1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
|
#
#
# Nimrod's Runtime Library
# (c) Copyright 2011 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.
{.push hints: off.}
type
int* {.magic: Int.} ## default integer type; bitwidth depends on
## architecture, but is always the same as a pointer
int8* {.magic: Int8.} ## signed 8 bit integer type
int16* {.magic: Int16.} ## signed 16 bit integer type
int32* {.magic: Int32.} ## signed 32 bit integer type
int64* {.magic: Int64.} ## signed 64 bit integer type
float* {.magic: Float.} ## default floating point type
float32* {.magic: Float32.} ## 32 bit floating point type
float64* {.magic: Float64.} ## 64 bit floating point type
type # we need to start a new type section here, so that ``0`` can have a type
bool* {.magic: Bool.} = enum ## built-in boolean type
false = 0, true = 1
type
char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
string* {.magic: String.} ## built-in string type
cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
pointer* {.magic: Pointer.} ## built-in pointer type
Ordinal* {.magic: Ordinal.}[T]
type
`nil` {.magic: "Nil".}
expr* {.magic: Expr.} ## meta type to denote an expression (for templates)
stmt* {.magic: Stmt.} ## meta type to denote a statement (for templates)
typeDesc* {.magic: TypeDesc.} ## meta type to denote
## a type description (for templates)
void* {.magic: "VoidType".} ## meta type to denote the absense of any type
proc defined*[T](x: T): bool {.magic: "Defined", noSideEffect.}
## Special compile-time procedure that checks whether `x` is
## defined. `x` has to be an identifier or a qualified identifier.
## This can be used to check whether a library provides a certain
## feature or not:
##
## .. code-block:: Nimrod
## when not defined(strutils.toUpper):
## # provide our own toUpper proc here, because strutils is
## # missing it.
proc definedInScope*[T](x: T): bool {.
magic: "DefinedInScope", noSideEffect.}
## Special compile-time procedure that checks whether `x` is
## defined in the current scope. `x` has to be an identifier.
proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.}
## Boolean not; returns true iff ``x == false``.
proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
## Boolean ``and``; returns true iff ``x == y == true``.
## Evaluation is lazy: if ``x`` is false,
## ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
## Boolean ``or``; returns true iff ``not (not x and not y)``.
## Evaluation is lazy: if ``x`` is true,
## ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
## Boolean `exclusive or`; returns true iff ``x != y``.
proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
proc new*[T](a: var ref T, finalizer: proc (x: ref T)) {.
magic: "NewFinalize", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``. When the garbage collector frees the object,
## `finalizer` is called. The `finalizer` may not keep a reference to the
## object pointed to by `x`. The `finalizer` cannot prevent the GC from
## freeing the object. Note: The `finalizer` refers to the type `T`, not to
## the object! This means that for each object of type `T` the finalizer
## will be called!
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
## resets an object `obj` to its initial (binary zero) value. This needs to
## be called before any possible `object branch transition`:idx:.
# for low and high the return type T may not be correct, but
# we handle that with compiler magic in SemLowHigh()
proc high*[T](x: T): T {.magic: "High", noSideEffect.}
## returns the highest possible index of an array, a sequence, a string or
## the highest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
## returns the lowest possible index of an array, a sequence, a string or
## the lowest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
type
range*{.magic: "Range".} [T] ## Generic type to construct range types.
array*{.magic: "Array".}[I, T] ## Generic type to construct
## fixed-length arrays.
openarray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays.
## Open arrays are implemented as a
## pointer to the array data and a
## length field.
seq*{.magic: "Seq".}[T] ## Generic type to construct sequences.
set*{.magic: "Set".}[T] ## Generic type to construct bit sets.
type
TSlice* {.final, pure.}[T] = object ## builtin slice type
a*, b*: T ## the bounds
proc `..`*[T](a, b: T): TSlice[T] {.noSideEffect, inline.} =
## `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
## and `b` are inclusive. Slices can also be used in the set constructor
## and in ordinal case statements, but then they are special-cased by the
## compiler.
result.a = a
result.b = b
proc `..`*[T](b: T): TSlice[T] {.noSideEffect, inline.} =
## `slice`:idx: operator that constructs an interval ``[default(T), b]``
result.b = b
proc contains*[T](s: TSlice[T], value: T): bool {.noSideEffect, inline.} =
result = value >= s.a and value <= s.b
when not defined(EcmaScript) and not defined(NimrodVM):
type
TGenericSeq {.compilerproc, pure.} = object
len, space: int
PGenericSeq {.exportc.} = ptr TGenericSeq
# len and space without counting the terminating zero:
NimStringDesc {.compilerproc, final.} = object of TGenericSeq
data: array[0..100_000_000, char]
NimString = ptr NimStringDesc
include "system/hti"
type
Byte* = Int8 ## this is an alias for ``int8``, that is a signed
## int 8 bits wide.
Natural* = range[0..high(int)]
## is an int type ranging from zero to the maximum value
## of an int. This type is often useful for documentation and debugging.
Positive* = range[1..high(int)]
## is an int type ranging from one to the maximum value
## of an int. This type is often useful for documentation and debugging.
TObject* {.exportc: "TNimObject".} =
object ## the root of Nimrod's object hierarchy. Objects should
## inherit from TObject or one of its descendants. However,
## objects that have no ancestor are allowed.
PObject* = ref TObject ## reference to TObject
E_Base* {.compilerproc.} = object of TObject ## base exception class;
## each exception has to
## inherit from `E_Base`.
parent: ref E_Base ## parent exception (can be used as a stack)
name: cstring ## The exception's name is its Nimrod identifier.
## This field is filled automatically in the
## ``raise`` statement.
msg* {.exportc: "message".}: string ## the exception's message. Not
## providing an exception message
## is bad style.
EAsynch* = object of E_Base ## Abstract exception class for
## *asynchronous exceptions* (interrupts).
## This is rarely needed: Most
## exception types inherit from `ESynch`
ESynch* = object of E_Base ## Abstract exception class for
## *synchronous exceptions*. Most exceptions
## should be inherited (directly or indirectly)
## from ESynch.
ESystem* = object of ESynch ## Abstract class for exceptions that the runtime
## system raises.
EIO* = object of ESystem ## raised if an IO error occured.
EOS* = object of ESystem ## raised if an operating system service failed.
EInvalidLibrary* = object of EOS ## raised if a dynamic library
## could not be loaded.
EResourceExhausted* = object of ESystem ## raised if a resource request
## could not be fullfilled.
EArithmetic* = object of ESynch ## raised if any kind of arithmetic
## error occured.
EDivByZero* {.compilerproc.} =
object of EArithmetic ## is the exception class for integer divide-by-zero
## errors.
EOverflow* {.compilerproc.} =
object of EArithmetic ## is the exception class for integer calculations
## whose results are too large to fit in the
## provided bits.
EAccessViolation* {.compilerproc.} =
object of ESynch ## the exception class for invalid memory access errors
EAssertionFailed* {.compilerproc.} =
object of ESynch ## is the exception class for Assert
## procedures that is raised if the
## assertion proves wrong
EControlC* = object of EAsynch ## is the exception class for Ctrl+C
## key presses in console applications.
EInvalidValue* = object of ESynch ## is the exception class for string
## and object conversion errors.
EInvalidKey* = object of EInvalidValue ## is the exception class if a key
## cannot be found in a table.
EOutOfMemory* = object of ESystem ## is the exception class for
## unsuccessful attempts to allocate
## memory.
EInvalidIndex* = object of ESynch ## is raised if an array index is out
## of bounds.
EInvalidField* = object of ESynch ## is raised if a record field is not
## accessible because its dicriminant's
## value does not fit.
EOutOfRange* = object of ESynch ## is raised if a range check error
## occured.
EStackOverflow* = object of ESystem ## is raised if the hardware stack
## used for subroutine calls overflowed.
ENoExceptionToReraise* = object of ESynch ## is raised if there is no
## exception to reraise.
EInvalidObjectAssignment* =
object of ESynch ## is raised if an object gets assigned to its
## parent's object.
EInvalidObjectConversion* =
object of ESynch ## is raised if an object is converted to an incompatible
## object type.
EFloatingPoint* = object of ESynch ## base class for floating point exceptions
EFloatInvalidOp* {.compilerproc.} =
object of EFloatingPoint ## Invalid operation according to IEEE: Raised by
## 0.0/0.0, for example.
EFloatDivByZero* {.compilerproc.} =
object of EFloatingPoint ## Division by zero. Divisor is zero and dividend
## is a finite nonzero number.
EFloatOverflow* {.compilerproc.} =
object of EFloatingPoint ## Overflow. Operation produces a result
## that exceeds the range of the exponent
EFloatUnderflow* {.compilerproc.} =
object of EFloatingPoint ## Underflow. Operation produces a result
## that is too small to be represented as
## a normal number
EFloatInexact* {.compilerproc.} =
object of EFloatingPoint ## Inexact. Operation produces a result
## that cannot be represented with infinite
## precision -- for example, 2.0 / 3.0, log(1.1)
## NOTE: Nimrod currently does not detect these!
EDeadThread* =
object of ESynch ## is raised if it is attempted to send a message to a
## dead thread.
TResult* = enum Failure, Success
proc sizeof*[T](x: T): natural {.magic: "SizeOf", noSideEffect.}
## returns the size of ``x`` in bytes. Since this is a low-level proc,
## its usage is discouraged - using ``new`` for the most cases suffices
## that one never needs to know ``x``'s size. As a special semantic rule,
## ``x`` may also be a type identifier (``sizeof(int)`` is valid).
proc `<`*[T](x: ordinal[T]): T {.magic: "UnaryLt", noSideEffect.}
## unary ``<`` that can be used for nice looking excluding ranges:
##
## .. code-block:: nimrod
## for i in 0 .. <10: echo i
##
## Semantically this is the same as ``pred``.
proc succ*[T](x: ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.}
## returns the ``y``-th successor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc pred*[T](x: ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.}
## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc inc*[T](x: var ordinal[T], y = 1) {.magic: "Inc", noSideEffect.}
## increments the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = succ(x, y)``.
proc dec*[T](x: var ordinal[T], y = 1) {.magic: "Dec", noSideEffect.}
## decrements the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = pred(x, y)``.
proc newSeq*[T](s: var seq[T], len: int) {.magic: "NewSeq", noSideEffect.}
## creates a new sequence of type ``seq[T]`` with length ``len``.
## This is equivalent to ``s = @[]; setlen(s, len)``, but more
## efficient since no reallocation is needed.
proc len*[T](x: openarray[T]): int {.magic: "LengthOpenArray", noSideEffect.}
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.}
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
## returns the length of an array, a sequence or a string.
## This is rougly the same as ``high(T)-low(T)+1``, but its resulting type is
## always an int.
# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
## includes element ``y`` to the set ``x``. This is the same as
## ``x = x + {y}``, but it might be more efficient.
proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
## excludes element ``y`` to the set ``x``. This is the same as
## ``x = x - {y}``, but it might be more efficient.
proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
## returns the cardinality of the set ``x``, i.e. the number of elements
## in the set.
proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.}
## returns the internal int value of an ordinal value ``x``.
proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
## converts an int in the range 0..255 to a character.
# --------------------------------------------------------------------------
# built-in operators
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noDecl, noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## (This is the case on 64 bit processors.)
proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## 16 bits from `x`.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## last 32 bits from `x`.
# integer calculations:
proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int64): int64 {.magic: "UnaryPlusI64", noSideEffect.}
## Unary `+` operator for an integer. Has no effect.
proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
## Unary `-` operator for an integer. Negates `x`.
proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
## computes the `bitwise complement` of the integer `x`.
proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
## Binary `+` operator for an integer.
proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
## Binary `-` operator for an integer.
proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
## Binary `*` operator for an integer.
proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
## computes the integer division. This is roughly the same as
## ``floor(x/y)``.
proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
## computes the integer modulo operation. This is the same as
## ``x - (x div y) * y``.
proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int64): int64 {.magic: "ShrI64", noSideEffect.}
## computes the `shift right` operation of `x` and `y`.
proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int64): int64 {.magic: "ShlI64", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int64): int64 {.magic: "BitandI64", noSideEffect.}
## computes the `bitwise and` of numbers `x` and `y`.
proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int64): int64 {.magic: "BitorI64", noSideEffect.}
## computes the `bitwise or` of numbers `x` and `y`.
proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int64): int64 {.magic: "BitxorI64", noSideEffect.}
## computes the `bitwise xor` of numbers `x` and `y`.
proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int64): bool {.magic: "EqI64", noSideEffect.}
## Compares two integers for equality.
proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int64): bool {.magic: "LeI64", noSideEffect.}
## Returns true iff `x` is less than or equal to `y`.
proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int64): bool {.magic: "LtI64", noSideEffect.}
## Returns true iff `x` is less than `y`.
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.}
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.}
proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.}
## returns the absolute value of `x`. If `x` is ``low(x)`` (that
## is -MININT for its type), an overflow exception is thrown (if overflow
## checking is turned on).
proc `+%` *(x, y: int): int {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int8): int8 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int16): int16 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int32): int32 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int64): int64 {.magic: "AddU64", noSideEffect.}
## treats `x` and `y` as unsigned and adds them. The result is truncated to
## fit into the result. This implements modulo arithmetic. No overflow
## errors are possible.
proc `-%` *(x, y: int): int {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int8): int8 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int16): int16 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int32): int32 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int64): int64 {.magic: "SubU64", noSideEffect.}
## treats `x` and `y` as unsigned and subtracts them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `*%` *(x, y: int): int {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int8): int8 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int16): int16 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int32): int32 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int64): int64 {.magic: "MulU64", noSideEffect.}
## treats `x` and `y` as unsigned and multiplies them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `/%` *(x, y: int): int {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int8): int8 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int16): int16 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int32): int32 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int64): int64 {.magic: "DivU64", noSideEffect.}
## treats `x` and `y` as unsigned and divides them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `%%` *(x, y: int): int {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int8): int8 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int16): int16 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int32): int32 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int64): int64 {.magic: "ModU64", noSideEffect.}
## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
## The result is truncated to fit into the result.
## This implements modulo arithmetic.
## No overflow errors are possible.
proc `<=%` *(x, y: int): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int8): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int16): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int32): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) <= unsigned(y)``.
proc `<%` *(x, y: int): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int8): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int16): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int32): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) < unsigned(y)``.
# floating point operations:
proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.}
## computes the floating point division
proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.}
proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.}
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.}
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.}
# set operators
proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
## This operator computes the intersection of two sets.
proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
## This operator computes the union of two sets.
proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
## This operator computes the difference of two sets.
proc `-+-` *[T](x, y: set[T]): set[T] {.magic: "SymDiffSet", noSideEffect.}
## computes the symmetric set difference. This is the same as
## ``(A - B) + (B - A)``, but more efficient.
# comparison operators:
proc `==` *[T](x, y: ordinal[T]): bool {.magic: "EqEnum", noSideEffect.}
proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.}
proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect.}
proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.}
proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.}
proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
proc `<=` *[T](x, y: ordinal[T]): bool {.magic: "LeEnum", noSideEffect.}
proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.}
proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.}
proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
proc `<` *[T](x, y: ordinal[T]): bool {.magic: "LtEnum", noSideEffect.}
proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.}
proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.}
proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
template `!=` * (x, y: expr): expr =
## unequals operator. This is a shorthand for ``not (x == y)``.
not (x == y)
template `>=` * (x, y: expr): expr =
## "is greater or equals" operator. This is the same as ``y <= x``.
y <= x
template `>` * (x, y: expr): expr =
## "is greater" operator. This is the same as ``y < x``.
y < x
proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
## One should overload this proc if one wants to overload the ``in`` operator.
## The parameters are in reverse order! ``a in b`` is a template for
## ``contains(b, a)``.
## This is because the unification algorithm that Nimrod uses for overload
## resolution works from left to right.
## But for the ``in`` operator that would be the wrong direction for this
## piece of code:
##
## .. code-block:: Nimrod
## var s: set[range['a'..'z']] = {'a'..'c'}
## writeln(stdout, 'b' in s)
##
## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
## have been bound to ``char``. But ``s`` is not compatible to type
## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
## is achieved by reversing the parameters for ``contains``; ``in`` then
## passes its arguments in reverse order.
template `in` * (x, y: expr): expr = contains(y, x)
template `not_in` * (x, y: expr): expr = not contains(y, x)
proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
template `is_not` *(x, y: expr): expr = not (x is y)
proc `of` *[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
proc cmp*[T](x, y: T): int {.procvar.} =
## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
## and 0 iff x == y. This is useful for writing generic algorithms without
## performance loss. This generic implementation uses the `==` and `<`
## operators.
if x == y: return 0
if x < y: return -1
return 1
proc cmp*(x, y: string): int {.noSideEffect, procvar.}
## Compare proc for strings. More efficient than the generic version.
proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {.
magic: "ArrToSeq", nosideeffect.}
## turns an array into a sequence. This most often useful for constructing
## sequences with the array constructor: ``@[1, 2, 3]`` has the type
## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
proc setLen*[T](s: var seq[T], newlen: int) {.
magic: "SetLengthSeq", noSideEffect.}
## sets the length of `s` to `newlen`.
## ``T`` may be any sequence type.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a sequence with
## a size, use ``newSeq`` instead.
proc setLen*(s: var string, newlen: int) {.
magic: "SetLengthStr", noSideEffect.}
## sets the length of `s` to `newlen`.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a string with
## a size, use ``newString`` instead.
proc newString*(len: int): string {.
magic: "NewString", importc: "mnewString", noSideEffect.}
## returns a new string of length ``len`` but with uninitialized
## content. One needs to fill the string character after character
## with the index operator ``s[i]``. This procedure exists only for
## optimization purposes; the same effect can be achieved with the
## ``&`` operator or with ``add``.
proc newStringOfCap*(cap: int): string {.
magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
## returns a new string of length ``0`` but with capacity `cap`.This
## procedure exists only for optimization purposes; the same effect can
## be achieved with the ``&`` operator or with ``add``.
proc `&` * (x: string, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x: char, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
proc `&` * (x: char, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## is the `concatenation operator`. It concatenates `x` and `y`.
# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.
proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
type
TEndian* = enum ## is a type describing the endianness of a processor.
littleEndian, bigEndian
const
isMainModule* {.magic: "IsMainModule".}: bool = false
## is true only when accessed in the main module. This works thanks to
## compiler magic. It is useful to embed testing code in a module.
CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
## is the date of compilation as a string of the form
## ``YYYY-MM-DD``. This works thanks to compiler magic.
CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
## is the time of compilation as a string of the form
## ``HH:MM:SS``. This works thanks to compiler magic.
NimrodVersion* {.magic: "NimrodVersion"}: string = "0.0.0"
## is the version of Nimrod as a string.
## This works thanks to compiler magic.
NimrodMajor* {.magic: "NimrodMajor"}: int = 0
## is the major number of Nimrod's version.
## This works thanks to compiler magic.
NimrodMinor* {.magic: "NimrodMinor"}: int = 0
## is the minor number of Nimrod's version.
## This works thanks to compiler magic.
NimrodPatch* {.magic: "NimrodPatch"}: int = 0
## is the patch number of Nimrod's version.
## This works thanks to compiler magic.
cpuEndian* {.magic: "CpuEndian"}: TEndian = littleEndian
## is the endianness of the target CPU. This is a valuable piece of
## information for low-level code only. This works thanks to compiler
## magic.
hostOS* {.magic: "HostOS"}: string = ""
## a string that describes the host operating system. Possible values:
## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
## "aix".
hostCPU* {.magic: "HostCPU"}: string = ""
## a string that describes the host CPU. Possible values:
## "i386", "alpha", "powerpc", "sparc", "amd64", "mips", "arm".
appType* {.magic: "AppType"}: string = ""
## a string that describes the application type. Possible values:
## "console", "gui", "lib".
proc compileOption*(option: string): bool {.
magic: "CompileOption", noSideEffect.}
## can be used to determine an on|off compile-time option. Example:
##
## .. code-block:: nimrod
## when compileOption("floatchecks"):
## echo "compiled with floating point NaN and Inf checks"
proc compileOption*(option, arg: string): bool {.
magic: "CompileOptionArg", noSideEffect.}
## can be used to determine an enum compile-time option. Example:
##
## .. code-block:: nimrod
## when compileOption("opt", "size") and compileOption("gc", "boehm"):
## echo "compiled with optimization for size and uses Boehm's GC"
const
hasThreadSupport = compileOption("threads")
hasSharedHeap = defined(boehmgc) # don't share heaps; every thread has its own
when hasThreadSupport:
{.pragma: rtlThreadVar, threadvar.}
else:
{.pragma: rtlThreadVar.}
template sysAssert(cond: expr) =
# change this to activate system asserts
nil
include "system/inclrtl"
when not defined(ecmascript) and not defined(nimrodVm):
include "system/cgprocs"
proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
## Generic proc for adding a data item `y` to a container `x`.
## For containers that have an order, `add` means *append*. New generic
## containers should also call their adding proc `add` for consistency.
## Generic code becomes much easier to write if the Nimrod naming scheme is
## respected.
var xl = x.len
setLen(x, xl + y.len)
for i in 0..high(y): x[xl+i] = y[i]
proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
## only changes the semantics for sequences and strings (and types which
## contain those). Be careful with the changed semantics though! There
## is a reason why the default assignment does a deep copy of sequences
## and strings.
proc del*[T](x: var seq[T], i: int) {.noSideEffect.} =
## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
## This is an O(1) operation.
var xl = x.len
shallowCopy(x[i], x[xl-1])
setLen(x, xl-1)
proc delete*[T](x: var seq[T], i: int) {.noSideEffect.} =
## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
## This is an O(n) operation.
var xl = x.len
for j in i..xl-2: shallowCopy(x[j], x[j+1])
setLen(x, xl-1)
proc insert*[T](x: var seq[T], item: T, i = 0) {.noSideEffect.} =
## inserts `item` into `x` at position `i`.
var xl = x.len
setLen(x, xl+1)
var j = xl-1
while j >= i:
shallowCopy(x[j+1], x[j])
dec(j)
x[i] = item
proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
## takes any Nimrod variable and returns its string representation. It
## works even for complex data graphs with cycles. This is a great
## debugging tool.
type
TAddress* = int
## is the signed integer type that should be used for converting
## pointers to integer addresses for readability.
BiggestInt* = int64
## is an alias for the biggest signed integer type the Nimrod compiler
## supports. Currently this is ``int64``, but it is platform-dependant
## in general.
BiggestFloat* = float64
## is an alias for the biggest floating point type the Nimrod
## compiler supports. Currently this is ``float64``, but it is
## platform-dependant in general.
type # these work for most platforms:
cchar* {.importc: "char", nodecl.} = char
## This is the same as the type ``char`` in *C*.
cschar* {.importc: "signed char", nodecl.} = byte
## This is the same as the type ``signed char`` in *C*.
cshort* {.importc: "short", nodecl.} = int16
## This is the same as the type ``short`` in *C*.
cint* {.importc: "int", nodecl.} = int32
## This is the same as the type ``int`` in *C*.
clong* {.importc: "long", nodecl.} = int
## This is the same as the type ``long`` in *C*.
clonglong* {.importc: "long long", nodecl.} = int64
## This is the same as the type ``long long`` in *C*.
cfloat* {.importc: "float", nodecl.} = float32
## This is the same as the type ``float`` in *C*.
cdouble* {.importc: "double", nodecl.} = float64
## This is the same as the type ``double`` in *C*.
clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
## This is the same as the type ``long double`` in *C*.
## This C type is not supported by Nimrod's code generator
cstringArray* {.importc: "char**", nodecl.} = ptr array [0..50_000, cstring]
## This is binary compatible to the type ``char**`` in *C*. The array's
## high value is large enough to disable bounds checking in practice.
## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.
PFloat32* = ptr Float32 ## an alias for ``ptr float32``
PFloat64* = ptr Float64 ## an alias for ``ptr float64``
PInt64* = ptr Int64 ## an alias for ``ptr int64``
PInt32* = ptr Int32 ## an alias for ``ptr int32``
proc toFloat*(i: int): float {.
magic: "ToFloat", noSideEffect, importc: "toFloat".}
## converts an integer `i` into a ``float``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toBiggestFloat*(i: biggestint): biggestfloat {.
magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
## converts an biggestint `i` into a ``biggestfloat``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toInt*(f: float): int {.
magic: "ToInt", noSideEffect, importc: "toInt".}
## converts a floating point number `f` into an ``int``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc toBiggestInt*(f: biggestfloat): biggestint {.
magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
## converts a biggestfloat `f` into a ``biggestint``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc addQuitProc*(QuitProc: proc {.noconv.}) {.importc: "atexit", nodecl.}
## adds/registers a quit procedure. Each call to ``addQuitProc``
## registers another quit procedure. Up to 30 procedures can be
## registered. They are executed on a last-in, first-out basis
## (that is, the last function registered is the first to be executed).
## ``addQuitProc`` raises an EOutOfIndex if ``quitProc`` cannot be
## registered.
# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.
proc copy*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect, deprecated.}
proc copy*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect,
deprecated.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``.
## **Deprecated since version 0.8.12**: Use ``substr`` instead.
proc substr*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect.}
proc substr*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``.
proc zeroMem*(p: Pointer, size: int) {.importc, noDecl.}
## overwrites the contents of the memory at ``p`` with the value 0.
## Exactly ``size`` bytes will be overwritten. Like any procedure
## dealing with raw memory this is *unsafe*.
proc copyMem*(dest, source: Pointer, size: int) {.importc: "memcpy", noDecl.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may not overlap. Like any procedure dealing with raw
## memory this is *unsafe*.
proc moveMem*(dest, source: Pointer, size: int) {.importc: "memmove", noDecl.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may overlap, ``moveMem`` handles this case appropriately
## and is thus somewhat more safe than ``copyMem``. Like any procedure
## dealing with raw memory this is still *unsafe*, though.
proc equalMem*(a, b: Pointer, size: int): bool {.
importc: "equalMem", noDecl, noSideEffect.}
## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
## be compared. If the blocks are equal, true is returned, false
## otherwise. Like any procedure dealing with raw memory this is
## *unsafe*.
proc alloc*(size: int): pointer {.noconv, rtl.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
## The allocated memory belongs to its allocating thread!
## Use `allocShared` to allocate from a shared heap.
proc alloc0*(size: int): pointer {.noconv, rtl.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``alloc``.
## The allocated memory belongs to its allocating thread!
## Use `allocShared0` to allocate from a shared heap.
proc realloc*(p: Pointer, newsize: int): pointer {.noconv, rtl.}
## grows or shrinks a given memory block. If p is **nil** then a new
## memory block is returned. In either way the block has at least
## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil**
## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
## be freed with ``dealloc``.
## The allocated memory belongs to its allocating thread!
## Use `reallocShared` to reallocate from a shared heap.
proc dealloc*(p: Pointer) {.noconv, rtl.}
## frees the memory allocated with ``alloc``, ``alloc0`` or
## ``realloc``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
## The freed memory must belong to its allocating thread!
## Use `deallocShared` to deallocate from a shared heap.
proc allocShared*(size: int): pointer {.noconv, rtl.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
## is not initialized, so reading from it before writing to it is
## undefined behaviour!
proc allocShared0*(size: int): pointer {.noconv, rtl.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``allocShared``.
proc reallocShared*(p: Pointer, newsize: int): pointer {.noconv, rtl.}
## grows or shrinks a given memory block on the heap. If p is **nil**
## then a new memory block is returned. In either way the block has at least
## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil**
## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
## block has to be freed with ``deallocShared``.
proc deallocShared*(p: Pointer) {.noconv, rtl.}
## frees the memory allocated with ``allocShared``, ``allocShared0`` or
## ``reallocShared``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
proc assert*(cond: bool) {.magic: "Assert", noSideEffect.}
## provides a means to implement `programming by contracts`:idx: in Nimrod.
## ``assert`` evaluates expression ``cond`` and if ``cond`` is false, it
## raises an ``EAssertionFailure`` exception. However, the compiler may
## not generate any code at all for ``assert`` if it is advised to do so.
## Use ``assert`` for debugging purposes only.
proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
## swaps the values `a` and `b`. This is often more efficient than
## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.
template `>=%` *(x, y: expr): expr = y <=% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) >= unsigned(y)``.
template `>%` *(x, y: expr): expr = y <% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) > unsigned(y)``.
proc `$` *(x: int): string {.magic: "IntToStr", noSideEffect.}
## The stingify operator for an integer argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
## The stingify operator for an integer argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.}
## The stingify operator for a float argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.}
## The stingify operator for a boolean argument. Returns `x`
## converted to the string "false" or "true".
proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.}
## The stingify operator for a character argument. Returns `x`
## converted to a string.
proc `$` *(x: Cstring): string {.magic: "CStrToStr", noSideEffect.}
## The stingify operator for a CString argument. Returns `x`
## converted to a string.
proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.}
## The stingify operator for a string argument. Returns `x`
## as it is. This operator is useful for generic code, so
## that ``$expr`` also works if ``expr`` is already a string.
proc `$` *[T](x: ordinal[T]): string {.magic: "EnumToStr", noSideEffect.}
## The stingify operator for an enumeration argument. This works for
## any enumeration type thanks to compiler magic. If
## a ``$`` operator for a concrete enumeration is provided, this is
## used instead. (In other words: *Overwriting* is possible.)
# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.}
## retrieves the reference count of an heap-allocated object. The
## value is implementation-dependant.
# new constants:
const
inf* {.magic: "Inf".} = 1.0 / 0.0
## contains the IEEE floating point value of positive infinity.
neginf* {.magic: "NegInf".} = -inf
## contains the IEEE floating point value of negative infinity.
nan* {.magic: "NaN".} = 0.0 / 0.0
## contains an IEEE floating point value of *Not A Number*. Note
## that you cannot compare a floating point value to this value
## and expect a reasonable result - use the `classify` procedure
## in the module ``math`` for checking for NaN.
# GC interface:
proc getOccupiedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process and hold data.
proc getFreeMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process, but do not
## hold any meaningful data.
proc getTotalMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process.
iterator countdown*[T](a, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` down to `b` with the given
## step count. `T` may be any ordinal type, `step` may only
## be positive.
var res = a
while res >= b:
yield res
dec(res, step)
iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` up to `b` with the given
## step count. `S`, `T` may be any ordinal type, `step` may only
## be positive.
var res: T = a
while res <= b:
yield res
inc(res, step)
iterator `..`*[S, T](a: S, b: T): T {.inline.} =
## An alias for `countup`.
var res: T = a
while res <= b:
yield res
inc res
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.}
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.}
proc min*(x, y: int64): int64 {.magic: "MinI64", noSideEffect.}
## The minimum value of two integers.
proc min*[T](x: openarray[T]): T =
## The minimum value of an openarray.
result = x[0]
for i in 1..high(x): result = min(result, x[i])
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.}
proc max*(x, y: int64): int64 {.magic: "MaxI64", noSideEffect.}
## The maximum value of two integers.
proc max*[T](x: openarray[T]): T =
## The maximum value of an openarray.
result = x[0]
for i in 1..high(x): result = max(result, x[i])
iterator items*[T](a: openarray[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
## iterates over each item of `a`.
var i = low(IX)
if i <= high(IX):
while true:
yield a[i]
if i >= high(IX): break
inc(i)
iterator items*[T](a: seq[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator items*(a: string): char {.inline.} =
## iterates over each item of `a`.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator items*[T](a: set[T]): T {.inline.} =
## iterates over each element of `a`. `items` iterates only over the
## elements that are really in the set (and not over the ones the set is
## able to hold).
var i = low(T)
if i <= high(T):
while true:
if i in a: yield i
if i >= high(T): break
inc(i)
iterator items*(a: cstring): char {.inline.} =
## iterates over each item of `a`.
var i = 0
while a[i] != '\0':
yield a[i]
inc(i)
proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
## Fast check whether `x` is nil. This is sometimes more efficient than
## ``== nil``.
proc `&` *[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
newSeq(result, x.len + y.len)
for i in 0..x.len-1:
result[i] = x[i]
for i in 0..y.len-1:
result[i+x.len] = y[i]
proc `&` *[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
newSeq(result, x.len + 1)
for i in 0..x.len-1:
result[i] = x[i]
result[x.len] = y
proc `&` *[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
newSeq(result, y.len + 1)
for i in 0..y.len-1:
result[i] = y[i]
result[y.len] = x
when not defined(NimrodVM):
when not defined(ECMAScript):
proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
result = cast[pointer](x)
else:
proc seqToPtr[T](x: seq[T]): pointer {.noStackFrame, nosideeffect.} =
asm """return `x`"""
proc `==` *[T: typeDesc](x, y: seq[T]): bool {.noSideEffect.} =
## Generic equals operator for sequences: relies on a equals operator for
## the element type `T`.
if seqToPtr(x) == seqToPtr(y):
result = true
elif seqToPtr(x) == nil or seqToPtr(y) == nil:
result = false
elif x.len == y.len:
for i in 0..x.len-1:
if x[i] != y[i]: return false
result = true
proc find*[T, S: typeDesc](a: T, item: S): int {.inline.}=
## Returns the first index of `item` in `a` or -1 if not found. This requires
## appropriate `items` and `==` operations to work.
for i in items(a):
if i == item: return
inc(result)
result = -1
proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
## Returns true if `item` is in `a` or false if not found. This is a shortcut
## for ``find(a, item) >= 0``.
return find(a, item) >= 0
proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
## returns the last item of `s` and decreases ``s.len`` by one. This treats
## `s` as a stack and implements the common *pop* operation.
var L = s.len-1
result = s[L]
setLen(s, L)
proc each*[T, S](data: openArray[T], op: proc (x: T): S): seq[S] {.
noSideEffect.} =
## The well-known ``map`` operation from functional programming. Applies
## `op` to every item in `data` and returns the result as a sequence.
newSeq(result, data.len)
for i in 0..data.len-1: result[i] = op(data[i])
proc each*[T](data: var openArray[T], op: proc (x: var T)) =
## The well-known ``map`` operation from functional programming. Applies
## `op` to every item in `data`.
for i in 0..data.len-1: op(data[i])
iterator fields*[T: tuple](x: T): expr {.magic: "Fields", noSideEffect.}
## iterates over every field of `x`. Warning: This really transforms
## the 'for' and unrolls the loop. The current implementation also has a bug
## that affects symbol binding in the loop body.
iterator fields*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {.
magic: "Fields", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This is really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
iterator fieldPairs*[T: tuple](x: T): expr {.magic: "FieldPairs", noSideEffect.}
## iterates over every field of `x`. Warning: This really transforms
## the 'for' and unrolls the loop. The current implementation also has a bug
## that affects symbol binding in the loop body.
iterator fieldPairs*[S: tuple, T: tuple](x: S, y: T): tuple[a, b: expr] {.
magic: "FieldPairs", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
proc `==`*[T: tuple](x, y: T): bool =
## generic ``==`` operator for tuples that is lifted from the components
## of `x` and `y`.
for a, b in fields(x, y):
if a != b: return false
return true
proc `<=`*[T: tuple](x, y: T): bool =
## generic ``<=`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return true
proc `<`*[T: tuple](x, y: T): bool =
## generic ``<`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return false
proc `$`*[T: tuple](x: T): string =
## generic ``$`` operator for tuples that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nimrod
## $(23, 45) == "(23, 45)"
## $() == "()"
result = "("
for name, value in fieldPairs(x):
if result.len > 1: result.add(", ")
result.add(name)
result.add(": ")
result.add($value)
result.add(")")
when false:
proc `$`*[T](a: openArray[T]): string =
## generic ``$`` operator for open arrays that is lifted from the elements
## of `a`. Example:
##
## .. code-block:: nimrod
## $[23, 45] == "[23, 45]"
result = "["
for x in items(a):
if result.len > 1: result.add(", ")
result.add($x)
result.add("]")
# ----------------- GC interface ---------------------------------------------
proc GC_disable*() {.rtl, inl.}
## disables the GC. If called n-times, n calls to `GC_enable` are needed to
## reactivate the GC. Note that in most circumstances one should only disable
## the mark and sweep phase with `GC_disableMarkAndSweep`.
proc GC_enable*() {.rtl, inl.}
## enables the GC again.
proc GC_fullCollect*() {.rtl.}
## forces a full garbage collection pass.
## Ordinary code does not need to call this (and should not).
type
TGC_Strategy* = enum ## the strategy the GC should use for the application
gcThroughput, ## optimize for throughput
gcResponsiveness, ## optimize for responsiveness (default)
gcOptimizeTime, ## optimize for speed
gcOptimizeSpace ## optimize for memory footprint
proc GC_setStrategy*(strategy: TGC_Strategy) {.rtl.}
## tells the GC the desired strategy for the application.
proc GC_enableMarkAndSweep*() {.rtl.}
proc GC_disableMarkAndSweep*() {.rtl.}
## the current implementation uses a reference counting garbage collector
## with a seldomly run mark and sweep phase to free cycles. The mark and
## sweep phase may take a long time and is not needed if the application
## does not create cycles. Thus the mark and sweep phase can be deactivated
## and activated separately from the rest of the GC.
proc GC_getStatistics*(): string {.rtl.}
## returns an informative string about the GC's activity. This may be useful
## for tweaking.
proc GC_ref*[T](x: ref T) {.magic: "GCref".}
proc GC_ref*[T](x: seq[T]) {.magic: "GCref".}
proc GC_ref*(x: string) {.magic: "GCref".}
## marks the object `x` as referenced, so that it will not be freed until
## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
## n calls to `GC_unref` are needed to unmark `x`.
proc GC_unref*[T](x: ref T) {.magic: "GCunref".}
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref".}
proc GC_unref*(x: string) {.magic: "GCunref".}
## see the documentation of `GC_ref`.
template accumulateResult*(iter: expr) =
## helps to convert an iterator to a proc.
result = @[]
for x in iter: add(result, x)
# we have to compute this here before turning it off in except.nim anyway ...
const nimrodStackTrace = compileOption("stacktrace")
{.push checks: off, debugger: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code
var
dbgLineHook*: proc
## set this variable to provide a procedure that should be called before
## each executed instruction. This should only be used by debuggers!
## Only code compiled with the ``debugger:on`` switch calls this hook.
raiseHook*: proc (e: ref E_Base): bool
## with this hook you can influence exception handling on a global level.
## If not nil, every 'raise' statement ends up calling this hook. Ordinary
## application code should never set this hook! You better know what you
## do when setting this. If ``raiseHook`` returns false, the exception
## is caught and does not propagate further through the call stack.
outOfMemHook*: proc
## set this variable to provide a procedure that should be called
## in case of an `out of memory`:idx: event. The standard handler
## writes an error message and terminates the program. `outOfMemHook` can
## be used to raise an exception in case of OOM like so:
##
## .. code-block:: nimrod
##
## var gOutOfMem: ref EOutOfMemory
## new(gOutOfMem) # need to be allocated *before* OOM really happened!
## gOutOfMem.msg = "out of memory"
##
## proc handleOOM() =
## raise gOutOfMem
##
## system.outOfMemHook = handleOOM
##
## If the handler does not raise an exception, ordinary control flow
## continues and the program is terminated.
type
PFrame = ptr TFrame
TFrame {.importc, nodecl, final.} = object
prev: PFrame
procname: CString
line: int # current line number
filename: CString
len: int # length of slots (when not debugging always zero)
when not defined(ECMAScript):
{.push stack_trace:off}
proc add*(x: var string, y: cstring) =
var i = 0
while y[i] != '\0':
add(x, y[i])
inc(i)
{.pop.}
else:
proc add*(x: var string, y: cstring) {.noStackFrame.} =
asm """
var len = `x`[0].length-1;
for (var i = 0; i < `y`.length; ++i) {
`x`[0][len] = `y`.charCodeAt(i);
++len;
}
`x`[0][len] = 0
"""
proc echo*[Ty](x: openarray[Ty]) {.magic: "Echo", noSideEffect.}
## special built-in that takes a variable number of arguments. Each argument
## is converted to a string via ``$``, so it works for user-defined
## types that have an overloaded ``$`` operator.
## It is roughly equivalent to ``writeln(stdout, x); flush(stdout)``, but
## available for the ECMAScript target too.
## Unlike other IO operations this is guaranteed to be thread-safe as
## ``echo`` is very often used for debugging convenience.
template newException*(exceptn, message: expr): expr =
## creates an exception object of type ``exceptn`` and sets its ``msg`` field
## to `message`. Returns the new exception object.
block: # open a new scope
var
e: ref exceptn
new(e)
e.msg = message
e
const
QuitSuccess* = 0
## is the value that should be passed to ``quit`` to indicate
## success.
QuitFailure* = 1
## is the value that should be passed to ``quit`` to indicate
## failure.
proc quit*(errorcode: int = QuitSuccess) {.
magic: "Exit", importc: "exit", noDecl, noReturn.}
## stops the program immediately; before stopping the program the
## "quit procedures" are called in the opposite order they were added
## with ``addQuitProc``. ``quit`` never returns and ignores any
## exception that may have been raised by the quit procedures.
## It does *not* call the garbage collector to free all the memory,
## unless a quit procedure calls ``GC_collect``.
when not defined(EcmaScript) and not defined(NimrodVM):
{.push stack_trace: off.}
proc initGC()
proc initStackBottom() {.inline.} =
# WARNING: This is very fragile! An array size of 8 does not work on my
# Linux 64bit system. Very strange, but we are at the will of GCC's
# optimizer...
var locals {.volatile.}: pointer
locals = addr(locals)
setStackBottom(locals)
var
strDesc: TNimType
strDesc.size = sizeof(string)
strDesc.kind = tyString
strDesc.flags = {ntfAcyclic}
include "system/ansi_c"
proc cmp(x, y: string): int =
result = int(c_strcmp(x, y))
const pccHack = if defined(pcc): "_" else: "" # Hack for PCC
when defined(windows):
# work-around C's sucking abstraction:
# BUGFIX: stdin and stdout should be binary files!
proc setmode(handle, mode: int) {.importc: pccHack & "setmode",
header: "<io.h>".}
proc fileno(f: C_TextFileStar): int {.importc: pccHack & "fileno",
header: "<fcntl.h>".}
var
O_BINARY {.importc: pccHack & "O_BINARY", nodecl.}: int
# we use binary mode in Windows:
setmode(fileno(c_stdin), O_BINARY)
setmode(fileno(c_stdout), O_BINARY)
when defined(endb):
proc endbStep()
# ----------------- IO Part --------------------------------------------------
type
CFile {.importc: "FILE", nodecl, final.} = object # empty record for
# data hiding
TFile* = ptr CFile ## The type representing a file handle.
TFileMode* = enum ## The file mode when opening a file.
fmRead, ## Open the file for read access only.
fmWrite, ## Open the file for write access only.
fmReadWrite, ## Open the file for read and write access.
## If the file does not exist, it will be
## created.
fmReadWriteExisting, ## Open the file for read and write access.
## If the file does not exist, it will not be
## created.
fmAppend ## Open the file for writing only; append data
## at the end.
TFileHandle* = cint ## type that represents an OS file handle; this is
## useful for low-level file access
# text file handling:
var
stdin* {.importc: "stdin", noDecl.}: TFile ## The standard input stream.
stdout* {.importc: "stdout", noDecl.}: TFile ## The standard output stream.
stderr* {.importc: "stderr", noDecl.}: TFile
## The standard error stream.
##
## Note: In my opinion, this should not be used -- the concept of a
## separate error stream is a design flaw of UNIX. A seperate *message
## stream* is a good idea, but since it is named ``stderr`` there are few
## programs out there that distinguish properly between ``stdout`` and
## ``stderr``. So, that's what you get if you don't name your variables
## appropriately. It also annoys people if redirection
## via ``>output.txt`` does not work because the program writes
## to ``stderr``.
proc Open*(f: var TFile, filename: string,
mode: TFileMode = fmRead, bufSize: int = -1): Bool
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
## This throws no exception if the file could not be opened.
proc Open*(f: var TFile, filehandle: TFileHandle,
mode: TFileMode = fmRead): Bool
## Creates a ``TFile`` from a `filehandle` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
proc Open*(filename: string,
mode: TFileMode = fmRead, bufSize: int = -1): TFile =
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Raises an ``IO`` exception if the file
## could not be opened.
if not open(result, filename, mode, bufSize):
raise newException(EIO, "cannot open: " & filename)
proc reopen*(f: TFile, filename: string, mode: TFileMode = fmRead): bool
## reopens the file `f` with given `filename` and `mode`. This
## is often used to redirect the `stdin`, `stdout` or `stderr`
## file variables.
##
## Default mode is readonly. Returns true iff the file could be reopened.
proc Close*(f: TFile) {.importc: "fclose", nodecl.}
## Closes the file.
proc EndOfFile*(f: TFile): Bool
## Returns true iff `f` is at the end.
proc readChar*(f: TFile): char {.importc: "fgetc", nodecl.}
## Reads a single character from the stream `f`. If the stream
## has no more characters, `EEndOfFile` is raised.
proc FlushFile*(f: TFile) {.importc: "fflush", noDecl.}
## Flushes `f`'s buffer.
proc readFile*(filename: string): string
## Opens a file named `filename` for reading. Then reads the
## file's content completely into a string and
## closes the file afterwards. Returns the string.
## Raises an IO exception in case of an error.
proc writeFile*(filename, content: string)
## Opens a file named `filename` for writing. Then writes the
## `content` completely to the file and closes the file afterwards.
## Raises an IO exception in case of an error.
proc write*(f: TFile, r: float)
proc write*(f: TFile, i: int)
proc write*(f: TFile, i: biggestInt)
proc write*(f: TFile, r: biggestFloat)
proc write*(f: TFile, s: string)
proc write*(f: TFile, b: Bool)
proc write*(f: TFile, c: char)
proc write*(f: TFile, c: cstring)
proc write*(f: TFile, a: openArray[string])
## Writes a value to the file `f`. May throw an IO exception.
proc readLine*(f: TFile): string
## reads a line of text from the file `f`. May throw an IO exception.
## A line of text may be delimited by ``CR``, ``LF`` or
## ``CRLF``. The newline character(s) are not part of the returned string.
proc writeln*[Ty](f: TFile, x: Ty) {.inline.}
## writes a value `x` to `f` and then writes "\n".
## May throw an IO exception.
proc writeln*[Ty](f: TFile, x: openArray[Ty]) {.inline.}
## writes a value `x` to `f` and then writes "\n".
## May throw an IO exception.
proc getFileSize*(f: TFile): int64
## retrieves the file size (in bytes) of `f`.
proc ReadBytes*(f: TFile, a: var openarray[byte], start, len: int): int
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc ReadChars*(f: TFile, a: var openarray[char], start, len: int): int
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc readBuffer*(f: TFile, buffer: pointer, len: int): int
## reads `len` bytes into the buffer pointed to by `buffer`. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc writeBytes*(f: TFile, a: openarray[byte], start, len: int): int
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeChars*(f: tFile, a: openarray[char], start, len: int): int
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeBuffer*(f: TFile, buffer: pointer, len: int): int
## writes the bytes of buffer pointed to by the parameter `buffer` to the
## file `f`. Returns the number of actual written bytes, which may be less
## than `len` in case of an error.
proc setFilePos*(f: TFile, pos: int64)
## sets the position of the file pointer that is used for read/write
## operations. The file's first byte has the index zero.
proc getFilePos*(f: TFile): int64
## retrieves the current position of the file pointer that is used to
## read from the file `f`. The file's first byte has the index zero.
proc fileHandle*(f: TFile): TFileHandle {.importc: "fileno",
header: "<stdio.h>"}
## returns the OS file handle of the file ``f``. This is only useful for
## platform specific programming.
proc cstringArrayToSeq*(a: cstringArray, len: int): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## of length ``len``.
newSeq(result, len)
for i in 0..len-1: result[i] = $a[i]
proc cstringArrayToSeq*(a: cstringArray): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## terminated by ``nil``.
var L = 0
while a[L] != nil: inc(L)
result = cstringArrayToSeq(a, L)
# ----------------------------------------------------------------------------
proc atomicInc*(memLoc: var int, x: int = 1): int {.inline.}
## atomic increment of `memLoc`. Returns the value after the operation.
proc atomicDec*(memLoc: var int, x: int = 1): int {.inline.}
## atomic decrement of `memLoc`. Returns the value after the operation.
include "system/atomics"
type
PSafePoint = ptr TSafePoint
TSafePoint {.compilerproc, final.} = object
prev: PSafePoint # points to next safe point ON THE STACK
status: int
context: C_JmpBuf
when hasThreadSupport:
include "system/syslocks"
include "system/threads"
else:
initStackBottom()
initGC()
include "system/excpt"
# we cannot compile this with stack tracing on
# as it would recurse endlessly!
include "system/arithm"
{.pop.} # stack trace
include "system/dyncalls"
include "system/sets"
const
GenericSeqSize = (2 * sizeof(int))
proc reprAny(p: pointer, typ: PNimType): string {.compilerRtl.}
proc getDiscriminant(aa: Pointer, n: ptr TNimNode): int =
sysAssert(n.kind == nkCase)
var d: int
var a = cast[TAddress](aa)
case n.typ.size
of 1: d = ze(cast[ptr int8](a +% n.offset)[])
of 2: d = ze(cast[ptr int16](a +% n.offset)[])
of 4: d = int(cast[ptr int32](a +% n.offset)[])
else: sysAssert(false)
return d
proc selectBranch(aa: Pointer, n: ptr TNimNode): ptr TNimNode =
var discr = getDiscriminant(aa, n)
if discr <% n.len:
result = n.sons[discr]
if result == nil: result = n.sons[n.len]
# n.sons[n.len] contains the ``else`` part (but may be nil)
else:
result = n.sons[n.len]
{.push stack_trace: off.}
include "system/mmdisp"
include "system/sysstr"
{.pop.}
include "system/sysio"
when hasThreadSupport:
include "system/inboxes"
iterator lines*(filename: string): string =
## Iterate over any line in the file named `filename`.
## If the file does not exist `EIO` is raised.
var f = open(filename)
var res = ""
while not endOfFile(f):
rawReadLine(f, res)
yield res
Close(f)
iterator lines*(f: TFile): string =
## Iterate over any line in the file `f`.
var res = ""
while not endOfFile(f):
rawReadLine(f, res)
yield res
include "system/assign"
include "system/repr"
proc getCurrentException*(): ref E_Base {.compilerRtl, inl.} =
## retrieves the current exception; if there is none, nil is returned.
result = currException
proc getCurrentExceptionMsg*(): string {.inline.} =
## retrieves the error message that was attached to the current
## exception; if there is none, "" is returned.
var e = getCurrentException()
return if e == nil: "" else: e.msg
{.push stack_trace: off.}
when defined(endb):
include "system/debugger"
when defined(profiler):
include "system/profiler"
{.pop.} # stacktrace
proc likely*(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
## can be used to mark a condition to be likely. This is a hint for the
## optimizer.
proc unlikely*(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}
## can be used to mark a condition to be unlikely. This is a hint for the
## optimizer.
elif defined(ecmaScript) or defined(NimrodVM):
# Stubs:
proc GC_disable() = nil
proc GC_enable() = nil
proc GC_fullCollect() = nil
proc GC_setStrategy(strategy: TGC_Strategy) = nil
proc GC_enableMarkAndSweep() = nil
proc GC_disableMarkAndSweep() = nil
proc GC_getStatistics(): string = return ""
proc getOccupiedMem(): int = return -1
proc getFreeMem(): int = return -1
proc getTotalMem(): int = return -1
proc dealloc(p: pointer) = nil
proc alloc(size: int): pointer = nil
proc alloc0(size: int): pointer = nil
proc realloc(p: Pointer, newsize: int): pointer = nil
proc allocShared(size: int): pointer = nil
proc allocShared0(size: int): pointer = nil
proc deallocShared(p: pointer) = nil
proc reallocShared(p: pointer, newsize: int): pointer = nil
when defined(ecmaScript):
include "system/ecmasys"
elif defined(NimrodVM):
proc cmp(x, y: string): int =
if x == y: return 0
if x < y: return -1
return 1
proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
## a shorthand for ``echo(errormsg); quit(errorcode)``.
echo(errormsg)
quit(errorcode)
{.pop.} # checks
{.pop.} # hints
proc `/`*(x, y: int): float {.inline, noSideEffect.} =
## integer division that results in a float.
result = toFloat(x) / toFloat(y)
template `-|`(b, s: expr): expr =
(if b >= 0: b else: s.len + b)
proc `[]`*(s: string, x: TSlice[int]): string {.inline.} =
## slice operation for strings. Negative indexes are supported.
result = s.substr(x.a-|s, x.b-|s)
proc `[]=`*(s: var string, x: TSlice[int], b: string) =
## slice assignment for strings. Negative indexes are supported.
var a = x.a-|s
var L = x.b-|s - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
raise newException(EOutOfRange, "differing lengths for slice assignment")
proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[int]): seq[T] =
## slice operation for arrays. Negative indexes are NOT supported because
## the array might have negative bounds.
var L = x.b - x.a + 1
newSeq(result, L)
for i in 0.. <L: result[i] = a[i + x.a]
proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[int], b: openArray[T]) =
## slice assignment for arrays. Negative indexes are NOT supported because
## the array might have negative bounds.
var L = x.b - x.a + 1
if L == b.len:
for i in 0 .. <L: a[i+x.a] = b[i]
else:
raise newException(EOutOfRange, "differing lengths for slice assignment")
proc `[]`*[Idx, T](a: array[Idx, T], x: TSlice[Idx]): seq[T] =
## slice operation for arrays. Negative indexes are NOT supported because
## the array might have negative bounds.
var L = ord(x.b) - ord(x.a) + 1
newSeq(result, L)
var j = x.a
for i in 0.. <L:
result[i] = a[j]
inc(j)
proc `[]=`*[Idx, T](a: var array[Idx, T], x: TSlice[Idx], b: openArray[T]) =
## slice assignment for arrays. Negative indexes are NOT supported because
## the array might have negative bounds.
var L = ord(x.b) - ord(x.a) + 1
if L == b.len:
var j = x.a
for i in 0 .. <L:
a[j] = b[i]
inc(j)
else:
raise newException(EOutOfRange, "differing lengths for slice assignment")
proc `[]`*[T](s: seq[T], x: TSlice[int]): seq[T] =
## slice operation for sequences. Negative indexes are supported.
var a = x.a-|s
var L = x.b-|s - a + 1
newSeq(result, L)
for i in 0.. <L: result[i] = s[i + a]
proc `[]=`*[T](s: var seq[T], x: TSlice[int], b: openArray[T]) =
## slice assignment for sequences. Negative indexes are supported.
var a = x.a-|s
var L = x.b-|s - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
raise newException(EOutOfRange, "differing lengths for slice assignment")
proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo".}
## get type information for `x`. Ordinary code should not use this, but
## the `typeinfo` module instead.
proc slurp*(filename: string): string {.magic: "Slurp".}
## compiletime ``readFile`` proc for easy `resource`:idx: embedding:
## .. code-block:: nimrod
##
## const myResource = slurp"mydatafile.bin"
##
|