summary refs log tree commit diff stats
path: root/lib/pure/random.nim
blob: e36f2be47d63311eb519923efd693e725cc5b03c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
#
#
#            Nim's Runtime Library
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Nim's standard random number generator.
##
## Its implementation is based on the ``xoroshiro128+``
## (xor/rotate/shift/rotate) library.
## * More information: http://xoroshiro.di.unimi.it/
## * C implementation: http://xoroshiro.di.unimi.it/xoroshiro128plus.c
##
## **Do not use this module for cryptographic purposes!**
##
## Basic usage
## ===========
##
## To get started, here are some examples:
##
## .. code-block::
##
##   import random
##
##   # Call randomize() once to initialize the default random number generator
##   # If this is not called, the same results will occur every time these
##   # examples are run
##   randomize()
##
##   # Pick a number between 0 and 100
##   let num = rand(100)
##   echo num
##
##   # Roll a six-sided die
##   let roll = rand(1..6)
##   echo roll
##
##   # Pick a marble from a bag
##   let marbles = ["red", "blue", "green", "yellow", "purple"]
##   let pick = sample(marbles)
##   echo pick
##
##   # Shuffle some cards
##   var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
##   shuffle(cards)
##   echo cards
##
## These examples all use the default random number generator. The
## `Rand type<#Rand>`_ represents the state of a random number generator.
## For convenience, this module contains a default Rand state that corresponds
## to the default random number generator. Most procs in this module which do
## not take in a Rand parameter, including those called in the above examples,
## use the default generator. Those procs are **not** thread-safe.
##
## Note that the default generator always starts in the same state.
## The `randomize proc<#randomize>`_ can be called to initialize the default
## generator with a seed based on the current time, and it only needs to be
## called once before the first usage of procs from this module. If
## ``randomize`` is not called, then the default generator will always produce
## the same results.
##
## Generators that are independent of the default one can be created with the
## `initRand proc<#initRand,int64>`_.
##
## Again, it is important to remember that this module must **not** be used for
## cryptographic applications.
##
## See also
## ========
## * `math module<math.html>`_ for basic math routines
## * `mersenne module<mersenne.html>`_ for the Mersenne Twister random number
##   generator
## * `stats module<stats.html>`_ for statistical analysis
## * `list of cryptographic and hashing modules
##   <lib.html#pure-libraries-hashing>`_
##   in the standard library

import algorithm #For upperBound

include "system/inclrtl"
{.push debugger: off.}

when defined(js):
  type Ui = uint32

  const randMax = 4_294_967_295u32
else:
  type Ui = uint64

  const randMax = 18_446_744_073_709_551_615u64

type
  Rand* = object ## State of a random number generator.
                 ##
                 ## Create a new Rand state using the `initRand proc<#initRand,int64>`_.
                 ##
                 ## The module contains a default Rand state for convenience.
                 ## It corresponds to the default random number generator's state.
                 ## The default Rand state always starts with the same values, but the
                 ## `randomize proc<#randomize>`_ can be used to seed the default generator
                 ## with a value based on the current time.
                 ##
                 ## Many procs have two variations: one that takes in a Rand parameter and
                 ## another that uses the default generator. The procs that use the default
                 ## generator are **not** thread-safe!
    a0, a1: Ui

when defined(js):
  var state = Rand(
    a0: 0x69B4C98Cu32,
    a1: 0xFED1DD30u32) # global for backwards compatibility
else:
  # racy for multi-threading but good enough for now:
  var state = Rand(
    a0: 0x69B4C98CB8530805u64,
    a1: 0xFED1DD3004688D67CAu64) # global for backwards compatibility

proc rotl(x, k: Ui): Ui =
  result = (x shl k) or (x shr (Ui(64) - k))

proc next*(r: var Rand): uint64 =
  ## Computes a random ``uint64`` number using the given state.
  ##
  ## See also:
  ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer between zero and
  ##   a given upper bound
  ## * `rand proc<#rand,Rand,range[]>`_ that returns a float
  ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  ## * `skipRandomNumbers proc<#skipRandomNumbers,Rand>`_
  runnableExamples:
    var r = initRand(2019)
    doAssert r.next() == 138_744_656_611_299'u64
    doAssert r.next() == 979_810_537_855_049_344'u64
    doAssert r.next() == 3_628_232_584_225_300_704'u64
  let s0 = r.a0
  var s1 = r.a1
  result = s0 + s1
  s1 = s1 xor s0
  r.a0 = rotl(s0, 55) xor s1 xor (s1 shl 14) # a, b
  r.a1 = rotl(s1, 36) # c

proc skipRandomNumbers*(s: var Rand) =
  ## The jump function for the generator.
  ##
  ## This proc is equivalent to 2^64 calls to `next<#next,Rand>`_, and it can
  ## be used to generate 2^64 non-overlapping subsequences for parallel
  ## computations.
  ##
  ## When multiple threads are generating random numbers, each thread must
  ## own the `Rand<#Rand>`_ state it is using so that the thread can safely
  ## obtain random numbers. However, if each thread creates its own Rand state,
  ## the subsequences of random numbers that each thread generates may overlap,
  ## even if the provided seeds are unique. This is more likely to happen as the
  ## number of threads and amount of random numbers generated increases.
  ##
  ## If many threads will generate random numbers concurrently, it is better to
  ## create a single Rand state and pass it to each thread. After passing the
  ## Rand state to a thread, call this proc before passing it to the next one.
  ## By using the Rand state this way, the subsequences of random numbers
  ## generated in each thread will never overlap as long as no thread generates
  ## more than 2^64 random numbers.
  ##
  ## The following example below demonstrates this pattern:
  ##
  ## .. code-block::
  ##   # Compile this example with --threads:on
  ##   import random
  ##   import threadpool
  ##
  ##   const spawns = 4
  ##   const numbers = 100000
  ##
  ##   proc randomSum(rand: Rand): int =
  ##     var r = rand
  ##     for i in 1..numbers:
  ##       result += rand(1..10)
  ##
  ##   var r = initRand(2019)
  ##   var vals: array[spawns, FlowVar[int]]
  ##   for val in vals.mitems:
  ##     val = spawn(randomSum(r))
  ##     r.skipRandomNumbers()
  ##
  ##   for val in vals:
  ##     echo ^val
  ##
  ## See also:
  ## * `next proc<#next,Rand>`_
  when defined(js):
    const helper = [0xbeac0467u32, 0xd86b048bu32]
  else:
    const helper = [0xbeac0467eba5facbu64, 0xd86b048b86aa9922u64]
  var
    s0 = Ui 0
    s1 = Ui 0
  for i in 0..high(helper):
    for b in 0 ..< 64:
      if (helper[i] and (Ui(1) shl Ui(b))) != 0:
        s0 = s0 xor s.a0
        s1 = s1 xor s.a1
      discard next(s)
  s.a0 = s0
  s.a1 = s1

proc random*(max: int): int {.benign, deprecated:
  "Deprecated since v0.18.0; use 'rand' instead".} =
  while true:
    let x = next(state)
    if x < randMax - (randMax mod Ui(max)):
      return int(x mod uint64(max))

proc random*(max: float): float {.benign, deprecated:
  "Deprecated since v0.18.0; use 'rand' instead".} =
  let x = next(state)
  when defined(js):
    result = (float(x) / float(high(uint32))) * max
  else:
    let u = (0x3FFu64 shl 52u64) or (x shr 12u64)
    result = (cast[float](u) - 1.0) * max

proc random*[T](x: HSlice[T, T]): T {.deprecated:
  "Deprecated since v0.18.0; use 'rand' instead".} =
  result = T(random(x.b - x.a)) + x.a

proc random*[T](a: openArray[T]): T {.deprecated:
  "Deprecated since v0.18.0; use 'sample' instead".} =
  result = a[random(a.low..a.len)]

proc rand*(r: var Rand; max: Natural): int {.benign.} =
  ## Returns a random integer in the range `0..max` using the given state.
  ##
  ## See also:
  ## * `rand proc<#rand,int>`_ that returns an integer using the default
  ##   random number generator
  ## * `rand proc<#rand,Rand,range[]>`_ that returns a float
  ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    var r = initRand(123)
    doAssert r.rand(100) == 0
    doAssert r.rand(100) == 96
    doAssert r.rand(100) == 66
  if max == 0: return
  while true:
    let x = next(r)
    if x <= randMax - (randMax mod Ui(max)):
      return int(x mod (uint64(max)+1u64))

proc rand*(max: int): int {.benign.} =
  ## Returns a random integer in the range `0..max`.
  ##
  ## If `randomize<#randomize>`_ has not been called, the sequence of random
  ## numbers returned from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer using a
  ##   provided state
  ## * `rand proc<#rand,float>`_ that returns a float
  ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    randomize(123)
    doAssert rand(100) == 0
    doAssert rand(100) == 96
    doAssert rand(100) == 66
  rand(state, max)

proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} =
  ## Returns a random floating point number in the range `0.0..max`
  ## using the given state.
  ##
  ## See also:
  ## * `rand proc<#rand,float>`_ that returns a float using the default
  ##   random number generator
  ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
  ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    var r = initRand(234)
    let f = r.rand(1.0)
    ## f = 8.717181376738381e-07
  let x = next(r)
  when defined(js):
    result = (float(x) / float(high(uint32))) * max
  else:
    let u = (0x3FFu64 shl 52u64) or (x shr 12u64)
    result = (cast[float](u) - 1.0) * max

proc rand*(max: float): float {.benign.} =
  ## Returns a random floating point number in the range `0.0..max`.
  ##
  ## If `randomize<#randomize>`_ has not been called, the sequence of random
  ## numbers returned from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `rand proc<#rand,Rand,range[]>`_ that returns a float using a
  ##   provided state
  ## * `rand proc<#rand,int>`_ that returns an integer
  ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    randomize(234)
    let f = rand(1.0)
    ## f = 8.717181376738381e-07
  rand(state, max)

proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T =
  ## For a slice `a..b`, returns a value in the range `a..b` using the given
  ## state.
  ##
  ## Allowed types for `T` are integers, floats, and enums without holes.
  ##
  ## See also:
  ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice and uses the
  ##   default random number generator
  ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
  ## * `rand proc<#rand,Rand,range[]>`_ that returns a float
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    var r = initRand(345)
    doAssert r.rand(1..6) == 4
    doAssert r.rand(1..6) == 4
    doAssert r.rand(1..6) == 6
    let f = r.rand(-1.0 .. 1.0)
    ## f = 0.8741183448756229
  when T is SomeFloat:
    result = rand(r, x.b - x.a) + x.a
  else: # Integers and Enum types
    result = T(rand(r, int(x.b) - int(x.a)) + int(x.a))

proc rand*[T: Ordinal or SomeFloat](x: HSlice[T, T]): T =
  ## For a slice `a..b`, returns a value in the range `a..b`.
  ##
  ## Allowed types for `T` are integers, floats, and enums without holes.
  ##
  ## If `randomize<#randomize>`_ has not been called, the sequence of random
  ## numbers returned from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice and uses
  ##   a provided state
  ## * `rand proc<#rand,int>`_ that returns an integer
  ## * `rand proc<#rand,float>`_ that returns a floating point number
  ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
  runnableExamples:
    randomize(345)
    doAssert rand(1..6) == 4
    doAssert rand(1..6) == 4
    doAssert rand(1..6) == 6
  result = rand(state, x)

proc rand*[T](r: var Rand; a: openArray[T]): T {.deprecated:
  "Deprecated since v0.20.0; use 'sample' instead".} =
  result = a[rand(r, a.low..a.high)]

proc rand*[T: SomeInteger](t: typedesc[T]): T =
  ## Returns a random integer in the range `low(T)..high(T)`.
  ##
  ## If `randomize<#randomize>`_ has not been called, the sequence of random
  ## numbers returned from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `rand proc<#rand,int>`_ that returns an integer
  ## * `rand proc<#rand,float>`_ that returns a floating point number
  ## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
  runnableExamples:
    randomize(567)
    doAssert rand(int8) == 55
    doAssert rand(int8) == -42
    doAssert rand(int8) == 43
    doAssert rand(uint32) == 578980729'u32
    doAssert rand(uint32) == 4052940463'u32
    doAssert rand(uint32) == 2163872389'u32
    doAssert rand(range[1..16]) == 11
    doAssert rand(range[1..16]) == 4
    doAssert rand(range[1..16]) == 16
  when T is range:
    result = rand(state, low(T)..high(T))
  else:
    result = cast[T](state.next)

proc rand*[T](a: openArray[T]): T {.deprecated:
  "Deprecated since v0.20.0; use 'sample' instead".} =
  result = a[rand(a.low..a.high)]

proc sample*[T](r: var Rand; s: set[T]): T =
  ## Returns a random element from the set ``s`` using the given state.
  ##
  ## See also:
  ## * `sample proc<#sample,set[T]>`_ that uses the default random number
  ##   generator
  ## * `sample proc<#sample,Rand,openArray[T]>`_ for openarrays
  ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
  ##   cumulative distribution function
  runnableExamples:
    var r = initRand(987)
    let s = {1, 3, 5, 7, 9}
    doAssert r.sample(s) == 5
    doAssert r.sample(s) == 7
    doAssert r.sample(s) == 1
  assert card(s) != 0
  var i = rand(r, card(s) - 1)
  for e in s:
    if i == 0: return e
    dec(i)

proc sample*[T](s: set[T]): T =
  ## Returns a random element from the set ``s``.
  ##
  ## If `randomize<#randomize>`_ has not been called, the order of outcomes
  ## from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `sample proc<#sample,Rand,set[T]>`_ that uses a provided state
  ## * `sample proc<#sample,openArray[T]>`_ for openarrays
  ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
  ##   cumulative distribution function
  runnableExamples:
    randomize(987)
    let s = {1, 3, 5, 7, 9}
    doAssert sample(s) == 5
    doAssert sample(s) == 7
    doAssert sample(s) == 1
  sample(state, s)

proc sample*[T](r: var Rand; a: openArray[T]): T =
  ## Returns a random element from ``a`` using the given state.
  ##
  ## See also:
  ## * `sample proc<#sample,openArray[T]>`_ that uses the default
  ##   random number generator
  ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
  ##   cumulative distribution function
  ## * `sample proc<#sample,Rand,set[T]>`_ for sets
  runnableExamples:
    let marbles = ["red", "blue", "green", "yellow", "purple"]
    var r = initRand(456)
    doAssert r.sample(marbles) == "blue"
    doAssert r.sample(marbles) == "yellow"
    doAssert r.sample(marbles) == "red"
  result = a[r.rand(a.low..a.high)]

proc sample*[T](a: openArray[T]): T =
  ## Returns a random element from ``a``.
  ##
  ## If `randomize<#randomize>`_ has not been called, the order of outcomes
  ## from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `sample proc<#sample,Rand,openArray[T]>`_ that uses a provided state
  ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
  ##   cumulative distribution function
  ## * `sample proc<#sample,set[T]>`_ for sets
  runnableExamples:
    let marbles = ["red", "blue", "green", "yellow", "purple"]
    randomize(456)
    doAssert sample(marbles) == "blue"
    doAssert sample(marbles) == "yellow"
    doAssert sample(marbles) == "red"
  result = a[rand(a.low..a.high)]

proc sample*[T, U](r: var Rand; a: openArray[T]; cdf: openArray[U]): T =
  ## Returns an element from ``a`` using a cumulative distribution function
  ## (CDF) and the given state.
  ##
  ## The ``cdf`` argument does not have to be normalized, and it could contain
  ## any type of elements that can be converted to a ``float``. It must be
  ## the same length as ``a``. Each element in ``cdf`` should be greater than
  ## or equal to the previous element.
  ##
  ## The outcome of the `cumsum<math.html#cumsum,openArray[T]>`_ proc and the
  ## return value of the `cumsummed<math.html#cumsummed,openArray[T]>`_ proc,
  ## which are both in the math module, can be used as the ``cdf`` argument.
  ##
  ## See also:
  ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that also utilizes
  ##   a CDF but uses the default random number generator
  ## * `sample proc<#sample,Rand,openArray[T]>`_ that does not use a CDF
  ## * `sample proc<#sample,Rand,set[T]>`_ for sets
  runnableExamples:
    from math import cumsummed

    let marbles = ["red", "blue", "green", "yellow", "purple"]
    let count = [1, 6, 8, 3, 4]
    let cdf = count.cumsummed
    var r = initRand(789)
    doAssert r.sample(marbles, cdf) == "red"
    doAssert r.sample(marbles, cdf) == "green"
    doAssert r.sample(marbles, cdf) == "blue"
  assert(cdf.len == a.len) # Two basic sanity checks.
  assert(float(cdf[^1]) > 0.0)
  #While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get
  #awfully expensive even in debugging modes.
  let u = r.rand(float(cdf[^1]))
  a[cdf.upperBound(U(u))]

proc sample*[T, U](a: openArray[T]; cdf: openArray[U]): T =
  ## Returns an element from ``a`` using a cumulative distribution function
  ## (CDF).
  ##
  ## This proc works similarly to
  ## `sample[T, U](Rand, openArray[T], openArray[U])
  ## <#sample,Rand,openArray[T],openArray[U]>`_.
  ## See that proc's documentation for more details.
  ##
  ## If `randomize<#randomize>`_ has not been called, the order of outcomes
  ## from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that also utilizes
  ##   a CDF but uses a provided state
  ## * `sample proc<#sample,openArray[T]>`_ that does not use a CDF
  ## * `sample proc<#sample,set[T]>`_ for sets
  runnableExamples:
    from math import cumsummed

    let marbles = ["red", "blue", "green", "yellow", "purple"]
    let count = [1, 6, 8, 3, 4]
    let cdf = count.cumsummed
    randomize(789)
    doAssert sample(marbles, cdf) == "red"
    doAssert sample(marbles, cdf) == "green"
    doAssert sample(marbles, cdf) == "blue"
  state.sample(a, cdf)

proc initRand*(seed: int64): Rand =
  ## Initializes a new `Rand<#Rand>`_ state using the given seed.
  ##
  ## `seed` must not be zero. Providing a specific seed will produce
  ## the same results for that seed each time.
  ##
  ## The resulting state is independent of the default random number
  ## generator's state.
  ##
  ## See also:
  ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default
  ##   random number generator
  ## * `randomize proc<#randomize>`_ that initializes the default random
  ##   number generator using the current time
  runnableExamples:
    from times import getTime, toUnix, nanosecond

    var r1 = initRand(123)

    let now = getTime()
    var r2 = initRand(now.toUnix * 1_000_000_000 + now.nanosecond)
  doAssert seed != 0 # 0 causes `rand(int)` to always return 0 for example.
  result.a0 = Ui(seed shr 16)
  result.a1 = Ui(seed and 0xffff)
  discard next(result)

proc randomize*(seed: int64) {.benign.} =
  ## Initializes the default random number generator with the given seed.
  ##
  ## `seed` must not be zero. Providing a specific seed will produce
  ## the same results for that seed each time.
  ##
  ## See also:
  ## * `initRand proc<#initRand,int64>`_
  ## * `randomize proc<#randomize>`_ that uses the current time instead
  runnableExamples:
    from times import getTime, toUnix, nanosecond

    randomize(123)

    let now = getTime()
    randomize(now.toUnix * 1_000_000_000 + now.nanosecond)
  state = initRand(seed)

proc shuffle*[T](r: var Rand; x: var openArray[T]) =
  ## Shuffles a sequence of elements in-place using the given state.
  ##
  ## See also:
  ## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default
  ##   random number generator
  runnableExamples:
    var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
    var r = initRand(678)
    r.shuffle(cards)
    doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"]
  for i in countdown(x.high, 1):
    let j = r.rand(i)
    swap(x[i], x[j])

proc shuffle*[T](x: var openArray[T]) =
  ## Shuffles a sequence of elements in-place.
  ##
  ## If `randomize<#randomize>`_ has not been called, the order of outcomes
  ## from this proc will always be the same.
  ##
  ## This proc uses the default random number generator. Thus, it is **not**
  ## thread-safe.
  ##
  ## See also:
  ## * `shuffle proc<#shuffle,Rand,openArray[T]>`_ that uses a provided state
  runnableExamples:
    var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
    randomize(678)
    shuffle(cards)
    doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"]
  shuffle(state, x)

when not defined(nimscript) and not defined(standalone):
  import times

  proc randomize*() {.benign.} =
    ## Initializes the default random number generator with a value based on
    ## the current time.
    ##
    ## This proc only needs to be called once, and it should be called before
    ## the first usage of procs from this module that use the default random
    ## number generator.
    ##
    ## **Note:** Does not work for NimScript.
    ##
    ## See also:
    ## * `randomize proc<#randomize,int64>`_ that accepts a seed
    ## * `initRand proc<#initRand,int64>`_
    when defined(js):
      let time = int64(times.epochTime() * 1000) and 0x7fff_ffff
      randomize(time)
    else:
      let now = times.getTime()
      randomize(convert(Seconds, Nanoseconds, now.toUnix) + now.nanosecond)

{.pop.}

when isMainModule:
  proc main =
    var occur: array[1000, int]

    var x = 8234
    for i in 0..100_000:
      x = rand(high(occur))
      inc occur[x]
    for i, oc in occur:
      if oc < 69:
        doAssert false, "too few occurrences of " & $i
      elif oc > 150:
        doAssert false, "too many occurrences of " & $i

    var a = [0, 1]
    shuffle(a)
    doAssert a[0] == 1
    doAssert a[1] == 0

    doAssert rand(0) == 0
    doAssert sample("a") == 'a'

    when compileOption("rangeChecks"):
      try:
        discard rand(-1)
        doAssert false
      except RangeDefect:
        discard

      try:
        discard rand(-1.0)
        doAssert false
      except RangeDefect:
        discard


    # don't use causes integer overflow
    doAssert compiles(random[int](low(int) .. high(int)))

  main()