1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
#
#
# Nim's Runtime Library
# (c) Copyright 2020 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import macros
from typetraits import OrdinalEnum, HoleyEnum
# xxx `genEnumCaseStmt` needs tests and runnableExamples
macro genEnumCaseStmt*(typ: typedesc, argSym: typed, default: typed,
userMin, userMax: static[int], normalizer: static[proc(s :string): string]): untyped =
# generates a case stmt, which assigns the correct enum field given
# a normalized string comparison to the `argSym` input.
# string normalization is done using passed normalizer.
# NOTE: for an enum with fields Foo, Bar, ... we cannot generate
# `of "Foo".nimIdentNormalize: Foo`.
# This will fail, if the enum is not defined at top level (e.g. in a block).
# Thus we check for the field value of the (possible holed enum) and convert
# the integer value to the generic argument `typ`.
let typ = typ.getTypeInst[1]
let impl = typ.getImpl[2]
expectKind impl, nnkEnumTy
let normalizerNode = quote: `normalizer`
expectKind normalizerNode, nnkSym
result = nnkCaseStmt.newTree(newCall(normalizerNode, argSym))
# stores all processed field strings to give error msg for ambiguous enums
var foundFields: seq[string] = @[]
var fStr = "" # string of current field
var fNum = BiggestInt(0) # int value of current field
for f in impl:
case f.kind
of nnkEmpty: continue # skip first node of `enumTy`
of nnkSym, nnkIdent: fStr = f.strVal
of nnkEnumFieldDef:
case f[1].kind
of nnkStrLit: fStr = f[1].strVal
of nnkTupleConstr:
fStr = f[1][1].strVal
fNum = f[1][0].intVal
of nnkIntLit:
fStr = f[0].strVal
fNum = f[1].intVal
else: error("Invalid tuple syntax!", f[1])
else: error("Invalid node for enum type!", f)
# add field if string not already added
if fNum >= userMin and fNum <= userMax:
fStr = normalizer(fStr)
if fStr notin foundFields:
result.add nnkOfBranch.newTree(newLit fStr, nnkCall.newTree(typ, newLit fNum))
foundFields.add fStr
else:
error("Ambiguous enums cannot be parsed, field " & $fStr &
" appears multiple times!", f)
inc fNum
# finally add else branch to raise or use default
if default == nil:
let raiseStmt = quote do:
raise newException(ValueError, "Invalid enum value: " & $`argSym`)
result.add nnkElse.newTree(raiseStmt)
else:
expectKind(default, nnkSym)
result.add nnkElse.newTree(default)
macro enumFullRange(a: typed): untyped =
newNimNode(nnkCurly).add(a.getType[1][1..^1])
macro enumNames(a: typed): untyped =
# this could be exported too; in particular this could be useful for enum with holes.
result = newNimNode(nnkBracket)
for ai in a.getType[1][1..^1]:
assert ai.kind == nnkSym
result.add newLit ai.strVal
iterator items*[T: HoleyEnum](E: typedesc[T]): T =
## Iterates over an enum with holes.
runnableExamples:
type A = enum a0 = 2, a1 = 4, a2
type B[T] = enum b0 = 2, b1 = 4
from std/sequtils import toSeq
assert A.toSeq == [a0, a1, a2]
assert B[float].toSeq == [B[float].b0, B[float].b1]
for a in enumFullRange(E): yield a
func span(T: typedesc[HoleyEnum]): int =
(T.high.ord - T.low.ord) + 1
const invalidSlot = uint8.high
proc genLookup[T: typedesc[HoleyEnum]](_: T): auto =
const n = span(T)
var ret: array[n, uint8]
var i = 0
assert n <= invalidSlot.int
for ai in mitems(ret): ai = invalidSlot
for ai in items(T):
ret[ai.ord - T.low.ord] = uint8(i)
inc(i)
return ret
func symbolRankImpl[T](a: T): int {.inline.} =
const n = T.span
const thres = 255 # must be <= `invalidSlot`, but this should be tuned.
when n <= thres:
const lookup = genLookup(T)
let lookup2 {.global.} = lookup # xxx improve pending https://github.com/timotheecour/Nim/issues/553
#[
This could be optimized using a hash adapted to `T` (possible since it's known at CT)
to get better key distribution before indexing into the lookup table table.
]#
{.noSideEffect.}: # because it's immutable
let ret = lookup2[ord(a) - T.low.ord]
if ret != invalidSlot: return ret.int
else:
var i = 0
# we could also generate a case statement as optimization
for ai in items(T):
if ai == a: return i
inc(i)
raise newException(IndexDefect, $ord(a) & " invalid for " & $T)
template symbolRank*[T: enum](a: T): int =
## Returns the index in which `a` is listed in `T`.
##
## The cost for a `HoleyEnum` is implementation defined, currently optimized
## for small enums, otherwise is `O(T.enumLen)`.
runnableExamples:
type
A = enum a0 = -3, a1 = 10, a2, a3 = (20, "f3Alt") # HoleyEnum
B = enum b0, b1, b2 # OrdinalEnum
C = enum c0 = 10, c1, c2 # OrdinalEnum
assert a2.symbolRank == 2
assert b2.symbolRank == 2
assert c2.symbolRank == 2
assert c2.ord == 12
assert a2.ord == 11
var invalid = 7.A
doAssertRaises(IndexDefect): discard invalid.symbolRank
when T is Ordinal: ord(a) - T.low.ord.static
else: symbolRankImpl(a)
func symbolName*[T: enum](a: T): string =
## Returns the symbol name of an enum.
##
## This uses `symbolRank`.
runnableExamples:
type B = enum
b0 = (10, "kb0")
b1 = "kb1"
b2
let b = B.low
assert b.symbolName == "b0"
assert $b == "kb0"
static: assert B.high.symbolName == "b2"
type C = enum c0 = -3, c1 = 4, c2 = 20 # HoleyEnum
assert c1.symbolName == "c1"
const names = enumNames(T)
names[a.symbolRank]
|