(f: float): int {.
  magic: "ToInt", noSideEffect, importc: "toInt".} =
  ## converts a floating point number `f` into an ``int``. Conversion
  ## rounds `f` half away from 0, see https://en.wikipedia.org/wiki/Rounding#Round_half_away_from_zero
  ## Note that some floating point numbers (e.g. infinity or even 1e19)
  ## cannot be accurately converted.
  runnableExamples:
    doAssert toInt(0.49) == 0
    doAssert toInt(0.5) == 1
    doAssert toInt(-0.5) == -1 ## rounding is symmetrical

proc toBiggestInt*(f: BiggestFloat): BiggestInt {.
  magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".} =
  ## Same as `toInt` but for BiggestFloat to ``BiggestInt``.
  runnableExamples:
    doAssert toBiggestInt(0.49) == 0

proc addQuitProc*(quitProc: proc() {.noconv.}) {.
  importc: "atexit", header: "<stdlib.h>".}
  ## Adds/registers a quit procedure.
  ##
  ## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
  ## procedures can be registered. They are executed on a last-in, first-out
  ## basis (that is, the last function registered is the first to be executed).
  ## ``addQuitProc`` raises an EOutOfIndex exception if ``quitProc`` cannot be
  ## registered.

# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.

when not defined(nimscript) and not defined(JS):
  proc zeroMem*(p: pointer, size: Natural) {.inline, benign.}
    ## overwrites the contents of the memory at ``p`` with the value 0.
    ## Exactly ``size`` bytes will be overwritten. Like any procedure
    ## dealing with raw memory this is *unsafe*.

  proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
    tags: [], locks: 0.}
    ## copies the contents from the memory at ``source`` to the memory
    ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
    ## regions may not overlap. Like any procedure dealing with raw
    ## memory this is *unsafe*.

  proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
    tags: [], locks: 0.}
    ## copies the contents from the memory at ``source`` to the memory
    ## at ``dest``. Exactly ``size`` bytes will be copied. The memory
    ## regions may overlap, ``moveMem`` handles this case appropriately
    ## and is thus somewhat more safe than ``copyMem``. Like any procedure
    ## dealing with raw memory this is still *unsafe*, though.

  proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect, tags: [], locks: 0.}
    ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
    ## be compared. If the blocks are equal, true is returned, false
    ## otherwise. Like any procedure dealing with raw memory this is
    ## *unsafe*.

when not defined(nimscript):
  when hasAlloc:
    proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
      ## allocates a new memory block with at least ``size`` bytes. The
      ## block has to be freed with ``realloc(block, 0)`` or
      ## ``dealloc(block)``. The block is not initialized, so reading
      ## from it before writing to it is undefined behaviour!
      ## The allocated memory belongs to its allocating thread!
      ## Use `allocShared` to allocate from a shared heap.
    proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
      ## allocates a new memory block with at least ``T.sizeof * size``
      ## bytes. The block has to be freed with ``resize(block, 0)`` or
      ## ``dealloc(block)``. The block is not initialized, so reading
      ## from it before writing to it is undefined behaviour!
      ## The allocated memory belongs to its allocating thread!
      ## Use `createSharedU` to allocate from a shared heap.
      cast[ptr T](alloc(T.sizeof * size))
    proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
      ## allocates a new memory block with at least ``size`` bytes. The
      ## block has to be freed with ``realloc(block, 0)`` or
      ## ``dealloc(block)``. The block is initialized with all bytes
      ## containing zero, so it is somewhat safer than ``alloc``.
      ## The allocated memory belongs to its allocating thread!
      ## Use `allocShared0` to allocate from a shared heap.
    proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
      ## allocates a new memory block with at least ``T.sizeof * size``
      ## bytes. The block has to be freed with ``resize(block, 0)`` or
      ## ``dealloc(block)``. The block is initialized with all bytes
      ## containing zero, so it is somewhat safer than ``createU``.
      ## The allocated memory belongs to its allocating thread!
      ## Use `createShared` to allocate from a shared heap.
      cast[ptr T](alloc0(sizeof(T) * size))
    proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
                                                           benign.}
      ## grows or shrinks a given memory block. If p is **nil** then a new
      ## memory block is returned. In either way the block has at least
      ## ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
      ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
      ## be freed with ``dealloc``.
      ## The allocated memory belongs to its allocating thread!
      ## Use `reallocShared` to reallocate from a shared heap.
    proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign.} =
      ## grows or shrinks a given memory block. If p is **nil** then a new
      ## memory block is returned. In either way the block has at least
      ## ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is not
      ## **nil** ``resize`` calls ``dealloc(p)``. In other cases the block
      ## has to be freed with ``free``. The allocated memory belongs to
      ## its allocating thread!
      ## Use `resizeShared` to reallocate from a shared heap.
      cast[ptr T](realloc(p, T.sizeof * newSize))
    proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign.}
      ## frees the memory allocated with ``alloc``, ``alloc0`` or
      ## ``realloc``. This procedure is dangerous! If one forgets to
      ## free the memory a leak occurs; if one tries to access freed
      ## memory (or just freeing it twice!) a core dump may happen
      ## or other memory may be corrupted.
      ## The freed memory must belong to its allocating thread!
      ## Use `deallocShared` to deallocate from a shared heap.

    proc allocShared*(size: Natural): pointer {.noconv, rtl, benign.}
      ## allocates a new memory block on the shared heap with at
      ## least ``size`` bytes. The block has to be freed with
      ## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
      ## is not initialized, so reading from it before writing to it is
      ## undefined behaviour!
    proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
                                                                 benign.} =
      ## allocates a new memory block on the shared heap with at
      ## least ``T.sizeof * size`` bytes. The block has to be freed with
      ## ``resizeShared(block, 0)`` or ``freeShared(block)``. The block
      ## is not initialized, so reading from it before writing to it is
      ## undefined behaviour!
      cast[ptr T](allocShared(T.sizeof * size))
    proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign.}
      ## allocates a new memory block on the shared heap with at
      ## least ``size`` bytes. The block has to be freed with
      ## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
      ## The block is initialized with all bytes
      ## containing zero, so it is somewhat safer than ``allocShared``.
    proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
      ## allocates a new memory block on the shared heap with at
      ## least ``T.sizeof * size`` bytes. The block has to be freed with
      ## ``resizeShared(block, 0)`` or ``freeShared(block)``.
      ## The block is initialized with all bytes
      ## containing zero, so it is somewhat safer than ``createSharedU``.
      cast[ptr T](allocShared0(T.sizeof * size))
    proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
                                                                 benign.}
      ## grows or shrinks a given memory block on the heap. If p is **nil**
      ## then a new memory block is returned. In either way the block has at
      ## least ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
      ## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
      ## block has to be freed with ``deallocShared``.
    proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline.} =
      ## grows or shrinks a given memory block on the heap. If p is **nil**
      ## then a new memory block is returned. In either way the block has at
      ## least ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is
      ## not **nil** ``resizeShared`` calls ``freeShared(p)``. In other
      ## cases the block has to be freed with ``freeShared``.
      cast[ptr T](reallocShared(p, T.sizeof * newSize))
    proc deallocShared*(p: pointer) {.noconv, rtl, benign.}
      ## frees the memory allocated with ``allocShared``, ``allocShared0`` or
      ## ``reallocShared``. This procedure is dangerous! If one forgets to
      ## free the memory a leak occurs; if one tries to access freed
      ## memory (or just freeing it twice!) a core dump may happen
      ## or other memory may be corrupted.
    proc freeShared*[T](p: ptr T) {.inline, benign.} =
      ## frees the memory allocated with ``createShared``, ``createSharedU`` or
      ## ``resizeShared``. This procedure is dangerous! If one forgets to
      ## free the memory a leak occurs; if one tries to access freed
      ## memory (or just freeing it twice!) a core dump may happen
      ## or other memory may be corrupted.
      deallocShared(p)

proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
  ## swaps the values `a` and `b`. This is often more efficient than
  ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.

when not defined(js) and not defined(booting) and defined(nimTrMacros):
  template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openarray[ref], a, b: int) =
    # Optimize swapping of array elements if they are refs. Default swap
    # implementation will cause unsureAsgnRef to be emitted which causes
    # unnecessary slow down in this case.
    swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])

template `>=%`*(x, y: untyped): untyped = y <=% x
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) >= unsigned(y)``.

template `>%`*(x, y: untyped): untyped = y <% x
  ## treats `x` and `y` as unsigned and compares them.
  ## Returns true iff ``unsigned(x) > unsigned(y)``.

proc `$`*(x: int): string {.magic: "IntToStr", noSideEffect.}
  ## The stringify operator for an integer argument. Returns `x`
  ## converted to a decimal string. ``$`` is Nim's general way of
  ## spelling `toString`:idx:.

proc `$`*(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
  ## The stringify operator for an integer argument. Returns `x`
  ## converted to a decimal string.

when not defined(nimscript):
  when not defined(JS) and hasAlloc:
    proc `$`*(x: uint64): string {.noSideEffect.}
      ## The stringify operator for an unsigned integer argument. Returns `x`
      ## converted to a decimal string.

proc `$`*(x: float): string {.magic: "FloatToStr", noSideEffect.}
  ## The stringify operator for a float argument. Returns `x`
  ## converted to a decimal string.

proc `$`*(x: bool): string {.magic: "BoolToStr", noSideEffect.}
  ## The stringify operator for a boolean argument. Returns `x`
  ## converted to the string "false" or "true".

proc `$`*(x: char): string {.magic: "CharToStr", noSideEffect.}
  ## The stringify operator for a character argument. Returns `x`
  ## converted to a string.

proc `$`*(x: cstring): string {.magic: "CStrToStr", noSideEffect.}
  ## The stringify operator for a CString argument. Returns `x`
  ## converted to a string.

proc `$`*(x: string): string {.magic: "StrToStr", noSideEffect.}
  ## The stringify operator for a string argument. Returns `x`
  ## as it is. This operator is useful for generic code, so
  ## that ``$expr`` also works if ``expr`` is already a string.

proc `$`*[Enum: enum](x: Enum): string {.magic: "EnumToStr", noSideEffect.}
  ## The stringify operator for an enumeration argument. This works for
  ## any enumeration type thanks to compiler magic. If
  ## a ``$`` operator for a concrete enumeration is provided, this is
  ## used instead. (In other words: *Overwriting* is possible.)

# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect,
  deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect,
  deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect,
  deprecated: "the refcount never was reliable, the GC does not use traditional refcounting".}
  ## retrieves the reference count of an heap-allocated object. The
  ## value is implementation-dependent.


const
  Inf* = 0x7FF0000000000000'f64
    ## contains the IEEE floating point value of positive infinity.
  NegInf* = 0xFFF0000000000000'f64
    ## contains the IEEE floating point value of negative infinity.
  NaN* = 0x7FF7FFFFFFFFFFFF'f64
    ## contains an IEEE floating point value of *Not A Number*. Note
    ## that you cannot compare a floating point value to this value
    ## and expect a reasonable result - use the `classify` procedure
    ## in the module ``math`` for checking for NaN.
  NimMajor* {.intdefine.}: int = 0
    ## is the major number of Nim's version.

  NimMinor* {.intdefine.}: int = 19
    ## is the minor number of Nim's version.

  NimPatch* {.intdefine.}: int = 9
    ## is the patch number of Nim's version.

  NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
    ## is the version of Nim as a string.

# GC interface:

when not defined(nimscript) and hasAlloc:
  proc getOccupiedMem*(): int {.rtl.}
    ## returns the number of bytes that are owned by the process and hold data.

  proc getFreeMem*(): int {.rtl.}
    ## returns the number of bytes that are owned by the process, but do not
    ## hold any meaningful data.

  proc getTotalMem*(): int {.rtl.}
    ## returns the number of bytes that are owned by the process.

  when hasThreadSupport:
    proc getOccupiedSharedMem*(): int {.rtl.}
      ## returns the number of bytes that are owned by the process
      ## on the shared heap and hold data. This is only available when
      ## threads are enabled.

    proc getFreeSharedMem*(): int {.rtl.}
      ## returns the number of bytes that are owned by the
      ## process on the shared heap, but do not hold any meaningful data.
      ## This is only available when threads are enabled.

    proc getTotalSharedMem*(): int {.rtl.}
      ## returns the number of bytes on the shared heap that are owned by the
      ## process. This is only available when threads are enabled.

proc `|`*(a, b: typedesc): typedesc = discard

when sizeof(int) <= 2:
  type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
else:
  type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum

iterator countdown*[T](a, b: T, step: Positive = 1): T {.inline.} =
  ## Counts from ordinal value `a` down to `b` (inclusive) with the given
  ## step count. `T` may be any ordinal type, `step` may only
  ## be positive. **Note**: This fails to count to ``low(int)`` if T = int for
  ## efficiency reasons.
  when T is (uint|uint64):
    var res = a
    while res >= b:
      yield res
      if res == b: break
      dec(res, step)
  elif T is IntLikeForCount:
    var res = int(a)
    while res >= int(b):
      yield T(res)
      dec(res, step)
  else:
    var res = a
    while res >= b:
      yield res
      dec(res, step)

when defined(nimNewRoof):
  iterator countup*[T](a, b: T, step: Positive = 1): T {.inline.} =
    ## Counts from ordinal value `a` up to `b` (inclusive) with the given
    ## step count. `S`, `T` may be any ordinal type, `step` may only
    ## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
    ## efficiency reasons.
    when T is IntLikeForCount:
      var res = int(a)
      while res <= int(b):
        yield T(res)
        inc(res, step)
    else:
      var res: T = T(a)
      while res <= b:
        yield res
        inc(res, step)

  iterator `..`*[T](a, b: T): T {.inline.} =
    ## An alias for `countup(a, b, 1)`.
    when T is IntLikeForCount:
      var res = int(a)
      while res <= int(b):
        yield T(res)
        inc(res)
    else:
      var res: T = T(a)
      while res <= b:
        yield res
        inc(res)

  template dotdotImpl(t) {.dirty.} =
    iterator `..`*(a, b: t): t {.inline.} =
      ## A type specialized version of ``..`` for convenience so that
      ## mixing integer types works better.
      var res = a
      while res <= b:
        yield res
        inc(res)

  dotdotImpl(int64)
  dotdotImpl(int32)
  dotdotImpl(uint64)
  dotdotImpl(uint32)

else:
  iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
    ## Counts from ordinal value `a` up to `b` (inclusive) with the given
    ## step count. `S`, `T` may be any ordinal type, `step` may only
    ## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
    ## efficiency reasons.
    when T is IntLikeForCount:
      var res = int(a)
      while res <= int(b):
        yield T(res)
        inc(res, step)
    else:
      var res: T = T(a)
      while res <= b:
        yield res
        inc(res, step)

  iterator `..`*[S, T](a: S, b: T): T {.inline.} =
    ## An alias for `countup`.
    when T is IntLikeForCount:
      var res = int(a)
      while res <= int(b):
        yield T(res)
        inc(res)
    else:
      var res: T = T(a)
      while res <= b:
        yield res
        inc(res)


iterator `||`*[S, T](a: S, b: T, annotation: static string = "parallel for"): T {.
  inline, magic: "OmpParFor", sideEffect.} =
  ## OpenMP parallel loop iterator. Same as `..` but the loop may run in parallel.
  ## `annotation` is an additional annotation for the code generator to use.
  ## The default annotation is `parallel for`.
  ## Please refer to the `OpenMP Syntax Reference<https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf>`_
  ## for further information.
  ##
  ## Note that the compiler maps that to
  ## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
  ## such isn't aware of the parallelism in your code! Be careful! Later
  ## versions of ``||`` will get proper support by Nim's code generator
  ## and GC.
  discard

{.push stackTrace:off.}
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
  if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
  ## The minimum value of two integers.
  if x <= y: x else: y

proc min*[T](x: openArray[T]): T =
  ## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
  result = x[0]
  for i in 1..high(x):
    if x[i] < result: result = x[i]

proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
  if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
  ## The maximum value of two integers.
  if y <= x: x else: y

proc max*[T](x: openArray[T]): T =
  ## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
  result = x[0]
  for i in 1..high(x):
    if result < x[i]: result = x[i]

proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} =
  if x < 0.0: -x else: x
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} =
  if x <= y: x else: y
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} =
  if y <= x: x else: y

proc min*[T](x, y: T): T {.inline.}=
  if x <= y: x else: y

proc max*[T](x, y: T): T {.inline.}=
  if y <= x: x else: y
{.pop.}

proc high*(T: typedesc[SomeFloat]): T = Inf
proc low*(T: typedesc[SomeFloat]): T = NegInf

proc clamp*[T](x, a, b: T): T =
  ## limits the value ``x`` within the interval [a, b]
  ##
  ## .. code-block:: Nim
  ##   assert((1.4).clamp(0.0, 1.0) == 1.0)
  ##   assert((0.5).clamp(0.0, 1.0) == 0.5)
  if x < a: return a
  if x > b: return b
  return x

proc len*[U: Ordinal; V: Ordinal](x: HSlice[U, V]): int {.noSideEffect, inline.} =
  ## length of ordinal slice, when x.b < x.a returns zero length
  ##
  ## .. code-block:: Nim
  ##   assert((0..5).len == 6)
  ##   assert((5..2).len == 0)
  result = max(0, ord(x.b) - ord(x.a) + 1)

iterator items*[T](a: openArray[T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

iterator mitems*[T](a: var openArray[T]): var T {.inline.} =
  ## iterates over each item of `a` so that you can modify the yielded value.
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield a[i]
      if i >= high(IX): break
      inc(i)

iterator mitems*[IX, T](a: var array[IX, T]): var T {.inline.} =
  ## iterates over each item of `a` so that you can modify the yielded value.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield a[i]
      if i >= high(IX): break
      inc(i)

iterator items*[T](a: set[T]): T {.inline.} =
  ## iterates over each element of `a`. `items` iterates only over the
  ## elements that are really in the set (and not over the ones the set is
  ## able to hold).
  var i = low(T).int
  while i <= high(T).int:
    if T(i) in a: yield T(i)
    inc(i)

iterator items*(a: cstring): char {.inline.} =
  ## iterates over each item of `a`.
  when defined(js):
    var i = 0
    var L = len(a)
    while i < L:
      yield a[i]
      inc(i)
  else:
    var i = 0
    while a[i] != '\0':
      yield a[i]
      inc(i)

iterator mitems*(a: var cstring): var char {.inline.} =
  ## iterates over each item of `a` so that you can modify the yielded value.
  var i = 0
  while a[i] != '\0':
    yield a[i]
    inc(i)

iterator items*(E: typedesc[enum]): E =
  ## iterates over the values of the enum ``E``.
  for v in low(E)..high(E):
    yield v

iterator items*[T](s: HSlice[T, T]): T =
  ## iterates over the slice `s`, yielding each value between `s.a` and `s.b`
  ## (inclusively).
  for x in s.a..s.b:
    yield x

iterator pairs*[T](a: openArray[T]): tuple[key: int, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator mpairs*[T](a: var openArray[T]): tuple[key:int, val:var T]{.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  ## ``a[index]`` can be modified.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield (i, a[i])
      if i >= high(IX): break
      inc(i)

iterator mpairs*[IX, T](a:var array[IX, T]):tuple[key:IX,val:var T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  ## ``a[index]`` can be modified.
  var i = low(IX)
  if i <= high(IX):
    while true:
      yield (i, a[i])
      if i >= high(IX): break
      inc(i)

iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator mpairs*[T](a: var seq[T]): tuple[key: int, val: var T] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  ## ``a[index]`` can be modified.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator mpairs*(a: var string): tuple[key: int, val: var char] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  ## ``a[index]`` can be modified.
  var i = 0
  while i < len(a):
    yield (i, a[i])
    inc(i)

iterator pairs*(a: cstring): tuple[key: int, val: char] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  var i = 0
  while a[i] != '\0':
    yield (i, a[i])
    inc(i)

iterator mpairs*(a: var cstring): tuple[key: int, val: var char] {.inline.} =
  ## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
  ## ``a[index]`` can be modified.
  var i = 0
  while a[i] != '\0':
    yield (i, a[i])
    inc(i)


when defined(nimNoNilSeqs2):
  when not compileOption("nilseqs"):
    {.pragma: nilError, error.}
  else:
    {.pragma: nilError.}
else:
  {.pragma: nilError.}

proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil", nilError.}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil", nilError.}

proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
  ## Fast check whether `x` is nil. This is sometimes more efficient than
  ## ``== nil``.

proc `==`*[I, T](x, y: array[I, T]): bool =
  for f in low(x)..high(x):
    if x[f] != y[f]:
      return
  result = true

proc `==`*[T](x, y: openarray[T]): bool =
  if x.len != y.len:
    return false

  for f in low(x)..high(x):
    if x[f] != y[f]:
      return false

  result = true

proc `@`*[T](a: openArray[T]): seq[T] =
  ## turns an openarray into a sequence. This is not as efficient as turning
  ## a fixed length array into a sequence as it always copies every element
  ## of `a`.
  newSeq(result, a.len)
  for i in 0..a.len-1: result[i] = a[i]

proc `&`*[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
  ## Concatenates two sequences.
  ## Requires copying of the sequences.
  ##
  ## .. code-block:: Nim
  ##   assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
  newSeq(result, x.len + y.len)
  for i in 0..x.len-1:
    result[i] = x[i]
  for i in 0..y.len-1:
    result[i+x.len] = y[i]

proc `&`*[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
  ## Appends element y to the end of the sequence.
  ## Requires copying of the sequence
  ##
  ## .. code-block:: Nim
  ##   assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
  newSeq(result, x.len + 1)
  for i in 0..x.len-1:
    result[i] = x[i]
  result[x.len] = y

proc `&`*[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
  ## Prepends the element x to the beginning of the sequence.
  ## Requires copying of the sequence
  ##
  ## .. code-block:: Nim
  ##   assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
  newSeq(result, y.len + 1)
  result[0] = x
  for i in 0..y.len-1:
    result[i+1] = y[i]

proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
  ## Generic equals operator for sequences: relies on a equals operator for
  ## the element type `T`.
  when nimvm:
    when not defined(nimNoNil):
      if x.isNil and y.isNil:
        return true
    else:
      if x.len == 0 and y.len == 0:
        return true
  else:
    when not defined(JS):
      proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
        result = cast[pointer](x)

      if seqToPtr(x) == seqToPtr(y):
        return true
    else:
      var sameObject = false
      asm """`sameObject` = `x` === `y`"""
      if sameObject: return true

  when not defined(nimNoNil):
    if x.isNil or y.isNil:
      return false

  if x.len != y.len:
    return false

  for i in 0..x.len-1:
    if x[i] != y[i]:
      return false

  return true

proc find*[T, S](a: T, item: S): int {.inline.}=
  ## Returns the first index of `item` in `a` or -1 if not found. This requires
  ## appropriate `items` and `==` operations to work.
  for i in items(a):
    if i == item: return
    inc(result)
  result = -1

proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
  ## Returns true if `item` is in `a` or false if not found. This is a shortcut
  ## for ``find(a, item) >= 0``.
  return find(a, item) >= 0

proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
  ## returns the last item of `s` and decreases ``s.len`` by one. This treats
  ## `s` as a stack and implements the common *pop* operation.
  var L = s.len-1
  result = s[L]
  setLen(s, L)

iterator fields*[T: tuple|object](x: T): RootObj {.
  magic: "Fields", noSideEffect.}
  ## iterates over every field of `x`. Warning: This really transforms
  ## the 'for' and unrolls the loop. The current implementation also has a bug
  ## that affects symbol binding in the loop body.
iterator fields*[S:tuple|object, T:tuple|object](x: S, y: T): tuple[a,b: untyped] {.
  magic: "Fields", noSideEffect.}
  ## iterates over every field of `x` and `y`.
  ## Warning: This is really transforms the 'for' and unrolls the loop.
  ## The current implementation also has a bug that affects symbol binding
  ## in the loop body.
iterator fieldPairs*[T: tuple|object](x: T): RootObj {.
  magic: "FieldPairs", noSideEffect.}
  ## Iterates over every field of `x` returning their name and value.
  ##
  ## When you iterate over objects with different field types you have to use
  ## the compile time ``when`` instead of a runtime ``if`` to select the code
  ## you want to run for each type. To perform the comparison use the `is
  ## operator <manual.html#generics-is-operator>`_. Example:
  ##
  ## .. code-block:: Nim
  ##
  ##   type
  ##     Custom = object
  ##       foo: string
  ##       bar: bool
  ##
  ##   proc `$`(x: Custom): string =
  ##     result = "Custom:"
  ##     for name, value in x.fieldPairs:
  ##       when value is bool:
  ##         result.add("\n\t" & name & " is " & $value)
  ##       else:
  ##         if value.isNil:
  ##           result.add("\n\t" & name & " (nil)")
  ##         else:
  ##           result.add("\n\t" & name & " '" & value & "'")
  ##
  ## Another way to do the same without ``when`` is to leave the task of
  ## picking the appropriate code to a secondary proc which you overload for
  ## each field type and pass the `value` to.
  ##
  ## Warning: This really transforms the 'for' and unrolls the loop. The
  ## current implementation also has a bug that affects symbol binding in the
  ## loop body.
iterator fieldPairs*[S: tuple|object, T: tuple|object](x: S, y: T): tuple[
  a, b: untyped] {.
  magic: "FieldPairs", noSideEffect.}
  ## iterates over every field of `x` and `y`.
  ## Warning: This really transforms the 'for' and unrolls the loop.
  ## The current implementation also has a bug that affects symbol binding
  ## in the loop body.

proc `==`*[T: tuple|object](x, y: T): bool =
  ## generic ``==`` operator for tuples that is lifted from the components
  ## of `x` and `y`.
  for a, b in fields(x, y):
    if a != b: return false
  return true

proc `<=`*[T: tuple](x, y: T): bool =
  ## generic lexicographic ``<=`` operator for tuples that is lifted from the
  ## components of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return true

proc `<`*[T: tuple](x, y: T): bool =
  ## generic lexicographic ``<`` operator for tuples that is lifted from the
  ## components of `x` and `y`. This implementation uses `cmp`.
  for a, b in fields(x, y):
    var c = cmp(a, b)
    if c < 0: return true
    if c > 0: return false
  return false

proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
  ## Special compile-time procedure that checks whether `x` can be compiled
  ## without any semantic error.
  ## This can be used to check whether a type supports some operation:
  ##
  ## .. code-block:: Nim
  ##   when compiles(3 + 4):
  ##     echo "'+' for integers is available"
  discard

include "system/helpers" # for `lineInfoToString`, `isNamedTuple`

proc `$`*[T: tuple|object](x: T): string =
  ## generic ``$`` operator for tuples that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nim
  ##   $(23, 45) == "(23, 45)"
  ##   $(a: 23, b: 45) == "(a: 23, b: 45)"
  ##   $() == "()"
  result = "("
  var firstElement = true
  const isNamed = T is object or isNamedTuple(T)
  when not isNamed:
    var count = 0
  for name, value in fieldPairs(x):
    if not firstElement: result.add(", ")
    when isNamed:
      result.add(name)
      result.add(": ")
    else:
      count.inc
    when compiles($value):
      when value isnot string and value isnot seq and compiles(value.isNil):
        if value.isNil: result.add "nil"
        else: result.addQuoted(value)
      else:
        result.addQuoted(value)
      firstElement = false
    else:
      result.add("...")
      firstElement = false
  when not isNamed:
    if count == 1:
      result.add(",") # $(1,) should print as the semantically legal (1,)

  result.add(")")

proc collectionToString[T](x: T, prefix, separator, suffix: string): string =
  result = prefix
  var firstElement = true
  for value in items(x):
    if firstElement:
      firstElement = false
    else:
      result.add(separator)

    when value isnot string and value isnot seq and compiles(value.isNil):
      # this branch should not be necessary
      if value.isNil:
        result.add "nil"
      else:
        result.addQuoted(value)
    else:
      result.addQuoted(value)

  result.add(suffix)

proc `$`*[T](x: set[T]): string =
  ## generic ``$`` operator for sets that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nim
  ##   ${23, 45} == "{23, 45}"
  collectionToString(x, "{", ", ", "}")

proc `$`*[T](x: seq[T]): string =
  ## generic ``$`` operator for seqs that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nim
  ##   $(@[23, 45]) == "@[23, 45]"
  collectionToString(x, "@[", ", ", "]")

proc `$`*[T, U](x: HSlice[T, U]): string =
  ## generic ``$`` operator for slices that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nim
  ##  $(1 .. 5) == "1 .. 5"
  result = $x.a
  result.add(" .. ")
  result.add($x.b)

# ----------------- GC interface ---------------------------------------------

when not defined(nimscript) and hasAlloc:
  type
    GC_Strategy* = enum ## the strategy the GC should use for the application
      gcThroughput,      ## optimize for throughput
      gcResponsiveness,  ## optimize for responsiveness (default)
      gcOptimizeTime,    ## optimize for speed
      gcOptimizeSpace    ## optimize for memory footprint

  when not defined(JS):
    proc GC_disable*() {.rtl, inl, benign.}
      ## disables the GC. If called n-times, n calls to `GC_enable` are needed to
      ## reactivate the GC. Note that in most circumstances one should only disable
      ## the mark and sweep phase with `GC_disableMarkAndSweep`.

    proc GC_enable*() {.rtl, inl, benign.}
      ## enables the GC again.

    proc GC_fullCollect*() {.rtl, benign.}
      ## forces a full garbage collection pass.
      ## Ordinary code does not need to call this (and should not).

    proc GC_enableMarkAndSweep*() {.rtl, benign.}
    proc GC_disableMarkAndSweep*() {.rtl, benign.}
      ## the current implementation uses a reference counting garbage collector
      ## with a seldomly run mark and sweep phase to free cycles. The mark and
      ## sweep phase may take a long time and is not needed if the application
      ## does not create cycles. Thus the mark and sweep phase can be deactivated
      ## and activated separately from the rest of the GC.

    proc GC_getStatistics*(): string {.rtl, benign.}
      ## returns an informative string about the GC's activity. This may be useful
      ## for tweaking.

    proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
    proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
    proc GC_ref*(x: string) {.magic: "GCref", benign.}
      ## marks the object `x` as referenced, so that it will not be freed until
      ## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
      ## n calls to `GC_unref` are needed to unmark `x`.

    proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
    proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
    proc GC_unref*(x: string) {.magic: "GCunref", benign.}
      ## see the documentation of `GC_ref`.

    when not defined(JS) and not defined(nimscript) and hasAlloc:
      proc nimGC_setStackBottom*(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
        ## Expands operating GC stack range to `theStackBottom`. Does nothing
        ## if current stack bottom is already lower than `theStackBottom`.

  else:
    template GC_disable* =
      {.warning: "GC_disable is a no-op in JavaScript".}

    template GC_enable* =
      {.warning: "GC_enable is a no-op in JavaScript".}

    template GC_fullCollect* =
      {.warning: "GC_fullCollect is a no-op in JavaScript".}

    template GC_setStrategy* =
      {.warning: "GC_setStrategy is a no-op in JavaScript".}

    template GC_enableMarkAndSweep* =
      {.warning: "GC_enableMarkAndSweep is a no-op in JavaScript".}

    template GC_disableMarkAndSweep* =
      {.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}

    template GC_ref*[T](x: ref T) =
      {.warning: "GC_ref is a no-op in JavaScript".}

    template GC_ref*[T](x: seq[T]) =
      {.warning: "GC_ref is a no-op in JavaScript".}

    template GC_ref*(x: string) =
      {.warning: "GC_ref is a no-op in JavaScript".}

    template GC_unref*[T](x: ref T) =
      {.warning: "GC_unref is a no-op in JavaScript".}

    template GC_unref*[T](x: seq[T]) =
      {.warning: "GC_unref is a no-op in JavaScript".}

    template GC_unref*(x: string) =
      {.warning: "GC_unref is a no-op in JavaScript".}

    template GC_getStatistics*(): string =
      {.warning: "GC_getStatistics is a no-op in JavaScript".}
      ""

template accumulateResult*(iter: untyped) {.deprecated: "use `sequtils.toSeq` instead (more hygienic, sometimes more efficient)".} =
  ## helps to convert an iterator to a proc.
  ## See also `sequtils.toSeq` which is more hygienic and efficient.
  ##
  ## **Deprecated since v0.19.2:** use toSeq instead
  result = @[]
  for x in iter: add(result, x)

# we have to compute this here before turning it off in except.nim anyway ...
const NimStackTrace = compileOption("stacktrace")

template coroutinesSupportedPlatform(): bool =
  when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
    defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcRegions) or
    defined(gcMarkAndSweep):
    false
  else:
    true

when defined(nimCoroutines):
  # Explicit opt-in.
  when not coroutinesSupportedPlatform():
    {.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
  const nimCoroutines* = true
elif defined(noNimCoroutines):
  # Explicit opt-out.
  const nimCoroutines* = false
else:
  # Autodetect coroutine support.
  const nimCoroutines* = false

{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code

var
  globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
    ## with this hook you can influence exception handling on a global level.
    ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
    ## application code should never set this hook! You better know what you
    ## do when setting this. If ``globalRaiseHook`` returns false, the
    ## exception is caught and does not propagate further through the call
    ## stack.

  localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
    ## with this hook you can influence exception handling on a
    ## thread local level.
    ## If not nil, every 'raise' statement ends up calling this hook. Ordinary
    ## application code should never set this hook! You better know what you
    ## do when setting this. If ``localRaiseHook`` returns false, the exception
    ## is caught and does not propagate further through the call stack.

  outOfMemHook*: proc () {.nimcall, tags: [], benign.}
    ## set this variable to provide a procedure that should be called
    ## in case of an `out of memory`:idx: event. The standard handler
    ## writes an error message and terminates the program. `outOfMemHook` can
    ## be used to raise an exception in case of OOM like so:
    ##
    ## .. code-block:: nim
    ##
    ##   var gOutOfMem: ref EOutOfMemory
    ##   new(gOutOfMem) # need to be allocated *before* OOM really happened!
    ##   gOutOfMem.msg = "out of memory"
    ##
    ##   proc handleOOM() =
    ##     raise gOutOfMem
    ##
    ##   system.outOfMemHook = handleOOM
    ##
    ## If the handler does not raise an exception, ordinary control flow
    ## continues and the program is terminated.

type
  PFrame* = ptr TFrame  ## represents a runtime frame of the call stack;
                        ## part of the debugger API.
  TFrame* {.importc, nodecl, final.} = object ## the frame itself
    prev*: PFrame       ## previous frame; used for chaining the call stack
    procname*: cstring  ## name of the proc that is currently executing
    line*: int          ## line number of the proc that is currently executing
    filename*: cstring  ## filename of the proc that is currently executing
    len*: int16         ## length of the inspectable slots
    calldepth*: int16   ## used for max call depth checking

when defined(JS):
  proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
    asm """
      if (`x` === null) { `x` = []; }
      var off = `x`.length;
      `x`.length += `y`.length;
      for (var i = 0; i < `y`.length; ++i) {
        `x`[off+i] = `y`.charCodeAt(i);
      }
    """
  proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}

elif hasAlloc:
  {.push stack_trace:off, profiler:off.}
  proc add*(x: var string, y: cstring) =
    var i = 0
    while y[i] != '\0':
      add(x, y[i])
      inc(i)
  {.pop.}

when defined(nimvarargstyped):
  proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
    benign, sideEffect.}
    ## Writes and flushes the parameters to the standard output.
    ##
    ## Special built-in that takes a variable number of arguments. Each argument
    ## is converted to a string via ``$``, so it works for user-defined
    ## types that have an overloaded ``$`` operator.
    ## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
    ## available for the JavaScript target too.
    ##
    ## Unlike other IO operations this is guaranteed to be thread-safe as
    ## ``echo`` is very often used for debugging convenience. If you want to use
    ## ``echo`` inside a `proc without side effects
    ## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho <#debugEcho>`_
    ## instead.

  proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
                                            tags: [], raises: [].}
    ## Same as `echo <#echo>`_, but as a special semantic rule, ``debugEcho``
    ## pretends to be free of side effects, so that it can be used for debugging
    ## routines marked as `noSideEffect <manual.html#pragmas-nosideeffect-pragma>`_.
else:
  proc echo*(x: varargs[untyped, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
    benign, sideEffect.}
  proc debugEcho*(x: varargs[untyped, `$`]) {.magic: "Echo", noSideEffect,
                                             tags: [], raises: [].}

template newException*(exceptn: typedesc, message: string;
                       parentException: ref Exception = nil): untyped =
  ## creates an exception object of type ``exceptn`` and sets its ``msg`` field
  ## to `message`. Returns the new exception object.
  var
    e: ref exceptn
  new(e)
  e.msg = message
  e.parent = parentException
  e

when hostOS == "standalone":
  include "$projectpath/panicoverride"

when not declared(sysFatal):
  {.push profiler: off.}
  when hostOS == "standalone":
    proc sysFatal(exceptn: typedesc, message: string) {.inline.} =
      panic(message)

    proc sysFatal(exceptn: typedesc, message, arg: string) {.inline.} =
      rawoutput(message)
      panic(arg)
  else:
    proc sysFatal(exceptn: typedesc, message: string) {.inline, noReturn.} =
      var e: ref exceptn
      new(e)
      e.msg = message
      raise e

    proc sysFatal(exceptn: typedesc, message, arg: string) {.inline, noReturn.} =
      var e: ref exceptn
      new(e)
      e.msg = message & arg
      raise e
  {.pop.}

proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
  ## get type information for `x`. Ordinary code should not use this, but
  ## the `typeinfo` module instead.

{.push stackTrace: off.}
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
  if x < 0: -x else: x
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
  if x < 0: -x else: x
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
  if x < 0: -x else: x
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
  if x < 0: -x else: x
when defined(nimnomagic64):
  proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
    ## returns the absolute value of `x`. If `x` is ``low(x)`` (that
    ## is -MININT for its type), an overflow exception is thrown (if overflow
    ## checking is turned on).
    result = if x < 0: -x else: x
else:
  proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} =
    ## returns the absolute value of `x`. If `x` is ``low(x)`` (that
    ## is -MININT for its type), an overflow exception is thrown (if overflow
    ## checking is turned on).
    if x < 0: -x else: x
{.pop.}

when not defined(JS):
  proc likelyProc(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
  proc unlikelyProc(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}

template likely*(val: bool): bool =
  ## Hints the optimizer that `val` is likely going to be true.
  ##
  ## You can use this template to decorate a branch condition. On certain
  ## platforms this can help the processor predict better which branch is
  ## going to be run. Example:
  ##
  ## .. code-block:: nim
  ##   for value in inputValues:
  ##     if likely(value <= 100):
  ##       process(value)
  ##     else:
  ##       echo "Value too big!"
  ##
  ## On backends without branch prediction (JS and the nimscript VM), this
  ## template will not affect code execution.
  when nimvm:
    val
  else:
    when defined(JS):
      val
    else:
      likelyProc(val)

template unlikely*(val: bool): bool =
  ## Hints the optimizer that `val` is likely going to be false.
  ##
  ## You can use this proc to decorate a branch condition. On certain
  ## platforms this can help the processor predict better which branch is
  ## going to be run. Example:
  ##
  ## .. code-block:: nim
  ##   for value in inputValues:
  ##     if unlikely(value > 100):
  ##       echo "Value too big!"
  ##     else:
  ##       process(value)
  ##
  ## On backends without branch prediction (JS and the nimscript VM), this
  ## template will not affect code execution.
  when nimvm:
    val
  else:
    when defined(JS):
      val
    else:
      unlikelyProc(val)

type
  FileSeekPos* = enum ## Position relative to which seek should happen
                      # The values are ordered so that they match with stdio
                      # SEEK_SET, SEEK_CUR and SEEK_END respectively.
    fspSet            ## Seek to absolute value
    fspCur            ## Seek relative to current position
    fspEnd            ## Seek relative to end

when not defined(JS): #and not defined(nimscript):
  {.push stack_trace: off, profiler:off.}

  when hasAlloc:
    when not defined(gcRegions):
      proc initGC() {.gcsafe.}
    when not defined(boehmgc) and not defined(useMalloc) and
        not defined(gogc) and not defined(gcRegions):
      proc initAllocator() {.inline.}

    proc initStackBottom() {.inline, compilerproc.} =
      # WARNING: This is very fragile! An array size of 8 does not work on my
      # Linux 64bit system. -- That's because the stack direction is the other
      # way around.
      when declared(nimGC_setStackBottom):
        var locals {.volatile.}: pointer
        locals = addr(locals)
        nimGC_setStackBottom(locals)

    proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
      # We need to keep initStackBottom around for now to avoid
      # bootstrapping problems.
      when declared(nimGC_setStackBottom):
        nimGC_setStackBottom(locals)

    when not defined(gcDestructors):
      {.push profiler: off.}
      var
        strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
      {.pop.}


  # ----------------- IO Part ------------------------------------------------
  type
    CFile {.importc: "FILE", header: "<stdio.h>",
            final, incompletestruct.} = object
    File* = ptr CFile ## The type representing a file handle.

    FileMode* = enum           ## The file mode when opening a file.
      fmRead,                   ## Open the file for read access only.
      fmWrite,                  ## Open the file for write access only.
                                ## If the file does not exist, it will be
                                ## created. Existing files will be cleared!
      fmReadWrite,              ## Open the file for read and write access.
                                ## If the file does not exist, it will be
                                ## created. Existing files will be cleared!
      fmReadWriteExisting,      ## Open the file for read and write access.
                                ## If the file does not exist, it will not be
                                ## created. The existing file will not be cleared.
      fmAppend                  ## Open the file for writing only; append data
                                ## at the end.

    FileHandle* = cint ## type that represents an OS file handle; this is
                       ## useful for low-level file access

  include "system/ansi_c"
  include "system/memory"

  proc zeroMem(p: pointer, size: Natural) =
    nimZeroMem(p, size)
    when declared(memTrackerOp):
      memTrackerOp("zeroMem", p, size)
  proc copyMem(dest, source: pointer, size: Natural) =
    nimCopyMem(dest, source, size)
    when declared(memTrackerOp):
      memTrackerOp("copyMem", dest, size)
  proc moveMem(dest, source: pointer, size: Natural) =
    c_memmove(dest, source, size)
    when declared(memTrackerOp):
      memTrackerOp("moveMem", dest, size)
  proc equalMem(a, b: pointer, size: Natural): bool =
    nimCmpMem(a, b, size) == 0

  proc cmp(x, y: string): int =
    when nimvm:
      if x < y: result = -1
      elif x > y: result = 1
      else: result = 0
    else:
      let minlen = min(x.len, y.len)
      result = int(nimCmpMem(x.cstring, y.cstring, minlen.csize))
      if result == 0:
        result = x.len - y.len

  when defined(nimscript):
    proc readFile*(filename: string): TaintedString {.tags: [ReadIOEffect], benign.}
      ## Opens a file named `filename` for reading, calls `readAll
      ## <#readAll>`_ and closes the file afterwards. Returns the string.
      ## Raises an IO exception in case of an error. If # you need to call
      ## this inside a compile time macro you can use `staticRead
      ## <#staticRead>`_.

    proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
      ## Opens a file named `filename` for writing. Then writes the
      ## `content` completely to the file and closes the file afterwards.
      ## Raises an IO exception in case of an error.

  when not defined(nimscript) and hostOS != "standalone":

    # text file handling:
    var
      stdin* {.importc: "stdin", header: "<stdio.h>".}: File
        ## The standard input stream.
      stdout* {.importc: "stdout", header: "<stdio.h>".}: File
        ## The standard output stream.
      stderr* {.importc: "stderr", header: "<stdio.h>".}: File
        ## The standard error stream.

    when defined(windows):
      # work-around C's sucking abstraction:
      # BUGFIX: stdin and stdout should be binary files!
      proc c_setmode(handle, mode: cint) {.
        importc: when defined(bcc): "setmode" else: "_setmode",
        header: "<io.h>".}
      var
        O_BINARY {.importc: "_O_BINARY", header:"<fcntl.h>".}: cint

      # we use binary mode on Windows:
      c_setmode(c_fileno(stdin), O_BINARY)
      c_setmode(c_fileno(stdout), O_BINARY)
      c_setmode(c_fileno(stderr), O_BINARY)

    when defined(endb):
      proc endbStep()

    when defined(useStdoutAsStdmsg):
      template stdmsg*: File = stdout
    else:
      template stdmsg*: File = stderr
        ## Template which expands to either stdout or stderr depending on
        ## `useStdoutAsStdmsg` compile-time switch.

    proc open*(f: var File, filename: string,
               mode: FileMode = fmRead, bufSize: int = -1): bool {.tags: [],
               raises: [], benign.}
      ## Opens a file named `filename` with given `mode`.
      ##
      ## Default mode is readonly. Returns true iff the file could be opened.
      ## This throws no exception if the file could not be opened.

    proc open*(f: var File, filehandle: FileHandle,
               mode: FileMode = fmRead): bool {.tags: [], raises: [],
               benign.}
      ## Creates a ``File`` from a `filehandle` with given `mode`.
      ##
      ## Default mode is readonly. Returns true iff the file could be opened.

    proc open*(filename: string,
               mode: FileMode = fmRead, bufSize: int = -1): File =
      ## Opens a file named `filename` with given `mode`.
      ##
      ## Default mode is readonly. Raises an ``IOError`` if the file
      ## could not be opened.
      if not open(result, filename, mode, bufSize):
        sysFatal(IOError, "cannot open: ", filename)

    proc reopen*(f: File, filename: string, mode: FileMode = fmRead): bool {.
      tags: [], benign.}
      ## reopens the file `f` with given `filename` and `mode`. This
      ## is often used to redirect the `stdin`, `stdout` or `stderr`
      ## file variables.
      ##
      ## Default mode is readonly. Returns true iff the file could be reopened.

    proc setStdIoUnbuffered*() {.tags: [], benign.}
      ## Configures `stdin`, `stdout` and `stderr` to be unbuffered.

    proc close*(f: File) {.tags: [], gcsafe.}
      ## Closes the file.

    proc endOfFile*(f: File): bool {.tags: [], benign.}
      ## Returns true iff `f` is at the end.

    proc readChar*(f: File): char {.tags: [ReadIOEffect].}
      ## Reads a single character from the stream `f`. Should not be used in
      ## performance sensitive code.

    proc flushFile*(f: File) {.tags: [WriteIOEffect].}
      ## Flushes `f`'s buffer.

    proc readAll*(file: File): TaintedString {.tags: [ReadIOEffect], benign.}
      ## Reads all data from the stream `file`.
      ##
      ## Raises an IO exception in case of an error. It is an error if the
      ## current file position is not at the beginning of the file.

    proc readFile*(filename: string): TaintedString {.tags: [ReadIOEffect], benign.}
      ## Opens a file named `filename` for reading.
      ##
      ## Then calls `readAll <#readAll>`_ and closes the file afterwards.
      ## Returns the string.  Raises an IO exception in case of an error. If
      ## you need to call this inside a compile time macro you can use
      ## `staticRead <#staticRead>`_.

    proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
      ## Opens a file named `filename` for writing. Then writes the
      ## `content` completely to the file and closes the file afterwards.
      ## Raises an IO exception in case of an error.

    proc write*(f: File, r: float32) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, i: int) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, i: BiggestInt) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, r: BiggestFloat) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, s: string) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, b: bool) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, c: char) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, c: cstring) {.tags: [WriteIOEffect], benign.}
    proc write*(f: File, a: varargs[string, `$`]) {.tags: [WriteIOEffect], benign.}
      ## Writes a value to the file `f`. May throw an IO exception.

    proc readLine*(f: File): TaintedString  {.tags: [ReadIOEffect], benign.}
      ## reads a line of text from the file `f`. May throw an IO exception.
      ## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
      ## character(s) are not part of the returned string.

    proc readLine*(f: File, line: var TaintedString): bool {.tags: [ReadIOEffect],
                  benign.}
      ## reads a line of text from the file `f` into `line`. May throw an IO
      ## exception.
      ## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
      ## character(s) are not part of the returned string. Returns ``false``
      ## if the end of the file has been reached, ``true`` otherwise. If
      ## ``false`` is returned `line` contains no new data.

    proc writeLine*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
                             tags: [WriteIOEffect], benign.}
      ## writes the values `x` to `f` and then writes "\\n".
      ## May throw an IO exception.

    proc getFileSize*(f: File): int64 {.tags: [ReadIOEffect], benign.}
      ## retrieves the file size (in bytes) of `f`.

    proc readBytes*(f: File, a: var openArray[int8|uint8], start, len: Natural): int {.
      tags: [ReadIOEffect], benign.}
      ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
      ## the actual number of bytes that have been read which may be less than
      ## `len` (if not as many bytes are remaining), but not greater.

    proc readChars*(f: File, a: var openArray[char], start, len: Natural): int {.
      tags: [ReadIOEffect], benign.}
      ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
      ## the actual number of bytes that have been read which may be less than
      ## `len` (if not as many bytes are remaining), but not greater.
      ##
      ## **Warning:** The buffer `a` must be pre-allocated. This can be done
      ## using, for example, ``newString``.

    proc readBuffer*(f: File, buffer: pointer, len: Natural): int {.
      tags: [ReadIOEffect], benign.}
      ## reads `len` bytes into the buffer pointed to by `buffer`. Returns
      ## the actual number of bytes that have been read which may be less than
      ## `len` (if not as many bytes are remaining), but not greater.

    proc writeBytes*(f: File, a: openArray[int8|uint8], start, len: Natural): int {.
      tags: [WriteIOEffect], benign.}
      ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
      ## the number of actual written bytes, which may be less than `len` in case
      ## of an error.

    proc writeChars*(f: File, a: openArray[char], start, len: Natural): int {.
      tags: [WriteIOEffect], benign.}
      ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
      ## the number of actual written bytes, which may be less than `len` in case
      ## of an error.

    proc writeBuffer*(f: File, buffer: pointer, len: Natural): int {.
      tags: [WriteIOEffect], benign.}
      ## writes the bytes of buffer pointed to by the parameter `buffer` to the
      ## file `f`. Returns the number of actual written bytes, which may be less
      ## than `len` in case of an error.

    proc setFilePos*(f: File, pos: int64, relativeTo: FileSeekPos = fspSet) {.benign.}
      ## sets the position of the file pointer that is used for read/write
      ## operations. The file's first byte has the index zero.

    proc getFilePos*(f: File): int64 {.benign.}
      ## retrieves the current position of the file pointer that is used to
      ## read from the file `f`. The file's first byte has the index zero.

    proc getFileHandle*(f: File): FileHandle
      ## returns the OS file handle of the file ``f``. This is only useful for
      ## platform specific programming.

  when declared(newSeq):
    proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
      ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
      ## of length ``len``.
      newSeq(result, len)
      for i in 0..len-1: result[i] = $a[i]

    proc cstringArrayToSeq*(a: cstringArray): seq[string] =
      ## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
      ## terminated by ``nil``.
      var L = 0
      while a[L] != nil: inc(L)
      result = cstringArrayToSeq(a, L)

  # -------------------------------------------------------------------------

  when declared(alloc0) and declared(dealloc):
    proc allocCStringArray*(a: openArray[string]): cstringArray =
      ## creates a NULL terminated cstringArray from `a`. The result has to
      ## be freed with `deallocCStringArray` after it's not needed anymore.
      result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))

      let x = cast[ptr UncheckedArray[string]](a)
      for i in 0 .. a.high:
        result[i] = cast[cstring](alloc0(x[i].len+1))
        copyMem(result[i], addr(x[i][0]), x[i].len)

    proc deallocCStringArray*(a: cstringArray) =
      ## frees a NULL terminated cstringArray.
      var i = 0
      while a[i] != nil:
        dealloc(a[i])
        inc(i)
      dealloc(a)

  when not defined(nimscript):
    proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
      discardable, benign.}
      ## atomic increment of `memLoc`. Returns the value after the operation.

    proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
      discardable, benign.}
      ## atomic decrement of `memLoc`. Returns the value after the operation.

    include "system/atomics"

    type
      PSafePoint = ptr TSafePoint
      TSafePoint {.compilerproc, final.} = object
        prev: PSafePoint # points to next safe point ON THE STACK
        status: int
        context: C_JmpBuf
        hasRaiseAction: bool
        raiseAction: proc (e: ref Exception): bool {.closure.}
      SafePoint = TSafePoint

  when declared(initAllocator):
    initAllocator()
  when hasThreadSupport:
    const insideRLocksModule = false
    include "system/syslocks"
    when hostOS != "standalone": include "system/threads"
  elif not defined(nogc) and not defined(nimscript):
    when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
    when declared(initGC): initGC()

  when not defined(nimscript):
    proc setControlCHook*(hook: proc () {.noconv.})
      ## allows you to override the behaviour of your application when CTRL+C
      ## is pressed. Only one such hook is supported.

    when not defined(useNimRtl):
      proc unsetControlCHook*()
        ## reverts a call to setControlCHook

    proc writeStackTrace*() {.tags: [], gcsafe.}
      ## writes the current stack trace to ``stderr``. This is only works
      ## for debug builds. Since it's usually used for debugging, this
      ## is proclaimed to have no IO effect!
    when hostOS != "standalone":
      proc getStackTrace*(): string {.gcsafe.}
        ## gets the current stack trace. This only works for debug builds.

      proc getStackTrace*(e: ref Exception): string {.gcsafe.}
        ## gets the stack trace associated with `e`, which is the stack that
        ## lead to the ``raise`` statement. This only works for debug builds.

    {.push stack_trace: off, profiler:off.}
    when defined(memtracker):
      include "system/memtracker"

    when defined(gcDestructors):
      include "core/strs"
      include "core/seqs"

    when hostOS == "standalone":
      include "system/embedded"
    else:
      include "system/excpt"
    include "system/chcks"

    # we cannot compile this with stack tracing on
    # as it would recurse endlessly!
    include "system/arithm"
    {.pop.} # stack trace
  {.pop.} # stack trace

  when hostOS != "standalone" and not defined(nimscript):
    include "system/dyncalls"
  when not defined(nimscript):
    include "system/sets"

    when defined(gogc):
      const GenericSeqSize = (3 * sizeof(int))
    else:
      const GenericSeqSize = (2 * sizeof(int))

    proc getDiscriminant(aa: pointer, n: ptr TNimNode): int =
      sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
      var d: int
      var a = cast[ByteAddress](aa)
      case n.typ.size
      of 1: d = ze(cast[ptr int8](a +% n.offset)[])
      of 2: d = ze(cast[ptr int16](a +% n.offset)[])
      of 4: d = int(cast[ptr int32](a +% n.offset)[])
      of 8: d = int(cast[ptr int64](a +% n.offset)[])
      else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
      return d

    proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
      var discr = getDiscriminant(aa, n)
      if discr <% n.len:
        result = n.sons[discr]
        if result == nil: result = n.sons[n.len]
        # n.sons[n.len] contains the ``else`` part (but may be nil)
      else:
        result = n.sons[n.len]

    {.push profiler:off.}
    when hasAlloc: include "system/mmdisp"
    {.pop.}
    {.push stack_trace: off, profiler:off.}
    when hasAlloc:
      when not defined(gcDestructors):
        include "system/sysstr"
    {.pop.}
    when hasAlloc: include "system/strmantle"

    when hostOS != "standalone": include "system/sysio"
    when hasThreadSupport:
      when hostOS != "standalone": include "system/channels"
  else:
    include "system/sysio"

  when not defined(nimscript) and hostOS != "standalone":
    iterator lines*(filename: string): TaintedString {.tags: [ReadIOEffect].} =
      ## Iterates over any line in the file named `filename`.
      ##
      ## If the file does not exist `IOError` is raised. The trailing newline
      ## character(s) are removed from the iterated lines. Example:
      ##
      ## .. code-block:: nim
      ##   import strutils
      ##
      ##   proc transformLetters(filename: string) =
      ##     var buffer = ""
      ##     for line in filename.lines:
      ##       buffer.add(line.replace("a", "0") & '\x0A')
      ##     writeFile(filename, buffer)
      var f = open(filename, bufSize=8000)
      defer: close(f)
      var res = TaintedString(newStringOfCap(80))
      while f.readLine(res): yield res

    iterator lines*(f: File): TaintedString {.tags: [ReadIOEffect].} =
      ## Iterate over any line in the file `f`.
      ##
      ## The trailing newline character(s) are removed from the iterated lines.
      ## Example:
      ##
      ## .. code-block:: nim
      ##   proc countZeros(filename: File): tuple[lines, zeros: int] =
      ##     for line in filename.lines:
      ##       for letter in line:
      ##         if letter == '0':
      ##           result.zeros += 1
      ##       result.lines += 1
      var res = TaintedString(newStringOfCap(80))
      while f.readLine(res): yield res

  when not defined(nimscript) and hasAlloc:
    when not defined(gcDestructors):
      include "system/assign"
      include "system/repr"

  when hostOS != "standalone" and not defined(nimscript):
    proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
      ## retrieves the current exception; if there is none, nil is returned.
      result = currException

    proc getCurrentExceptionMsg*(): string {.inline, benign.} =
      ## retrieves the error message that was attached to the current
      ## exception; if there is none, "" is returned.
      var e = getCurrentException()
      return if e == nil: "" else: e.msg

    proc onRaise*(action: proc(e: ref Exception): bool{.closure.}) {.deprecated.} =
      ## can be used in a ``try`` statement to setup a Lisp-like
      ## `condition system`:idx:\: This prevents the 'raise' statement to
      ## raise an exception but instead calls ``action``.
      ## If ``action`` returns false, the exception has been handled and
      ## does not propagate further through the call stack.
      ##
      ## *Deprecated since version 0.18.1*: No good usages of this
      ## feature are known.
      if not isNil(excHandler):
        excHandler.hasRaiseAction = true
        excHandler.raiseAction = action

    proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
      ## sets the current exception.
      ##
      ## **Warning**: Only use this if you know what you are doing.
      currException = exc

  {.push stack_trace: off, profiler:off.}
  when defined(endb) and not defined(nimscript):
    include "system/debugger"

  when (defined(profiler) or defined(memProfiler)) and not defined(nimscript):
    include "system/profiler"
  {.pop.} # stacktrace

  when not defined(nimscript):
    proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
      ## retrieves the raw proc pointer of the closure `x`. This is
      ## useful for interfacing closures with C.
      {.emit: """
      `result` = `x`.ClP_0;
      """.}

    proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
      ## retrieves the raw environment pointer of the closure `x`. This is
      ## useful for interfacing closures with C.
      {.emit: """
      `result` = `x`.ClE_0;
      """.}

    proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
      ## can be used to determine if a first class iterator has finished.
      {.emit: """
      `result` = ((NI*) `x`.ClE_0)[1] < 0;
      """.}

elif defined(JS):
  # Stubs:
  proc getOccupiedMem(): int = return -1
  proc getFreeMem(): int = return -1
  proc getTotalMem(): int = return -1

  proc dealloc(p: pointer) = discard
  proc alloc(size: Natural): pointer = discard
  proc alloc0(size: Natural): pointer = discard
  proc realloc(p: pointer, newsize: Natural): pointer = discard

  proc allocShared(size: Natural): pointer = discard
  proc allocShared0(size: Natural): pointer = discard
  proc deallocShared(p: pointer) = discard
  proc reallocShared(p: pointer, newsize: Natural): pointer = discard

  when defined(JS) and not defined(nimscript):
    include "system/jssys"
    include "system/reprjs"
  elif defined(nimscript):
    proc cmp(x, y: string): int =
      if x == y: return 0
      if x < y: return -1
      return 1

  when defined(nimffi):
    include "system/sysio"

when not defined(nimNoArrayToString):
  proc `$`*[T, IDX](x: array[IDX, T]): string =
    ## generic ``$`` operator for arrays that is lifted from the components
    collectionToString(x, "[", ", ", "]")

proc `$`*[T](x: openarray[T]): string =
  ## generic ``$`` operator for openarrays that is lifted from the components
  ## of `x`. Example:
  ##
  ## .. code-block:: nim
  ##   $(@[23, 45].toOpenArray(0, 1)) == "[23, 45]"
  collectionToString(x, "[", ", ", "]")

proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
  ## a shorthand for ``echo(errormsg); quit(errorcode)``.
  echo(errormsg)
  quit(errorcode)

{.pop.} # checks
{.pop.} # hints

proc `/`*(x, y: int): float {.inline, noSideEffect.} =
  ## integer division that results in a float.
  result = toFloat(x) / toFloat(y)

type
  BackwardsIndex* = distinct int ## type that is constructed by ``^`` for
                                 ## reversed array accesses.

template `^`*(x: int): BackwardsIndex = BackwardsIndex(x)
  ## builtin `roof`:idx: operator that can be used for convenient array access.
  ## ``a[^x]`` is a shortcut for ``a[a.len-x]``.

template `..^`*(a, b: untyped): untyped =
  ## a shortcut for '.. ^' to avoid the common gotcha that a space between
  ## '..' and '^' is required.
  a .. ^b

template `..<`*(a, b: untyped): untyped =
  ## a shortcut for 'a .. (when b is BackwardsIndex: succ(b) else: pred(b))'.
  a .. (when b is BackwardsIndex: succ(b) else: pred(b))

when defined(nimNewRoof):
  iterator `..<`*[T](a, b: T): T =
    var i = T(a)
    while i < b:
      yield i
      inc i
else:
  iterator `..<`*[S, T](a: S, b: T): T =
    var i = T(a)
    while i < b:
      yield i
      inc i

template spliceImpl(s, a, L, b: untyped): untyped =
  # make room for additional elements or cut:
  var shift = b.len - max(0,L)  # ignore negative slice size
  var newLen = s.len + shift
  if shift > 0:
    # enlarge:
    setLen(s, newLen)
    for i in countdown(newLen-1, a+b.len): shallowCopy(s[i], s[i-shift])
  else:
    for i in countup(a+b.len, newLen-1): shallowCopy(s[i], s[i-shift])
    # cut down:
    setLen(s, newLen)
  # fill the hole:
  for i in 0 ..< b.len: s[a+i] = b[i]

template `^^`(s, i: untyped): untyped =
  (when i is BackwardsIndex: s.len - int(i) else: int(i))

template `[]`*(s: string; i: int): char = arrGet(s, i)
template `[]=`*(s: string; i: int; val: char) = arrPut(s, i, val)

when hasAlloc or defined(nimscript):
  proc `[]`*[T, U](s: string, x: HSlice[T, U]): string {.inline.} =
    ## slice operation for strings.
    ## returns the inclusive range [s[x.a], s[x.b]]:
    ##
    ## .. code-block:: nim
    ##    var s = "abcdef"
    ##    assert s[1..3] == "bcd"
    let a = s ^^ x.a
    let L = (s ^^ x.b) - a + 1
    result = newString(L)
    for i in 0 ..< L: result[i] = s[i + a]

  proc `[]=`*[T, U](s: var string, x: HSlice[T, U], b: string) =
    ## slice assignment for strings. If
    ## ``b.len`` is not exactly the number of elements that are referred to
    ## by `x`, a `splice`:idx: is performed:
    ##
    ## .. code-block:: nim
    ##   var s = "abcdef"
    ##   s[1 .. ^2] = "xyz"
    ##   assert s == "axyzf"
    var a = s ^^ x.a
    var L = (s ^^ x.b) - a + 1
    if L == b.len:
      for i in 0..<L: s[i+a] = b[i]
    else:
      spliceImpl(s, a, L, b)

proc `[]`*[Idx, T, U, V](a: array[Idx, T], x: HSlice[U, V]): seq[T] =
  ## slice operation for arrays.
  ## returns the inclusive range [a[x.a], a[x.b]]:
  ##
  ## .. code-block:: nim
  ##    var a = [1,2,3,4]
  ##    assert a[0..2] == @[1,2,3]
  let xa = a ^^ x.a
  let L = (a ^^ x.b) - xa + 1
  result = newSeq[T](L)
  for i in 0..<L: result[i] = a[Idx(i + xa)]

proc `[]=`*[Idx, T, U, V](a: var array[Idx, T], x: HSlice[U, V], b: openArray[T]) =
  ## slice assignment for arrays.
  let xa = a ^^ x.a
  let L = (a ^^ x.b) - xa + 1
  if L == b.len:
    for i in 0..<L: a[Idx(i + xa)] = b[i]
  else:
    sysFatal(RangeError, "different lengths for slice assignment")

proc `[]`*[T, U, V](s: openArray[T], x: HSlice[U, V]): seq[T] =
  ## slice operation for sequences.
  ## returns the inclusive range [s[x.a], s[x.b]]:
  ##
  ## .. code-block:: nim
  ##    var s = @[1,2,3,4]
  ##    assert s[0..2] == @[1,2,3]
  let a = s ^^ x.a
  let L = (s ^^ x.b) - a + 1
  newSeq(result, L)
  for i in 0 ..< L: result[i] = s[i + a]

proc `[]=`*[T, U, V](s: var seq[T], x: HSlice[U, V], b: openArray[T]) =
  ## slice assignment for sequences. If
  ## ``b.len`` is not exactly the number of elements that are referred to
  ## by `x`, a `splice`:idx: is performed.
  let a = s ^^ x.a
  let L = (s ^^ x.b) - a + 1
  if L == b.len:
    for i in 0 ..< L: s[i+a] = b[i]
  else:
    spliceImpl(s, a, L, b)

proc `[]`*[T](s: openArray[T]; i: BackwardsIndex): T {.inline.} =
  system.`[]`(s, s.len - int(i))

proc `[]`*[Idx, T](a: array[Idx, T]; i: BackwardsIndex): T {.inline.} =
  a[Idx(a.len - int(i) + int low(a))]
proc `[]`*(s: string; i: BackwardsIndex): char {.inline.} = s[s.len - int(i)]

proc `[]`*[T](s: var openArray[T]; i: BackwardsIndex): var T {.inline.} =
  system.`[]`(s, s.len - int(i))
proc `[]`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex): var T {.inline.} =
  a[Idx(a.len - int(i) + int low(a))]

proc `[]=`*[T](s: var openArray[T]; i: BackwardsIndex; x: T) {.inline.} =
  system.`[]=`(s, s.len - int(i), x)
proc `[]=`*[Idx, T](a: var array[Idx, T]; i: BackwardsIndex; x: T) {.inline.} =
  a[Idx(a.len - int(i) + int low(a))] = x
proc `[]=`*(s: var string; i: BackwardsIndex; x: char) {.inline.} =
  s[s.len - int(i)] = x

proc slurp*(filename: string): string {.magic: "Slurp".}
  ## This is an alias for `staticRead <#staticRead>`_.

proc staticRead*(filename: string): string {.magic: "Slurp".}
  ## Compile-time `readFile <#readFile>`_ proc for easy `resource`:idx:
  ## embedding:
  ##
  ## .. code-block:: nim
  ##     const myResource = staticRead"mydatafile.bin"
  ##
  ## `slurp <#slurp>`_ is an alias for ``staticRead``.

proc gorge*(command: string, input = "", cache = ""): string {.
  magic: "StaticExec".} = discard
  ## This is an alias for `staticExec <#staticExec>`_.

proc staticExec*(command: string, input = "", cache = ""): string {.
  magic: "StaticExec".} = discard
  ## Executes an external process at compile-time.
  ## if `input` is not an empty string, it will be passed as a standard input
  ## to the executed program.
  ##
  ## .. code-block:: nim
  ##     const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
  ##                       "\nCompiled on " & staticExec("uname -v")
  ##
  ## `gorge <#gorge>`_ is an alias for ``staticExec``. Note that you can use
  ## this proc inside a pragma like `passC <nimc.html#passc-pragma>`_ or `passL
  ## <nimc.html#passl-pragma>`_.
  ##
  ## If ``cache`` is not empty, the results of ``staticExec`` are cached within
  ## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
  ## behaviour then. ``command & input & cache`` (the concatenated string) is
  ## used to determine whether the entry in the cache is still valid. You can
  ## use versioning information for ``cache``:
  ##
  ## .. code-block:: nim
  ##     const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")

proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
                                                              exitCode: int] =
  ## Same as `gorge` but also returns the precious exit code.
  discard

proc `+=`*[T: SomeInteger](x: var T, y: T) {.
  magic: "Inc", noSideEffect.}
  ## Increments an integer

proc `+=`*[T: enum|bool](x: var T, y: T) {.
  magic: "Inc", noSideEffect, deprecated: "use `inc` instead".}

proc `-=`*[T: SomeInteger](x: var T, y: T) {.
  magic: "Dec", noSideEffect.}
  ## Decrements an ordinal

proc `-=`*[T: enum|bool](x: var T, y: T) {.
  magic: "Dec", noSideEffect, deprecated: "0.20.0, use `dec` instead".}

proc `*=`*[T: SomeInteger](x: var T, y: T) {.
  inline, noSideEffect.} =
  ## Binary `*=` operator for ordinals
  x = x * y

proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
  inline, noSideEffect.} =
  ## Increments in place a floating point number
  x = x + y

proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
  inline, noSideEffect.} =
  ## Decrements in place a floating point number
  x = x - y

proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
  inline, noSideEffect.} =
  ## Multiplies in place a floating point number
  x = x * y

proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
  ## Divides in place a floating point number
  x = x / y

proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
  ## Divides in place a floating point number
  x = x / y

proc `&=`*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
template `&=`*(x, y: typed) =
  ## generic 'sink' operator for Nim. For files an alias for ``write``.
  ## If not specialized further an alias for ``add``.
  add(x, y)
when declared(File):
  template `&=`*(f: File, x: typed) = write(f, x)

proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
  ## converts the AST of `x` into a string representation. This is very useful
  ## for debugging.

proc instantiationInfo*(index = -1, fullPaths = false): tuple[
  filename: string, line: int, column: int] {.magic: "InstantiationInfo", noSideEffect.}
  ## provides access to the compiler's instantiation stack line information
  ## of a template.
  ##
  ## While similar to the `caller info`:idx: of other languages, it is determined
  ## at compile time.
  ##
  ## This proc is mostly useful for meta programming (eg. ``assert`` template)
  ## to retrieve information about the current filename and line number.
  ## Example:
  ##
  ## .. code-block:: nim
  ##   import strutils
  ##
  ##   template testException(exception, code: untyped): typed =
  ##     try:
  ##       let pos = instantiationInfo()
  ##       discard(code)
  ##       echo "Test failure at $1:$2 with '$3'" % [pos.filename,
  ##         $pos.line, astToStr(code)]
  ##       assert false, "A test expecting failure succeeded?"
  ##     except exception:
  ##       discard
  ##
  ##   proc tester(pos: int): int =
  ##     let
  ##       a = @[1, 2, 3]
  ##     result = a[pos]
  ##
  ##   when isMainModule:
  ##     testException(IndexError, tester(30))
  ##     testException(IndexError, tester(1))
  ##     # --> Test failure at example.nim:20 with 'tester(1)'

template currentSourcePath*: string = instantiationInfo(-1, true).filename
  ## returns the full file-system path of the current source

proc raiseAssert*(msg: string) {.noinline, noReturn.} =
  sysFatal(AssertionError, msg)

proc failedAssertImpl*(msg: string) {.raises: [], tags: [].} =
  # trick the compiler to not list ``AssertionError`` when called
  # by ``assert``.
  type Hide = proc (msg: string) {.noinline, raises: [], noSideEffect,
                                    tags: [].}
  Hide(raiseAssert)(msg)

template assertImpl(cond: bool, msg: string, expr: string, enabled: static[bool]) =
  const loc = $instantiationInfo(-1, true)
  bind instantiationInfo
  mixin failedAssertImpl
  when enabled:
    # for stacktrace; fixes #8928 ; Note: `fullPaths = true` is correct
    # here, regardless of --excessiveStackTrace
    {.line: instantiationInfo(fullPaths = true).}:
      if not cond:
        failedAssertImpl(loc & " `" & expr & "` " & msg)

template assert*(cond: untyped, msg = "") =
  ## Raises ``AssertionError`` with `msg` if `cond` is false. Note
  ## that ``AssertionError`` is hidden from the effect system, so it doesn't
  ## produce ``{.raises: [AssertionError].}``. This exception is only supposed
  ## to be caught by unit testing frameworks.
  ##
  ## The compiler may not generate any code at all for ``assert`` if it is
  ## advised to do so through the ``-d:release`` or ``--assertions:off``
  ## `command line switches <nimc.html#command-line-switches>`_.
  const expr = astToStr(cond)
  assertImpl(cond, msg, expr, compileOption("assertions"))

template doAssert*(cond: untyped, msg = "") =
  ## same as ``assert`` but is always turned on regardless of ``--assertions``
  const expr = astToStr(cond)
  assertImpl(cond, msg, expr, true)

iterator items*[T](a: seq[T]): T {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  let L = len(a)
  while i < L:
    yield a[i]
    inc(i)
    assert(len(a) == L, "seq modified while iterating over it")

iterator mitems*[T](a: var seq[T]): var T {.inline.} =
  ## iterates over each item of `a` so that you can modify the yielded value.
  var i = 0
  let L = len(a)
  while i < L:
    yield a[i]
    inc(i)
    assert(len(a) == L, "seq modified while iterating over it")

iterator items*(a: string): char {.inline.} =
  ## iterates over each item of `a`.
  var i = 0
  let L = len(a)
  while i < L:
    yield a[i]
    inc(i)
    assert(len(a) == L, "string modified while iterating over it")

iterator mitems*(a: var string): var char {.inline.} =
  ## iterates over each item of `a` so that you can modify the yielded value.
  var i = 0
  let L = len(a)
  while i < L:
    yield a[i]
    inc(i)
    assert(len(a) == L, "string modified while iterating over it")

when not defined(nimhygiene):
  {.pragma: inject.}

template onFailedAssert*(msg, code: untyped): untyped {.dirty.} =
  ## Sets an assertion failure handler that will intercept any assert
  ## statements following `onFailedAssert` in the current module scope.
  ##
  ## .. code-block:: nim
  ##  # module-wide policy to change the failed assert
  ##  # exception type in order to include a lineinfo
  ##  onFailedAssert(msg):
  ##    var e = new(TMyError)
  ##    e.msg = msg
  ##    e.lineinfo = instantiationInfo(-2)
  ##    raise e
  ##
  template failedAssertImpl(msgIMPL: string): untyped {.dirty.} =
    let msg = msgIMPL
    code

proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
  ## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
  ## perform deep copies of `s`. This is only useful for optimization
  ## purposes.
  if s.len == 0: return
  when not defined(JS) and not defined(nimscript):
    var s = cast[PGenericSeq](s)
    s.reserved = s.reserved or seqShallowFlag

proc shallow*(s: var string) {.noSideEffect, inline.} =
  ## marks a string `s` as `shallow`:idx:. Subsequent assignments will not
  ## perform deep copies of `s`. This is only useful for optimization
  ## purposes.
  when not defined(JS) and not defined(nimscript) and not defined(gcDestructors):
    var s = cast[PGenericSeq](s)
    if s == nil:
      s = cast[PGenericSeq](newString(0))
    # string literals cannot become 'shallow':
    if (s.reserved and strlitFlag) == 0:
      s.reserved = s.reserved or seqShallowFlag

type
  NimNodeObj = object

  NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
    ## represents a Nim AST node. Macros operate on this type.

when false:
  template eval*(blk: typed): typed =
    ## executes a block of code at compile time just as if it was a macro
    ## optionally, the block can return an AST tree that will replace the
    ## eval expression
    macro payload: typed {.gensym.} = blk
    payload()

when hasAlloc:
  proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
    ## inserts `item` into `x` at position `i`.
    var xl = x.len
    setLen(x, xl+item.len)
    var j = xl-1
    while j >= i:
      shallowCopy(x[j+item.len], x[j])
      dec(j)
    j = 0
    while j < item.len:
      x[j+i] = item[j]
      inc(j)

when declared(initDebugger):
  initDebugger()

proc addEscapedChar*(s: var string, c: char) {.noSideEffect, inline.} =
  ## Adds a char to string `s` and applies the following escaping:
  ##
  ## * replaces any ``\`` by ``\\``
  ## * replaces any ``'`` by ``\'``
  ## * replaces any ``"`` by ``\"``
  ## * replaces any ``\a`` by ``\\a``
  ## * replaces any ``\b`` by ``\\b``
  ## * replaces any ``\t`` by ``\\t``
  ## * replaces any ``\n`` by ``\\n``
  ## * replaces any ``\v`` by ``\\v``
  ## * replaces any ``\f`` by ``\\f``
  ## * replaces any ``\c`` by ``\\c``
  ## * replaces any ``\e`` by ``\\e``
  ## * replaces any other character not in the set ``{'\21..'\126'}
  ##   by ``\xHH`` where ``HH`` is its hexadecimal value.
  ##
  ## The procedure has been designed so that its output is usable for many
  ## different common syntaxes.
  ## **Note**: This is not correct for producing Ansi C code!
  case c
  of '\a': s.add "\\a" # \x07
  of '\b': s.add "\\b" # \x08
  of '\t': s.add "\\t" # \x09
  of '\L': s.add "\\n" # \x0A
  of '\v': s.add "\\v" # \x0B
  of '\f': s.add "\\f" # \x0C
  of '\c': s.add "\\c" # \x0D
  of '\e': s.add "\\e" # \x1B
  of '\\': s.add("\\\\")
  of '\'': s.add("\\'")
  of '\"': s.add("\\\"")
  of {'\32'..'\126'} - {'\\', '\'', '\"'}: s.add(c)
  else:
    s.add("\\x")
    const HexChars = "0123456789ABCDEF"
    let n = ord(c)
    s.add(HexChars[int((n and 0xF0) shr 4)])
    s.add(HexChars[int(n and 0xF)])

proc addQuoted*[T](s: var string, x: T) =
  ## Appends `x` to string `s` in place, applying quoting and escaping
  ## if `x` is a string or char. See
  ## `addEscapedChar <system.html#addEscapedChar>`_
  ## for the escaping scheme. When `x` is a string, characters in the
  ## range ``{\128..\255}`` are never escaped so that multibyte UTF-8
  ## characters are untouched (note that this behavior is different from
  ## ``addEscapedChar``).
  ##
  ## The Nim standard library uses this function on the elements of
  ## collections when producing a string representation of a collection.
  ## It is recommended to use this function as well for user-side collections.
  ## Users may overload `addQuoted` for custom (string-like) types if
  ## they want to implement a customized element representation.
  ##
  ## .. code-block:: Nim
  ##   var tmp = ""
  ##   tmp.addQuoted(1)
  ##   tmp.add(", ")
  ##   tmp.addQuoted("string")
  ##   tmp.add(", ")
  ##   tmp.addQuoted('c')
  ##   assert(tmp == """1, "string", 'c'""")
  when T is string or T is cstring:
    s.add("\"")
    for c in x:
      # Only ASCII chars are escaped to avoid butchering
      # multibyte UTF-8 characters.
      if c <= 127.char:
        s.addEscapedChar(c)
      else:
        s.add c
    s.add("\"")
  elif T is char:
    s.add("'")
    s.addEscapedChar(x)
    s.add("'")
  # prevent temporary string allocation
  elif compiles(s.add(x)):
    s.add(x)
  else:
    s.add($x)

when hasAlloc:
  # XXX: make these the default (or implement the NilObject optimization)
  proc safeAdd*[T](x: var seq[T], y: T) {.noSideEffect, deprecated.} =
    ## Adds ``y`` to ``x`` unless ``x`` is not yet initialized; in that case,
    ## ``x`` becomes ``@[y]``
    when defined(nimNoNilSeqs):
      x.add(y)
    else:
      if x == nil: x = @[y]
      else: x.add(y)

  proc safeAdd*(x: var string, y: char) {.noSideEffect, deprecated.} =
    ## Adds ``y`` to ``x``. If ``x`` is ``nil`` it is initialized to ``""``
    when defined(nimNoNilSeqs):
      x.add(y)
    else:
      if x == nil: x = ""
      x.add(y)

  proc safeAdd*(x: var string, y: string) {.noSideEffect, deprecated.} =
    ## Adds ``y`` to ``x`` unless ``x`` is not yet initalized; in that
    ## case, ``x`` becomes ``y``
    when defined(nimNoNilSeqs):
      x.add(y)
    else:
      if x == nil: x = y
      else: x.add(y)

proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
  ## generates a tuple constructor expression listing all the local variables
  ## in the current scope. This is quite fast as it does not rely
  ## on any debug or runtime information. Note that in contrast to what
  ## the official signature says, the return type is not ``RootObj`` but a
  ## tuple of a structure that depends on the current scope. Example:
  ##
  ## .. code-block:: nim
  ##   proc testLocals() =
  ##     var
  ##       a = "something"
  ##       b = 4
  ##       c = locals()
  ##       d = "super!"
  ##
  ##     b = 1
  ##     for name, value in fieldPairs(c):
  ##       echo "name ", name, " with value ", value
  ##     echo "B is ", b
  ##   # -> name a with value something
  ##   # -> name b with value 4
  ##   # -> B is 1
  discard

when hasAlloc and not defined(nimscript) and not defined(JS) and
    not defined(gcDestructors):
  # XXX how to implement 'deepCopy' is an open problem.
  proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
    ## performs a deep copy of `y` and copies it into `x`.
    ## This is also used by the code generator
    ## for the implementation of ``spawn``.
    discard

  proc deepCopy*[T](y: T): T =
    ## Convenience wrapper around `deepCopy` overload.
    deepCopy(result, y)

  include "system/deepcopy"

proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
  ## special magic to prohibit dynamic binding for `method`:idx: calls.
  ## This is similar to `super`:idx: in ordinary OO languages.
  ##
  ## .. code-block:: nim
  ##   # 'someMethod' will be resolved fully statically:
  ##   procCall someMethod(a, b)
  discard

proc xlen*(x: string): int {.magic: "XLenStr", noSideEffect,
                             deprecated: "use len() instead".} =
  ## **Deprecated since version 0.18.1**. Use len() instead.
  discard
proc xlen*[T](x: seq[T]): int {.magic: "XLenSeq", noSideEffect,
                                deprecated: "use len() instead".} =
  ## returns the length of a sequence or a string without testing for 'nil'.
  ## This is an optimization that rarely makes sense.
  ## **Deprecated since version 0.18.1**. Use len() instead.
  discard


proc `==`*(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
                                   inline.} =
  ## Checks for equality between two `cstring` variables.
  proc strcmp(a, b: cstring): cint {.noSideEffect,
    importc, header: "<string.h>".}
  if pointer(x) == pointer(y): result = true
  elif x.isNil or y.isNil: result = false
  else: result = strcmp(x, y) == 0

when defined(nimNoNilSeqs2):
  when not compileOption("nilseqs"):
    when defined(nimHasUserErrors):
      proc `==`*(x: string; y: type(nil)): bool {.
          error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
        discard
      proc `==`*(x: type(nil); y: string): bool {.
          error: "'nil' is now invalid for 'string'; compile with --nilseqs:on for a migration period".} =
        discard
    else:
      proc `==`*(x: string; y: type(nil)): bool {.error.} = discard
      proc `==`*(x: type(nil); y: string): bool {.error.} = discard

template closureScope*(body: untyped): untyped =
  ## Useful when creating a closure in a loop to capture local loop variables by
  ## their current iteration values. Example:
  ##
  ## .. code-block:: nim
  ##   var myClosure : proc()
  ##   # without closureScope:
  ##   for i in 0 .. 5:
  ##     let j = i
  ##     if j == 3:
  ##       myClosure = proc() = echo j
  ##   myClosure() # outputs 5. `j` is changed after closure creation
  ##   # with closureScope:
  ##   for i in 0 .. 5:
  ##     closureScope: # Everything in this scope is locked after closure creation
  ##       let j = i
  ##       if j == 3:
  ##         myClosure = proc() = echo j
  ##   myClosure() # outputs 3
  (proc() = body)()

template once*(body: untyped): untyped =
  ## Executes a block of code only once (the first time the block is reached).
  ## When hot code reloading is enabled, protects top-level code from being
  ## re-executed on each module reload.
  ##
  ## .. code-block:: nim
  ##
  ##  proc draw(t: Triangle) =
  ##    once:
  ##      graphicsInit()
  ##    line(t.p1, t.p2)
  ##    line(t.p2, t.p3)
  ##    line(t.p3, t.p1)
  ##
  var alreadyExecuted {.global.} = false
  if not alreadyExecuted:
    alreadyExecuted = true
    body

{.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}

proc substr*(s: string, first, last: int): string =
  let first = max(first, 0)
  let L = max(min(last, high(s)) - first + 1, 0)
  result = newString(L)
  for i in 0 .. L-1:
    result[i] = s[i+first]

proc substr*(s: string, first = 0): string =
  ## copies a slice of `s` into a new string and returns this new
  ## string. The bounds `first` and `last` denote the indices of
  ## the first and last characters that shall be copied. If ``last``
  ## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
  ## is used instead: This means ``substr`` can also be used to `cut`:idx:
  ## or `limit`:idx: a string's length.
  result = substr(s, first, high(s))

when defined(nimconfig):
  include "system/nimscript"

when defined(windows) and appType == "console" and defined(nimSetUtf8CodePage):
  proc setConsoleOutputCP(codepage: cint): cint {.stdcall, dynlib: "kernel32",
    importc: "SetConsoleOutputCP".}
  discard setConsoleOutputCP(65001) # 65001 - utf-8 codepage

template doAssertRaises*(exception: typedesc, code: untyped): typed =
  ## Raises ``AssertionError`` if specified ``code`` does not raise the
  ## specified exception. Example:
  ##
  ## .. code-block:: nim
  ##  doAssertRaises(ValueError):
  ##    raise newException(ValueError, "Hello World")
  var wrong = false
  when Exception is exception:
    try:
      if true:
        code
      wrong = true
    except Exception:
      discard
  else:
    try:
      if true:
        code
      wrong = true
    except exception:
      discard
    except Exception as exc:
      raiseAssert(astToStr(exception) &
                  " wasn't raised, another error was raised instead by:\n"&
                  astToStr(code))
  if wrong:
    raiseAssert(astToStr(exception) & " wasn't raised by:\n" & astToStr(code))

when defined(cpp) and appType != "lib" and
    not defined(js) and not defined(nimscript) and
    hostOS != "standalone" and not defined(noCppExceptions):
  proc setTerminate(handler: proc() {.noconv.})
    {.importc: "std::set_terminate", header: "<exception>".}
  setTerminate proc() {.noconv.} =
    # Remove ourself as a handler, reinstalling the default handler.
    setTerminate(nil)

    let ex = getCurrentException()
    let trace = ex.getStackTrace()
    when defined(genode):
      # stderr not available by default, use the LOG session
      echo trace & "Error: unhandled exception: " & ex.msg &
                   " [" & $ex.name & "]\n"
    else:
      stderr.write trace & "Error: unhandled exception: " & ex.msg &
                   " [" & $ex.name & "]\n"
    quit 1

when not defined(js):
  proc toOpenArray*[T](x: seq[T]; first, last: int): openarray[T] {.
    magic: "Slice".}
  proc toOpenArray*[T](x: openarray[T]; first, last: int): openarray[T] {.
    magic: "Slice".}
  proc toOpenArray*[T](x: ptr UncheckedArray[T]; first, last: int): openarray[T] {.
    magic: "Slice".}
  proc toOpenArray*[I, T](x: array[I, T]; first, last: I): openarray[T] {.
    magic: "Slice".}
  proc toOpenArray*(x: string; first, last: int): openarray[char] {.
    magic: "Slice".}
  proc toOpenArrayByte*(x: string; first, last: int): openarray[byte] {.
    magic: "Slice".}

type
  ForLoopStmt* {.compilerProc.} = object ## special type that marks a macro
                                         ## as a `for-loop macro`:idx:

when defined(genode):
  var componentConstructHook*: proc (env: GenodeEnv) {.nimcall.}
      ## Hook into the Genode component bootstrap process.
      ## This hook is called after all globals are initialized.
      ## When this hook is set the component will not automatically exit,
      ## call ``quit`` explicitly to do so. This is the only available method
      ## of accessing the initial Genode environment.

  proc nim_component_construct(env: GenodeEnv) {.exportc.} =
    ## Procedure called during ``Component::construct`` by the loader.
    if componentConstructHook.isNil:
      env.quit(programResult)
        # No native Genode application initialization,
        # exit as would POSIX.
    else:
      componentConstructHook(env)
        # Perform application initialization
        # and return to thread entrypoint.

proc `$`*(t: typedesc): string {.magic: "TypeTrait".} =
  ## Returns the name of the given type.
  ##
  ## For more procedures dealing with ``typedesc``, see ``typetraits.nim``.
  runnableExamples:
    doAssert $(type(42)) == "int"
    doAssert $(type("Foo")) == "string"
    static: doAssert $(type(@['A', 'B'])) == "seq[char]"