1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Nim Contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements types which encapsulate an optional value.
##
## A value of type `Option[T]` either contains a value `x` (represented as
## `some(x)`) or is empty (`none(T)`).
##
## This can be useful when you have a value that can be present or not. The
## absence of a value is often represented by `nil`, but it is not always
## available, nor is it always a good solution.
##
##
## Basic usage
## ===========
##
## Let's start with an example: a procedure that finds the index of a character
## in a string.
##
runnableExamples:
proc find(haystack: string, needle: char): Option[int] =
for i, c in haystack:
if c == needle:
return some(i)
return none(int) # This line is actually optional,
# because the default is empty
let found = "abc".find('c')
assert found.isSome and found.get() == 2
## The `get` operation demonstrated above returns the underlying value, or
## raises `UnpackDefect` if there is no value. Note that `UnpackDefect`
## inherits from `system.Defect`, and should therefore never be caught.
## Instead, rely on checking if the option contains a value with
## `isSome <#isSome,Option[T]>`_ and `isNone <#isNone,Option[T]>`_ procs.
##
## How to deal with an absence of a value:
runnableExamples:
let result = none(int)
# It has no value:
assert(result.isNone)
import typetraits
when (NimMajor, NimMinor) >= (1, 1):
type
SomePointer = ref | ptr | pointer | proc
else:
type
SomePointer = ref | ptr | pointer
type
Option*[T] = object
## An optional type that stores its value and state separately in a boolean.
when T is SomePointer:
val: T
else:
val: T
has: bool
UnpackDefect* = object of Defect
UnpackError* {.deprecated: "See corresponding Defect".} = UnpackDefect
proc option*[T](val: T): Option[T] {.inline.} =
## Can be used to convert a pointer type (`ptr` or `ref` or `proc`) to an option type.
## It converts `nil` to `None`.
##
## See also:
## * `some <#some,T>`_
## * `none <#none,typedesc>`_
runnableExamples:
type
Foo = ref object
a: int
b: string
var c: Foo
assert c.isNil
var d = option(c)
assert d.isNone
result.val = val
when T isnot SomePointer:
result.has = true
proc some*[T](val: T): Option[T] {.inline.} =
## Returns an `Option` that has the value `val`.
##
## See also:
## * `option <#option,T>`_
## * `none <#none,typedesc>`_
## * `isSome <#isSome,Option[T]>`_
runnableExamples:
var
a = some("abc")
b = some(42)
assert $type(a) == "Option[system.string]"
assert b.isSome
assert a.get == "abc"
assert $b == "Some(42)"
when T is SomePointer:
assert(not val.isNil)
result.val = val
else:
result.has = true
result.val = val
proc none*(T: typedesc): Option[T] {.inline.} =
## Returns an `Option` for this type that has no value.
##
## See also:
## * `option <#option,T>`_
## * `some <#some,T>`_
## * `isNone <#isNone,Option[T]>`_
runnableExamples:
var a = none(int)
assert a.isNone
assert $type(a) == "Option[system.int]"
# the default is the none type
discard
proc none*[T]: Option[T] {.inline.} =
## Alias for `none(T) proc <#none,typedesc>`_.
none(T)
proc isSome*[T](self: Option[T]): bool {.inline.} =
## Checks if an `Option` contains a value.
runnableExamples:
var
a = some(42)
b = none(string)
assert a.isSome
assert not b.isSome
when T is SomePointer:
not self.val.isNil
else:
self.has
proc isNone*[T](self: Option[T]): bool {.inline.} =
## Checks if an `Option` is empty.
runnableExamples:
var
a = some(42)
b = none(string)
assert not a.isNone
assert b.isNone
when T is SomePointer:
self.val.isNil
else:
not self.has
proc get*[T](self: Option[T]): lent T {.inline.} =
## Returns contents of an `Option`. If it is `None`, then an exception is
## thrown.
##
## See also:
## * `get proc <#get,Option[T],T>`_ with the default return value
runnableExamples:
let
a = some(42)
b = none(string)
assert a.get == 42
doAssertRaises(UnpackDefect):
echo b.get
if self.isNone:
raise newException(UnpackDefect, "Can't obtain a value from a `none`")
result = self.val
proc get*[T](self: Option[T], otherwise: T): T {.inline.} =
## Returns the contents of the `Option` or an `otherwise` value if
## the `Option` is `None`.
runnableExamples:
var
a = some(42)
b = none(int)
assert a.get(9999) == 42
assert b.get(9999) == 9999
if self.isSome:
self.val
else:
otherwise
proc get*[T](self: var Option[T]): var T {.inline.} =
## Returns contents of the `var Option`. If it is `None`, then an exception
## is thrown.
runnableExamples:
let
a = some(42)
b = none(string)
assert a.get == 42
doAssertRaises(UnpackDefect):
echo b.get
if self.isNone:
raise newException(UnpackDefect, "Can't obtain a value from a `none`")
return self.val
proc map*[T](self: Option[T], callback: proc (input: T)) {.inline.} =
## Applies a `callback` function to the value of the `Option`, if it has one.
##
## See also:
## * `map proc <#map,Option[T],proc(T)_2>`_ for a version with a callback
## which returns a value
## * `filter proc <#filter,Option[T],proc(T)>`_
runnableExamples:
var d = 0
proc saveDouble(x: int) =
d = 2*x
let
a = some(42)
b = none(int)
b.map(saveDouble)
assert d == 0
a.map(saveDouble)
assert d == 84
if self.isSome:
callback(self.val)
proc map*[T, R](self: Option[T], callback: proc (input: T): R): Option[R] {.inline.} =
## Applies a `callback` function to the value of the `Option` and returns an
## `Option` containing the new value.
##
## If the `Option` is `None`, `None` of the return type of the `callback`
## will be returned.
##
## See also:
## * `flatMap proc <#flatMap,Option[A],proc(A)>`_ for a version with a
## callback which returns an `Option`
## * `filter proc <#filter,Option[T],proc(T)>`_
runnableExamples:
var
a = some(42)
b = none(int)
proc isEven(x: int): bool =
x mod 2 == 0
assert $(a.map(isEven)) == "Some(true)"
assert $(b.map(isEven)) == "None[bool]"
if self.isSome:
some[R](callback(self.val))
else:
none(R)
proc flatten*[A](self: Option[Option[A]]): Option[A] {.inline.} =
## Remove one level of structure in a nested `Option`.
runnableExamples:
let a = some(some(42))
assert $flatten(a) == "Some(42)"
if self.isSome:
self.val
else:
none(A)
proc flatMap*[A, B](self: Option[A],
callback: proc (input: A): Option[B]): Option[B] {.inline.} =
## Applies a `callback` function to the value of the `Option` and returns an
## `Option` containing the new value.
##
## If the `Option` is `None`, `None` of the return type of the `callback`
## will be returned.
##
## Similar to `map`, with the difference that the `callback` returns an
## `Option`, not a raw value. This allows multiple procs with a
## signature of `A -> Option[B]` to be chained together.
##
## See also:
## * `flatten proc <#flatten,Option[Option[A]]>`_
## * `filter proc <#filter,Option[T],proc(T)>`_
runnableExamples:
proc doublePositives(x: int): Option[int] =
if x > 0:
return some(2*x)
else:
return none(int)
let
a = some(42)
b = none(int)
c = some(-11)
assert a.flatMap(doublePositives) == some(84)
assert b.flatMap(doublePositives) == none(int)
assert c.flatMap(doublePositives) == none(int)
map(self, callback).flatten()
proc filter*[T](self: Option[T], callback: proc (input: T): bool): Option[T] {.inline.} =
## Applies a `callback` to the value of the `Option`.
##
## If the `callback` returns `true`, the option is returned as `Some`.
## If it returns `false`, it is returned as `None`.
##
## See also:
## * `map proc <#map,Option[T],proc(T)_2>`_
## * `flatMap proc <#flatMap,Option[A],proc(A)>`_
runnableExamples:
proc isEven(x: int): bool =
x mod 2 == 0
let
a = some(42)
b = none(int)
c = some(-11)
assert a.filter(isEven) == some(42)
assert b.filter(isEven) == none(int)
assert c.filter(isEven) == none(int)
if self.isSome and not callback(self.val):
none(T)
else:
self
proc `==`*(a, b: Option): bool {.inline.} =
## Returns `true` if both `Option`s are `None`,
## or if they are both `Some` and have equal values.
runnableExamples:
let
a = some(42)
b = none(int)
c = some(42)
d = none(int)
assert a == c
assert b == d
assert not (a == b)
(a.isSome and b.isSome and a.val == b.val) or (not a.isSome and not b.isSome)
proc `$`*[T](self: Option[T]): string =
## Get the string representation of the `Option`.
##
## If the `Option` has a value, the result will be `Some(x)` where `x`
## is the string representation of the contained value.
## If the `Option` does not have a value, the result will be `None[T]`
## where `T` is the name of the type contained in the `Option`.
if self.isSome:
result = "Some("
result.addQuoted self.val
result.add ")"
else:
result = "None[" & name(T) & "]"
proc unsafeGet*[T](self: Option[T]): lent T {.inline.}=
## Returns the value of a `some`. Behavior is undefined for `none`.
##
## **Note:** Use it only when you are **absolutely sure** the value is present
## (e.g. after checking `isSome <#isSome,Option[T]>`_).
## Generally, using `get proc <#get,Option[T]>`_ is preferred.
assert self.isSome
result = self.val
|