1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Robert Persson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import math
import strutils
import numeric
type
TPoly* = object
cofs:seq[float]
proc degree*(p:TPoly):int=
## Returns the degree of the polynomial,
## that is the number of coefficients-1
return p.cofs.len-1
proc eval*(p:TPoly,x:float):float=
## Evaluates a polynomial function value for `x`
## quickly using Horners method
var n=p.degree
result=p.cofs[n]
dec n
while n>=0:
result = result*x+p.cofs[n]
dec n
proc `[]` *(p:TPoly;idx:int):float=
## Gets a coefficient of the polynomial.
## p[2] will returns the quadric term, p[3] the cubic etc.
## Out of bounds index will return 0.0.
if idx<0 or idx>p.degree:
return 0.0
return p.cofs[idx]
proc `[]=` *(p:var TPoly;idx:int,v:float)=
## Sets an coefficient of the polynomial by index.
## p[2] set the quadric term, p[3] the cubic etc.
## If index is out of range for the coefficients,
## the polynomial grows to the smallest needed degree.
assert(idx>=0)
if idx>p.degree: #polynomial must grow
var oldlen=p.cofs.len
p.cofs.setLen(idx+1)
for q in oldlen.. <high(p.cofs):
p.cofs[q]=0.0 #new-grown coefficients set to zero
p.cofs[idx]=v
iterator items*(p:TPoly):float=
## Iterates through the corfficients of the polynomial.
var i=p.degree
while i>=0:
yield p[i]
dec i
proc clean*(p:var TPoly;zerotol=0.0)=
## Removes leading zero coefficients of the polynomial.
## An optional tolerance can be given for what's considered zero.
var n=p.degree
var relen=false
while n>0 and abs(p[n])<=zerotol: # >0 => keep at least one coefficient
dec n
relen=true
if relen: p.cofs.setLen(n+1)
proc `$` *(p:TPoly):string =
## Gets a somewhat reasonable string representation of the polynomial
## The format should be compatible with most online function plotters,
## for example directly in google search
result=""
var first=true #might skip + sign if first coefficient
for idx in countdown(p.degree,0):
let a=p[idx]
if a==0.0:
continue
if a>= 0.0 and not first:
result.add('+')
first=false
if a!=1.0 or idx==0:
result.add(formatFloat(a,ffDefault,0))
if idx>=2:
result.add("x^" & $idx)
elif idx==1:
result.add("x")
if result=="":
result="0"
proc derivative*(p:TPoly):TPoly=
## Returns a new polynomial, which is the derivative of `p`
newSeq[float](result.cofs,p.degree)
for idx in 0..high(result.cofs):
result.cofs[idx]=p.cofs[idx+1]*float(idx+1)
proc diff*(p:TPoly,x:float):float=
## Evaluates the differentiation of a polynomial with
## respect to `x` quickly using a modifed Horners method
var n=p.degree
result=p[n]*float(n)
dec n
while n>=1:
result = result*x+p[n]*float(n)
dec n
proc integral*(p:TPoly):TPoly=
## Returns a new polynomial which is the indefinite
## integral of `p`. The constant term is set to 0.0
newSeq(result.cofs,p.cofs.len+1)
result.cofs[0]=0.0 #constant arbitrary term, use 0.0
for i in 1..high(result.cofs):
result.cofs[i]=p.cofs[i-1]/float(i)
proc integrate*(p:TPoly;xmin,xmax:float):float=
## Computes the definite integral of `p` between `xmin` and `xmax`
## quickly using a modified version of Horners method
var
n=p.degree
s1=p[n]/float(n+1)
s2=s1
fac:float
dec n
while n>=0:
fac=p[n]/float(n+1)
s1 = s1*xmin+fac
s2 = s2*xmax+fac
dec n
result=s2*xmax-s1*xmin
proc initPoly*(cofs:varargs[float]):TPoly=
## Initializes a polynomial with given coefficients.
## The most significant coefficient is first, so to create x^2-2x+3:
## intiPoly(1.0,-2.0,3.0)
if len(cofs)<=0:
result.cofs= @[0.0] #need at least one coefficient
else:
# reverse order of coefficients so indexing matches degree of
# coefficient...
result.cofs= @[]
for idx in countdown(cofs.len-1,0):
result.cofs.add(cofs[idx])
result.clean #remove leading zero terms
proc divMod*(p,d:TPoly;q,r:var TPoly)=
## Divides `p` with `d`, and stores the quotinent in `q` and
## the remainder in `d`
var
pdeg=p.degree
ddeg=d.degree
power=p.degree-d.degree
ratio:float
r.cofs = p.cofs #initial remainder=numerator
if power<0: #denominator is larger than numerator
q.cofs= @ [0.0] #quotinent is 0.0
return # keep remainder as numerator
q.cofs=newSeq[float](power+1)
for i in countdown(pdeg,ddeg):
ratio=r.cofs[i]/d.cofs[ddeg]
q.cofs[i-ddeg]=ratio
r.cofs[i]=0.0
for j in countup(0,<ddeg):
var idx=i-ddeg+j
r.cofs[idx] = r.cofs[idx] - d.cofs[j]*ratio
r.clean # drop zero coefficients in remainder
proc `+` *(p1:TPoly,p2:TPoly):TPoly=
## Adds two polynomials
var n=max(p1.cofs.len,p2.cofs.len)
newSeq(result.cofs,n)
for idx in countup(0,n-1):
result[idx]=p1[idx]+p2[idx]
result.clean # drop zero coefficients in remainder
proc `*` *(p1:TPoly,p2:TPoly):TPoly=
## Multiplies the polynomial `p1` with `p2`
var
d1=p1.degree
d2=p2.degree
n=d1+d2
idx:int
newSeq(result.cofs,n)
for i1 in countup(0,d1):
for i2 in countup(0,d2):
idx=i1+i2
result[idx]=result[idx]+p1[i1]*p2[i2]
result.clean
proc `*` *(p:TPoly,f:float):TPoly=
## Multiplies the polynomial `p` with a real number
newSeq(result.cofs,p.cofs.len)
for i in 0..high(p.cofs):
result[i]=p.cofs[i]*f
result.clean
proc `*` *(f:float,p:TPoly):TPoly=
## Multiplies a real number with a polynomial
return p*f
proc `-`*(p:TPoly):TPoly=
## Negates a polynomial
result=p
for i in countup(0,<result.cofs.len):
result.cofs[i]= -result.cofs[i]
proc `-` *(p1:TPoly,p2:TPoly):TPoly=
## Subtract `p1` with `p2`
var n=max(p1.cofs.len,p2.cofs.len)
newSeq(result.cofs,n)
for idx in countup(0,n-1):
result[idx]=p1[idx]-p2[idx]
result.clean # drop zero coefficients in remainder
proc `/`*(p:TPoly,f:float):TPoly=
## Divides polynomial `p` with a real number `f`
newSeq(result.cofs,p.cofs.len)
for i in 0..high(p.cofs):
result[i]=p.cofs[i]/f
result.clean
proc `/` *(p,q:TPoly):TPoly=
## Divides polynomial `p` with polynomial `q`
var dummy:TPoly
p.divMod(q,result,dummy)
proc `mod` *(p,q:TPoly):TPoly=
## Computes the polynomial modulo operation,
## that is the remainder of `p`/`q`
var dummy:TPoly
p.divMod(q,dummy,result)
proc normalize*(p:var TPoly)=
## Multiplies the polynomial inplace by a term so that
## the leading term is 1.0.
## This might lead to an unstable polynomial
## if the leading term is zero.
p=p/p[p.degree]
proc solveQuadric*(a,b,c:float;zerotol=0.0):seq[float]=
## Solves the quadric equation `ax^2+bx+c`, with a possible
## tolerance `zerotol` to find roots of curves just 'touching'
## the x axis. Returns sequence with 0,1 or 2 solutions.
var p,q,d:float
p=b/(2.0*a)
if p==inf or p==neginf: #linear equation..
var linrt= -c/b
if linrt==inf or linrt==neginf: #constant only
return @[]
return @[linrt]
q=c/a
d=p*p-q
if d<0.0:
#check for inside zerotol range for neg. roots
var err=a*p*p-b*p+c #evaluate error at parabola center axis
if(err<=zerotol): return @[-p]
return @[]
else:
var sr=sqrt(d)
result= @[-sr-p,sr-p]
proc getRangeForRoots(p:TPoly):tuple[xmin,xmax:float]=
## helper function for `roots` function
## quickly computes a range, guaranteed to contain
## all the real roots of the polynomial
# see http://www.mathsisfun.com/algebra/polynomials-bounds-zeros.html
var deg=p.degree
var d=p[deg]
var bound1,bound2:float
for i in countup(0,deg):
var c=abs(p.cofs[i]/d)
bound1=max(bound1,c+1.0)
bound2=bound2+c
bound2=max(1.0,bound2)
result.xmax=min(bound1,bound2)
result.xmin= -result.xmax
proc addRoot(p:TPoly,res:var seq[float],xp0,xp1,tol,zerotol,mergetol:float,maxiter:int)=
## helper function for `roots` function
## try to do a numeric search for a single root in range xp0-xp1,
## adding it to `res` (allocating `res` if nil)
var br=brent(xp0,xp1, proc(x:float):float=p.eval(x),tol)
if br.success:
if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots.
res.add(br.rootx)
else:
#this might be a 'touching' case, check function value against
#zero tolerance
if abs(br.rooty)<=zerotol:
if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots.
res.add(br.rootx)
proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12,maxiter=1000):seq[float]=
## Computes the real roots of the polynomial `p`
## `tol` is the tolerance used to break searching for each root when reached.
## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root
## and is used to find roots for curves that only 'touch' the x-axis.
## `mergetol` is the tolerance, of which two x-values are considered beeing the same root.
## `maxiter` can be used to limit the number of iterations for each root.
## Returns a (possibly empty) sorted sequence with the solutions.
var deg=p.degree
if deg<=0: #constant only => no roots
return @[]
elif p.degree==1: #linear
var linrt= -p.cofs[0]/p.cofs[1]
if linrt==inf or linrt==neginf:
return @[] #constant only => no roots
return @[linrt]
elif p.degree==2:
return solveQuadric(p.cofs[2],p.cofs[1],p.cofs[0],zerotol)
else:
# degree >=3 , find min/max points of polynomial with recursive
# derivative and do a numerical search for root between each min/max
var range=p.getRangeForRoots()
var minmax=p.derivative.roots(tol,zerotol,mergetol)
result= @[]
if minmax!=nil: #ie. we have minimas/maximas in this function
for x in minmax.items:
addRoot(p,result,range.xmin,x,tol,zerotol,mergetol,maxiter)
range.xmin=x
addRoot(p,result,range.xmin,range.xmax,tol,zerotol,mergetol,maxiter)
|