summary refs log tree commit diff stats
path: root/lib/pure/sugar.nim
blob: 7cfa932e6e358035ab34c756d1b67a6860cde471 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#
#
#            Nim's Runtime Library
#        (c) Copyright 2015 Dominik Picheta
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements nice syntactic sugar based on Nim's
## macro system.

import std/private/since
import macros

proc checkPragma(ex, prag: var NimNode) =
  since (1, 3):
    if ex.kind == nnkPragmaExpr:
      prag = ex[1]
      ex = ex[0]

proc createProcType(p, b: NimNode): NimNode =
  result = newNimNode(nnkProcTy)
  var
    formalParams = newNimNode(nnkFormalParams).add(b)
    p = p
    prag = newEmptyNode()

  checkPragma(p, prag)

  case p.kind
  of nnkPar, nnkTupleConstr:
    for i in 0 ..< p.len:
      let ident = p[i]
      var identDefs = newNimNode(nnkIdentDefs)
      case ident.kind
      of nnkExprColonExpr:
        identDefs.add ident[0]
        identDefs.add ident[1]
      else:
        identDefs.add newIdentNode("i" & $i)
        identDefs.add(ident)
      identDefs.add newEmptyNode()
      formalParams.add identDefs
  else:
    var identDefs = newNimNode(nnkIdentDefs)
    identDefs.add newIdentNode("i0")
    identDefs.add(p)
    identDefs.add newEmptyNode()
    formalParams.add identDefs

  result.add formalParams
  result.add prag

macro `=>`*(p, b: untyped): untyped =
  ## Syntax sugar for anonymous procedures. It also supports pragmas.
  runnableExamples:
    proc passTwoAndTwo(f: (int, int) -> int): int = f(2, 2)

    assert passTwoAndTwo((x, y) => x + y) == 4

    type
      Bot = object
        call: (string {.noSideEffect.} -> string)

    var myBot = Bot()

    myBot.call = (name: string) {.noSideEffect.} => "Hello " & name & ", I'm a bot."
    assert myBot.call("John") == "Hello John, I'm a bot."

    let f = () => (discard) # simplest proc that returns void
    f()

  var
    params = @[ident"auto"]
    name = newEmptyNode()
    kind = nnkLambda
    pragma = newEmptyNode()
    p = p

  checkPragma(p, pragma)

  if p.kind == nnkInfix and p[0].kind == nnkIdent and p[0].eqIdent"->":
    params[0] = p[2]
    p = p[1]

  checkPragma(p, pragma) # check again after -> transform

  case p.kind
  of nnkPar, nnkTupleConstr:
    var untypedBeforeColon = 0
    for i, c in p:
      var identDefs = newNimNode(nnkIdentDefs)
      case c.kind
      of nnkExprColonExpr:
        let t = c[1]
        since (1, 3):
          # + 1 here because of return type in params
          for j in (i - untypedBeforeColon + 1) .. i:
            params[j][1] = t
        untypedBeforeColon = 0
        identDefs.add(c[0])
        identDefs.add(t)
        identDefs.add(newEmptyNode())
      of nnkIdent:
        identDefs.add(c)
        identDefs.add(newIdentNode("auto"))
        identDefs.add(newEmptyNode())
        inc untypedBeforeColon
      of nnkInfix:
        if c[0].kind == nnkIdent and c[0].eqIdent"->":
          var procTy = createProcType(c[1], c[2])
          params[0] = procTy[0][0]
          for i in 1 ..< procTy[0].len:
            params.add(procTy[0][i])
        else:
          error("Expected proc type (->) got (" & c[0].strVal & ").", c)
        break
      else:
        error("Incorrect procedure parameter.", c)
      params.add(identDefs)
  of nnkIdent:
    var identDefs = newNimNode(nnkIdentDefs)
    identDefs.add(p)
    identDefs.add(ident"auto")
    identDefs.add(newEmptyNode())
    params.add(identDefs)
  else:
    error("Incorrect procedure parameter list.", p)
  result = newProc(body = b, params = params,
                   pragmas = pragma, name = name,
                   procType = kind)

macro `->`*(p, b: untyped): untyped =
  ## Syntax sugar for procedure types. It also supports pragmas.
  runnableExamples:
    proc passTwoAndTwo(f: (int, int) -> int): int = f(2, 2)
    # is the same as:
    # proc passTwoAndTwo(f: proc (x, y: int): int): int = f(2, 2)

    assert passTwoAndTwo((x, y) => x + y) == 4

    proc passOne(f: (int {.noSideEffect.} -> int)): int = f(1)
    # is the same as:
    # proc passOne(f: proc (x: int): int {.noSideEffect.}): int = f(1)

    assert passOne(x {.noSideEffect.} => x + 1) == 2

  result = createProcType(p, b)

macro dump*(x: untyped): untyped =
  ## Dumps the content of an expression, useful for debugging.
  ## It accepts any expression and prints a textual representation
  ## of the tree representing the expression - as it would appear in
  ## source code - together with the value of the expression.
  ##
  ## See also: `dumpToString` which is more convenient and useful since
  ## it expands intermediate templates/macros, returns a string instead of
  ## calling `echo`, and works with statements and expressions.
  runnableExamples("-r:off"):
    let
      x = 10
      y = 20
    dump(x + y) # prints: `x + y = 30`

  let s = x.toStrLit
  result = quote do:
    debugEcho `s`, " = ", `x`

macro dumpToStringImpl(s: static string, x: typed): string =
  let s2 = x.toStrLit
  if x.typeKind == ntyVoid:
    result = quote do:
      `s` & ": " & `s2`
  else:
    result = quote do:
      `s` & ": " & `s2` & " = " & $`x`

macro dumpToString*(x: untyped): string =
  ## Returns the content of a statement or expression `x` after semantic analysis,
  ## useful for debugging.
  runnableExamples:
    const a = 1
    let x = 10
    assert dumpToString(a + 2) == "a + 2: 3 = 3"
    assert dumpToString(a + x) == "a + x: 1 + x = 11"
    template square(x): untyped = x * x
    assert dumpToString(square(x)) == "square(x): x * x = 100"
    assert not compiles dumpToString(1 + nonexistent)
    import std/strutils
    assert "failedAssertImpl" in dumpToString(assert true) # example with a statement
  result = newCall(bindSym"dumpToStringImpl")
  result.add newLit repr(x)
  result.add x

# TODO: consider exporting this in macros.nim
proc freshIdentNodes(ast: NimNode): NimNode =
  # Replace NimIdent and NimSym by a fresh ident node
  # see also https://github.com/nim-lang/Nim/pull/8531#issuecomment-410436458
  proc inspect(node: NimNode): NimNode =
    case node.kind:
    of nnkIdent, nnkSym:
      result = ident($node)
    of nnkEmpty, nnkLiterals:
      result = node
    else:
      result = node.kind.newTree()
      for child in node:
        result.add inspect(child)
  result = inspect(ast)

macro capture*(locals: varargs[typed], body: untyped): untyped {.since: (1, 1).} =
  ## Useful when creating a closure in a loop to capture some local loop variables
  ## by their current iteration values.
  runnableExamples:
    import std/strformat

    var myClosure: () -> string
    for i in 5..7:
      for j in 7..9:
        if i * j == 42:
          capture i, j:
            myClosure = () => fmt"{i} * {j} = 42"
    assert myClosure() == "6 * 7 = 42"

  var params = @[newIdentNode("auto")]
  let locals = if locals.len == 1 and locals[0].kind == nnkBracket: locals[0]
               else: locals
  for arg in locals:
    if arg.strVal == "result":
      error("The variable name cannot be `result`!", arg)
    params.add(newIdentDefs(ident(arg.strVal), freshIdentNodes getTypeInst arg))
  result = newNimNode(nnkCall)
  result.add(newProc(newEmptyNode(), params, body, nnkLambda))
  for arg in locals: result.add(arg)

since (1, 1):
  import std/private/underscored_calls

  macro dup*[T](arg: T, calls: varargs[untyped]): T =
    ## Turns an `in-place`:idx: algorithm into one that works on
    ## a copy and returns this copy, without modifying its input.
    ##
    ## This macro also allows for (otherwise in-place) function chaining.
    ##
    ## **Since:** Version 1.2.
    runnableExamples:
      import std/algorithm

      let a = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
      assert a.dup(sort) == sorted(a)

      # Chaining:
      var aCopy = a
      aCopy.insert(10)
      assert a.dup(insert(10), sort) == sorted(aCopy)

      let s1 = "abc"
      let s2 = "xyz"
      assert s1 & s2 == s1.dup(&= s2)

      # An underscore (_) can be used to denote the place of the argument you're passing:
      assert "".dup(addQuoted(_, "foo")) == "\"foo\""
      # but `_` is optional here since the substitution is in 1st position:
      assert "".dup(addQuoted("foo")) == "\"foo\""

      proc makePalindrome(s: var string) =
        for i in countdown(s.len-2, 0):
          s.add(s[i])

      let c = "xyz"

      # chaining:
      let d = dup c:
        makePalindrome # xyzyx
        sort(_, SortOrder.Descending) # zyyxx
        makePalindrome # zyyxxxyyz
      assert d == "zyyxxxyyz"

    result = newNimNode(nnkStmtListExpr, arg)
    let tmp = genSym(nskVar, "dupResult")
    result.add newVarStmt(tmp, arg)
    underscoredCalls(result, calls, tmp)
    result.add tmp

proc trans(n, res, bracketExpr: NimNode): (NimNode, NimNode, NimNode) {.since: (1, 1).} =
  # Looks for the last statement of the last statement, etc...
  case n.kind
  of nnkIfExpr, nnkIfStmt, nnkTryStmt, nnkCaseStmt, nnkWhenStmt:
    result[0] = copyNimTree(n)
    result[1] = copyNimTree(n)
    result[2] = copyNimTree(n)
    for i in ord(n.kind == nnkCaseStmt) ..< n.len:
      (result[0][i], result[1][^1], result[2][^1]) = trans(n[i], res, bracketExpr)
  of nnkStmtList, nnkStmtListExpr, nnkBlockStmt, nnkBlockExpr, nnkWhileStmt,
      nnkForStmt, nnkElifBranch, nnkElse, nnkElifExpr, nnkOfBranch, nnkExceptBranch:
    result[0] = copyNimTree(n)
    result[1] = copyNimTree(n)
    result[2] = copyNimTree(n)
    if n.len >= 1:
      (result[0][^1], result[1][^1], result[2][^1]) = trans(n[^1],
          res, bracketExpr)
  of nnkTableConstr:
    result[1] = n[0][0]
    result[2] = n[0][1]
    if bracketExpr.len == 0:
      bracketExpr.add(ident"initTable") # don't import tables
    if bracketExpr.len == 1:
      bracketExpr.add([newCall(bindSym"typeof",
          newEmptyNode()), newCall(bindSym"typeof", newEmptyNode())])
    template adder(res, k, v) = res[k] = v
    result[0] = getAst(adder(res, n[0][0], n[0][1]))
  of nnkCurly:
    result[2] = n[0]
    if bracketExpr.len == 0:
      bracketExpr.add(ident"initHashSet")
    if bracketExpr.len == 1:
      bracketExpr.add(newCall(bindSym"typeof", newEmptyNode()))
    template adder(res, v) = res.incl(v)
    result[0] = getAst(adder(res, n[0]))
  else:
    result[2] = n
    if bracketExpr.len == 0:
      bracketExpr.add(bindSym"newSeq")
    if bracketExpr.len == 1:
      bracketExpr.add(newCall(bindSym"typeof", newEmptyNode()))
    template adder(res, v) = res.add(v)
    result[0] = getAst(adder(res, n))

proc collectImpl(init, body: NimNode): NimNode {.since: (1, 1).} =
  let res = genSym(nskVar, "collectResult")
  var bracketExpr: NimNode
  if init != nil:
    expectKind init, {nnkCall, nnkIdent, nnkSym}
    bracketExpr = newTree(nnkBracketExpr,
      if init.kind == nnkCall: freshIdentNodes(init[0]) else: freshIdentNodes(init))
  else:
    bracketExpr = newTree(nnkBracketExpr)
  let (resBody, keyType, valueType) = trans(body, res, bracketExpr)
  if bracketExpr.len == 3:
    bracketExpr[1][1] = keyType
    bracketExpr[2][1] = valueType
  else:
    bracketExpr[1][1] = valueType
  let call = newTree(nnkCall, bracketExpr)
  if init != nil and init.kind == nnkCall:
    for i in 1 ..< init.len:
      call.add init[i]
  result = newTree(nnkStmtListExpr, newVarStmt(res, call), resBody, res)

macro collect*(init, body: untyped): untyped {.since: (1, 1).} =
  ## Comprehension for seqs/sets/tables.
  ##
  ## The last expression of `body` has special syntax that specifies
  ## the collection's add operation. Use `{e}` for set's `incl`,
  ## `{k: v}` for table's `[]=` and `e` for seq's `add`.
  # analyse the body, find the deepest expression 'it' and replace it via
  # 'result.add it'
  runnableExamples:
    import std/[sets, tables]

    let data = @["bird", "word"]

    ## seq:
    let k = collect(newSeq):
      for i, d in data.pairs:
        if i mod 2 == 0: d
    assert k == @["bird"]

    ## seq with initialSize:
    let x = collect(newSeqOfCap(4)):
      for i, d in data.pairs:
        if i mod 2 == 0: d
    assert x == @["bird"]

    ## HashSet:
    let y = collect(initHashSet()):
      for d in data.items: {d}
    assert y == data.toHashSet

    ## Table:
    let z = collect(initTable(2)):
      for i, d in data.pairs: {i: d}
    assert z == {0: "bird", 1: "word"}.toTable

  result = collectImpl(init, body)

macro collect*(body: untyped): untyped {.since: (1, 5).} =
  ## Same as `collect` but without an `init` parameter.
  runnableExamples:
    import std/[sets, tables]
    let data = @["bird", "word"]

    # seq:
    let k = collect:
      for i, d in data.pairs:
        if i mod 2 == 0: d
    assert k == @["bird"]

    ## HashSet:
    let n = collect:
      for d in data.items: {d}
    assert n == data.toHashSet

    ## Table:
    let m = collect:
      for i, d in data.pairs: {i: d}
    assert m == {0: "bird", 1: "word"}.toTable

    # avoid `collect` when `sequtils.toSeq` suffices:
    assert collect(for i in 1..3: i*i) == @[1, 4, 9] # ok in this case
    assert collect(for i in 1..3: i) == @[1, 2, 3] # overkill in this case
    from std/sequtils import toSeq
    assert toSeq(1..3) == @[1, 2, 3] # simpler

  result = collectImpl(nil, body)