1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.
##
## Module system
## =============
##
# That lonesome header above is to prevent :idx: entries from being mentioned
# in the global index as part of the previous header (Exception hierarchy).
type
int* {.magic: Int.} ## default integer type; bitwidth depends on
## architecture, but is always the same as a pointer
int8* {.magic: Int8.} ## signed 8 bit integer type
int16* {.magic: Int16.} ## signed 16 bit integer type
int32* {.magic: Int32.} ## signed 32 bit integer type
int64* {.magic: Int64.} ## signed 64 bit integer type
uint* {.magic: UInt.} ## unsigned default integer type
uint8* {.magic: UInt8.} ## unsigned 8 bit integer type
uint16* {.magic: UInt16.} ## unsigned 16 bit integer type
uint32* {.magic: UInt32.} ## unsigned 32 bit integer type
uint64* {.magic: UInt64.} ## unsigned 64 bit integer type
float* {.magic: Float.} ## default floating point type
float32* {.magic: Float32.} ## 32 bit floating point type
float64* {.magic: Float.} ## 64 bit floating point type
# 'float64' is now an alias to 'float'; this solves many problems
type # we need to start a new type section here, so that ``0`` can have a type
bool* {.magic: Bool.} = enum ## built-in boolean type
false = 0, true = 1
type
char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
string* {.magic: String.} ## built-in string type
cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
pointer* {.magic: Pointer.} ## built-in pointer type, use the ``addr``
## operator to get a pointer to a variable
typedesc* {.magic: TypeDesc.} ## meta type to denote a type description
const
on* = true ## alias for ``true``
off* = false ## alias for ``false``
{.push warning[GcMem]: off, warning[Uninit]: off.}
{.push hints: off.}
proc `or` *(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `or` meta class
proc `and` *(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `and` meta class
proc `not` *(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `not` meta class
type
Ordinal* {.magic: Ordinal.}[T] ## Generic ordinal type. Includes integer,
## bool, character, and enumeration types
## as well as their subtypes. Note `uint`
## and `uint64` are not ordinal types for
## implementation reasons
`ptr`* {.magic: Pointer.}[T] ## built-in generic untraced pointer type
`ref`* {.magic: Pointer.}[T] ## built-in generic traced pointer type
`nil` {.magic: "Nil".}
expr* {.magic: Expr, deprecated.} ## meta type to denote an expression (for templates)
## **Deprecated** since version 0.15. Use ``untyped`` instead.
stmt* {.magic: Stmt, deprecated.} ## meta type to denote a statement (for templates)
## **Deprecated** since version 0.15. Use ``typed`` instead.
void* {.magic: "VoidType".} ## meta type to denote the absence of any type
auto* {.magic: Expr.} ## meta type for automatic type determination
any* = distinct auto ## meta type for any supported type
untyped* {.magic: Expr.} ## meta type to denote an expression that
## is not resolved (for templates)
typed* {.magic: Stmt.} ## meta type to denote an expression that
## is resolved (for templates)
SomeSignedInt* = int|int8|int16|int32|int64
## type class matching all signed integer types
SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
## type class matching all unsigned integer types
SomeInteger* = SomeSignedInt|SomeUnsignedInt
## type class matching all integer types
SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint8|uint16|uint32
## type class matching all ordinal types; however this includes enums with
## holes.
SomeReal* = float|float32|float64
## type class matching all floating point number types
SomeNumber* = SomeInteger|SomeReal
## type class matching all number types
proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## defined.
## `x` is an external symbol introduced through the compiler's
## `-d:x switch <nimc.html#compile-time-symbols>`_ to enable build time
## conditionals:
##
## .. code-block:: Nim
## when not defined(release):
## # Do here programmer friendly expensive sanity checks.
## # Put here the normal code
when defined(nimalias):
{.deprecated: [
TSignedInt: SomeSignedInt,
TUnsignedInt: SomeUnsignedInt,
TInteger: SomeInteger,
TReal: SomeReal,
TNumber: SomeNumber,
TOrdinal: SomeOrdinal].}
proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared. `x` has to be an identifier or a qualified identifier.
## This can be used to check whether a library provides a certain
## feature or not:
##
## .. code-block:: Nim
## when not declared(strutils.toUpper):
## # provide our own toUpper proc here, because strutils is
## # missing it.
when defined(useNimRtl):
{.deadCodeElim: on.}
proc definedInScope*(x: untyped): bool {.
magic: "DefinedInScope", noSideEffect, deprecated, compileTime.}
## **Deprecated since version 0.9.6**: Use ``declaredInScope`` instead.
proc declaredInScope*(x: untyped): bool {.
magic: "DefinedInScope", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared in the current scope. `x` has to be an identifier.
proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin 'addr' operator for taking the address of a memory location.
## Cannot be overloaded.
##
## .. code-block:: nim
## var
## buf: seq[char] = @['a','b','c']
## p: pointer = buf[1].addr
## echo cast[ptr char](p)[] # b
discard
proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin 'addr' operator for taking the address of a memory
## location. This works even for ``let`` variables or parameters
## for better interop with C and so it is considered even more
## unsafe than the ordinary ``addr``. When you use it to write a
## wrapper for a C library, you should always check that the
## original library does never write to data behind the pointer that
## is returned from this procedure.
## Cannot be overloaded.
discard
proc `type`*(x: untyped): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
## Builtin 'type' operator for accessing the type of an expression.
## Cannot be overloaded.
discard
proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.}
## Boolean not; returns true iff ``x == false``.
proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
## Boolean ``and``; returns true iff ``x == y == true``.
## Evaluation is lazy: if ``x`` is false,
## ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
## Boolean ``or``; returns true iff ``not (not x and not y)``.
## Evaluation is lazy: if ``x`` is true,
## ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
## Boolean `exclusive or`; returns true iff ``x != y``.
proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
proc new*(T: typedesc): auto =
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it as result value.
##
## When ``T`` is a ref type then the resulting type will be ``T``,
## otherwise it will be ``ref T``.
when (T is ref):
var r: T
else:
var r: ref T
new(r)
return r
proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
## leaked implementation detail. Do not use.
proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
magic: "NewFinalize", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``. When the garbage collector frees the object,
## `finalizer` is called. The `finalizer` may not keep a reference to the
## object pointed to by `x`. The `finalizer` cannot prevent the GC from
## freeing the object. Note: The `finalizer` refers to the type `T`, not to
## the object! This means that for each object of type `T` the finalizer
## will be called!
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
## resets an object `obj` to its initial (binary zero) value. This needs to
## be called before any possible `object branch transition`:idx:.
# for low and high the return type T may not be correct, but
# we handle that with compiler magic in semLowHigh()
proc high*[T](x: T): T {.magic: "High", noSideEffect.}
## returns the highest possible index of an array, a sequence, a string or
## the highest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
##
## .. code-block:: nim
## var arr = [1,2,3,4,5,6,7]
## high(arr) #=> 6
## high(2) #=> 9223372036854775807
## high(int) #=> 9223372036854775807
proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
## returns the lowest possible index of an array, a sequence, a string or
## the lowest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
##
## .. code-block:: nim
## var arr = [1,2,3,4,5,6,7]
## low(arr) #=> 0
## low(2) #=> -9223372036854775808
## low(int) #=> -9223372036854775808
type
range*{.magic: "Range".}[T] ## Generic type to construct range types.
array*{.magic: "Array".}[I, T] ## Generic type to construct
## fixed-length arrays.
openArray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays.
## Open arrays are implemented as a
## pointer to the array data and a
## length field.
varargs*{.magic: "Varargs".}[T] ## Generic type to construct a varargs type.
seq*{.magic: "Seq".}[T] ## Generic type to construct sequences.
set*{.magic: "Set".}[T] ## Generic type to construct bit sets.
when defined(nimArrIdx):
# :array|openarray|string|seq|cstring|tuple
proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
noSideEffect, magic: "ArrGet".}
proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
x: S) {.noSideEffect, magic: "ArrPut".}
proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
type
Slice*[T] = object ## builtin slice type
a*, b*: T ## the bounds
when defined(nimalias):
{.deprecated: [TSlice: Slice].}
proc `..`*[T](a, b: T): Slice[T] {.noSideEffect, inline, magic: "DotDot".} =
## `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
## and `b` are inclusive. Slices can also be used in the set constructor
## and in ordinal case statements, but then they are special-cased by the
## compiler.
result.a = a
result.b = b
proc `..`*[T](b: T): Slice[T] {.noSideEffect, inline, magic: "DotDot".} =
## `slice`:idx: operator that constructs an interval ``[default(T), b]``
result.b = b
when not defined(niminheritable):
{.pragma: inheritable.}
when not defined(nimunion):
{.pragma: unchecked.}
# comparison operators:
proc `==` *[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
## Checks whether values within the *same enum* have the same underlying value
##
## .. code-block:: nim
## type
## Enum1 = enum
## Field1 = 3, Field2
## Enum2 = enum
## Place1, Place2 = 3
## var
## e1 = Field1
## e2 = Enum1(Place2)
## echo (e1 == e2) # true
## echo (e1 == Place2) # raises error
proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
## .. code-block:: nim
## var # this is a wildly dangerous example
## a = cast[pointer](0)
## b = cast[pointer](nil)
## echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.}
## Checks for equality between two `string` variables
proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.}
## Checks for equality between two `char` variables
proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.}
## Checks for equality between two `bool` variables
proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
## Checks for equality between two variables of type `set`
##
## .. code-block:: nim
## var a = {1, 2, 2, 3} # duplication in sets is ignored
## var b = {1, 2, 3}
## echo (a == b) # true
proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ref` variables refer to the same item
proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ptr` variables refer to the same item
proc `==` *[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
## Checks that two `proc` variables refer to the same procedure
proc `<=` *[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.}
proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.}
proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
proc `<` *[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.}
proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.}
proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
template `!=` * (x, y: untyped): untyped =
## unequals operator. This is a shorthand for ``not (x == y)``.
not (x == y)
template `>=` * (x, y: untyped): untyped =
## "is greater or equals" operator. This is the same as ``y <= x``.
y <= x
template `>` * (x, y: untyped): untyped =
## "is greater" operator. This is the same as ``y < x``.
y < x
const
appType* {.magic: "AppType"}: string = ""
## a string that describes the application type. Possible values:
## "console", "gui", "lib".
include "system/inclrtl"
const NoFakeVars* = defined(nimscript) ## true if the backend doesn't support \
## "fake variables" like 'var EBADF {.importc.}: cint'.
const ArrayDummySize = when defined(cpu16): 10_000 else: 100_000_000
when not defined(JS):
type
TGenericSeq {.compilerproc, pure, inheritable.} = object
len, reserved: int
when defined(gogc):
elemSize: int
PGenericSeq {.exportc.} = ptr TGenericSeq
UncheckedCharArray {.unchecked.} = array[0..ArrayDummySize, char]
# len and space without counting the terminating zero:
NimStringDesc {.compilerproc, final.} = object of TGenericSeq
data: UncheckedCharArray
NimString = ptr NimStringDesc
when not defined(JS) and not defined(nimscript):
template space(s: PGenericSeq): int {.dirty.} =
s.reserved and not seqShallowFlag
include "system/hti"
type
byte* = uint8 ## this is an alias for ``uint8``, that is an unsigned
## int 8 bits wide.
Natural* = range[0..high(int)]
## is an int type ranging from zero to the maximum value
## of an int. This type is often useful for documentation and debugging.
Positive* = range[1..high(int)]
## is an int type ranging from one to the maximum value
## of an int. This type is often useful for documentation and debugging.
RootObj* {.exportc: "TNimObject", inheritable.} =
object ## the root of Nim's object hierarchy. Objects should
## inherit from RootObj or one of its descendants. However,
## objects that have no ancestor are allowed.
RootRef* = ref RootObj ## reference to RootObj
RootEffect* {.compilerproc.} = object of RootObj ## \
## base effect class; each effect should
## inherit from `TEffect` unless you know what
## you doing.
TimeEffect* = object of RootEffect ## Time effect.
IOEffect* = object of RootEffect ## IO effect.
ReadIOEffect* = object of IOEffect ## Effect describing a read IO operation.
WriteIOEffect* = object of IOEffect ## Effect describing a write IO operation.
ExecIOEffect* = object of IOEffect ## Effect describing an executing IO operation.
Exception* {.compilerproc.} = object of RootObj ## \
## Base exception class.
##
## Each exception has to inherit from `Exception`. See the full `exception
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
parent*: ref Exception ## parent exception (can be used as a stack)
name*: cstring ## The exception's name is its Nim identifier.
## This field is filled automatically in the
## ``raise`` statement.
msg* {.exportc: "message".}: string ## the exception's message. Not
## providing an exception message
## is bad style.
trace: string
SystemError* = object of Exception ## \
## Abstract class for exceptions that the runtime system raises.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
IOError* = object of SystemError ## \
## Raised if an IO error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
EOFError* = object of IOError ## \
## Raised if an IO "end of file" error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OSError* = object of SystemError ## \
## Raised if an operating system service failed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
errorCode*: int32 ## OS-defined error code describing this error.
LibraryError* = object of OSError ## \
## Raised if a dynamic library could not be loaded.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ResourceExhaustedError* = object of SystemError ## \
## Raised if a resource request could not be fulfilled.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ArithmeticError* = object of Exception ## \
## Raised if any kind of arithmetic error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
DivByZeroError* = object of ArithmeticError ## \
## Raised for runtime integer divide-by-zero errors.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OverflowError* = object of ArithmeticError ## \
## Raised for runtime integer overflows.
##
## This happens for calculations whose results are too large to fit in the
## provided bits. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
AccessViolationError* = object of Exception ## \
## Raised for invalid memory access errors
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
AssertionError* = object of Exception ## \
## Raised when assertion is proved wrong.
##
## Usually the result of using the `assert() template <#assert>`_. See the
## full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ValueError* = object of Exception ## \
## Raised for string and object conversion errors.
KeyError* = object of ValueError ## \
## Raised if a key cannot be found in a table.
##
## Mostly used by the `tables <tables.html>`_ module, it can also be raised
## by other collection modules like `sets <sets.html>`_ or `strtabs
## <strtabs.html>`_. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OutOfMemError* = object of SystemError ## \
## Raised for unsuccessful attempts to allocate memory.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
IndexError* = object of Exception ## \
## Raised if an array index is out of bounds.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FieldError* = object of Exception ## \
## Raised if a record field is not accessible because its dicriminant's
## value does not fit.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
RangeError* = object of Exception ## \
## Raised if a range check error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
StackOverflowError* = object of SystemError ## \
## Raised if the hardware stack used for subroutine calls overflowed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ReraiseError* = object of Exception ## \
## Raised if there is no exception to reraise.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ObjectAssignmentError* = object of Exception ## \
## Raised if an object gets assigned to its parent's object.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ObjectConversionError* = object of Exception ## \
## Raised if an object is converted to an incompatible object type.
## You can use ``of`` operator to check if conversion will succeed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatingPointError* = object of Exception ## \
## Base class for floating point exceptions.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatInvalidOpError* = object of FloatingPointError ## \
## Raised by invalid operations according to IEEE.
##
## Raised by ``0.0/0.0``, for example. See the full `exception
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatDivByZeroError* = object of FloatingPointError ## \
## Raised by division by zero.
##
## Divisor is zero and dividend is a finite nonzero number. See the full
## `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatOverflowError* = object of FloatingPointError ## \
## Raised for overflows.
##
## The operation produced a result that exceeds the range of the exponent.
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatUnderflowError* = object of FloatingPointError ## \
## Raised for underflows.
##
## The operation produced a result that is too small to be represented as a
## normal number. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatInexactError* = object of FloatingPointError ## \
## Raised for inexact results.
##
## The operation produced a result that cannot be represented with infinite
## precision -- for example: ``2.0 / 3.0, log(1.1)``
##
## **NOTE**: Nim currently does not detect these! See the full
## `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
DeadThreadError* = object of Exception ## \
## Raised if it is attempted to send a message to a dead thread.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
NilAccessError* = object of SystemError ## \
## Raised on dereferences of ``nil`` pointers.
##
## This is only raised if the ``segfaults.nim`` module was imported!
{.deprecated: [TObject: RootObj, PObject: RootRef, TEffect: RootEffect,
FTime: TimeEffect, FIO: IOEffect, FReadIO: ReadIOEffect,
FWriteIO: WriteIOEffect, FExecIO: ExecIOEffect,
E_Base: Exception, ESystem: SystemError, EIO: IOError,
EOS: OSError, EInvalidLibrary: LibraryError,
EResourceExhausted: ResourceExhaustedError,
EArithmetic: ArithmeticError, EDivByZero: DivByZeroError,
EOverflow: OverflowError, EAccessViolation: AccessViolationError,
EAssertionFailed: AssertionError, EInvalidValue: ValueError,
EInvalidKey: KeyError, EOutOfMemory: OutOfMemError,
EInvalidIndex: IndexError, EInvalidField: FieldError,
EOutOfRange: RangeError, EStackOverflow: StackOverflowError,
ENoExceptionToReraise: ReraiseError,
EInvalidObjectAssignment: ObjectAssignmentError,
EInvalidObjectConversion: ObjectConversionError,
EDeadThread: DeadThreadError,
EFloatInexact: FloatInexactError,
EFloatUnderflow: FloatUnderflowError,
EFloatingPoint: FloatingPointError,
EFloatInvalidOp: FloatInvalidOpError,
EFloatDivByZero: FloatDivByZeroError,
EFloatOverflow: FloatOverflowError,
ESynch: Exception
].}
proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``. This is **unsafe** as it allocates an object
## of the passed ``size``. This should only be used for optimization
## purposes when you know what you're doing!
proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
## returns the size of ``x`` in bytes. Since this is a low-level proc,
## its usage is discouraged - using ``new`` for the most cases suffices
## that one never needs to know ``x``'s size. As a special semantic rule,
## ``x`` may also be a type identifier (``sizeof(int)`` is valid).
##
## Limitations: If used within nim VM context ``sizeof`` will only work
## for simple types.
##
## .. code-block:: nim
## sizeof('A') #=> 1
## sizeof(2) #=> 8
when defined(nimtypedescfixed):
proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}
proc `<`*[T](x: Ordinal[T]): T {.magic: "UnaryLt", noSideEffect.}
## unary ``<`` that can be used for nice looking excluding ranges:
##
## .. code-block:: nim
## for i in 0 .. <10: echo i #=> 0 1 2 3 4 5 6 7 8 9
##
## Semantically this is the same as ``pred``.
proc succ*[T](x: Ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.}
## returns the ``y``-th successor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc pred*[T](x: Ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.}
## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
## increments the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = succ(x, y)``.
##
## .. code-block:: nim
## var i = 2
## inc(i) #=> 3
## inc(i, 3) #=> 6
proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
## decrements the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = pred(x, y)``.
##
## .. code-block:: nim
## var i = 2
## dec(i) #=> 1
## dec(i, 3) #=> -2
proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
## creates a new sequence of type ``seq[T]`` with length ``len``.
## This is equivalent to ``s = @[]; setlen(s, len)``, but more
## efficient since no reallocation is needed.
##
## Note that the sequence will be filled with zeroed entries, which can be a
## problem for sequences containing strings since their value will be
## ``nil``. After the creation of the sequence you should assign entries to
## the sequence instead of adding them. Example:
##
## .. code-block:: nim
## var inputStrings : seq[string]
## newSeq(inputStrings, 3)
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
proc newSeq*[T](len = 0.Natural): seq[T] =
## creates a new sequence of type ``seq[T]`` with length ``len``.
##
## Note that the sequence will be filled with zeroed entries, which can be a
## problem for sequences containing strings since their value will be
## ``nil``. After the creation of the sequence you should assign entries to
## the sequence instead of adding them. Example:
##
## .. code-block:: nim
## var inputStrings = newSeq[string](3)
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
newSeq(result, len)
proc newSeqOfCap*[T](cap: Natural): seq[T] {.
magic: "NewSeqOfCap", noSideEffect.} =
## creates a new sequence of type ``seq[T]`` with length 0 and capacity
## ``cap``.
discard
proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
magic: "LengthOpenArray", noSideEffect.}
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.}
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
## returns the length of an array, an openarray, a sequence or a string.
## This is roughly the same as ``high(T)-low(T)+1``, but its resulting type is
## always an int.
##
## .. code-block:: nim
## var arr = [1,1,1,1,1]
## len(arr) #=> 5
## for i in 0..<arr.len:
## echo arr[i] #=> 1,1,1,1,1
# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
## includes element ``y`` to the set ``x``. This is the same as
## ``x = x + {y}``, but it might be more efficient.
##
## .. code-block:: nim
## var a = initSet[int](4)
## a.incl(2) #=> {2}
## a.incl(3) #=> {2, 3}
template incl*[T](s: var set[T], flags: set[T]) =
## includes the set of flags to the set ``x``.
s = s + flags
proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
## excludes element ``y`` to the set ``x``. This is the same as
## ``x = x - {y}``, but it might be more efficient.
##
## .. code-block:: nim
## var b = {2,3,5,6,12,545}
## b.excl(5) #=> {2,3,6,12,545}
template excl*[T](s: var set[T], flags: set[T]) =
## excludes the set of flags to ``x``.
s = s - flags
proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
## returns the cardinality of the set ``x``, i.e. the number of elements
## in the set.
##
## .. code-block:: nim
## var i = {1,2,3,4}
## card(i) #=> 4
proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.}
## returns the internal int value of an ordinal value ``x``.
##
## .. code-block:: nim
## ord('A') #=> 65
proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
## converts an int in the range 0..255 to a character.
##
## .. code-block:: nim
## chr(65) #=> A
# --------------------------------------------------------------------------
# built-in operators
when not defined(JS):
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## (This is the case on 64 bit processors.)
proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## 16 bits from `x`.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## last 32 bits from `x`.
# integer calculations:
proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
## Unary `+` operator for an integer. Has no effect.
proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
## Unary `-` operator for an integer. Negates `x`.
proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
## computes the `bitwise complement` of the integer `x`.
when defined(nimnomagic64):
proc `not` *(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
else:
proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
## Binary `+` operator for an integer.
when defined(nimnomagic64):
proc `+` *(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
else:
proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
## Binary `-` operator for an integer.
when defined(nimnomagic64):
proc `-` *(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
else:
proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
## Binary `*` operator for an integer.
when defined(nimnomagic64):
proc `*` *(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
else:
proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
## computes the integer division. This is roughly the same as
## ``floor(x/y)``.
##
## .. code-block:: Nim
## 1 div 2 == 0
## 2 div 2 == 1
## 3 div 2 == 1
## 7 div 5 == 1
when defined(nimnomagic64):
proc `div` *(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
else:
proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
## computes the integer modulo operation (remainder).
## This is the same as
## ``x - (x div y) * y``.
##
## .. code-block:: Nim
## (7 mod 5) == 2
when defined(nimnomagic64):
proc `mod` *(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
else:
proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
when defined(nimNewShiftOps):
proc `shr` *(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`, filling
## vacant bit positions with zeros.
##
## .. code-block:: Nim
## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
## 0b1000_0000'i8 shr 8 == 0b0000_0000'i8
## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
proc `shl` *(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
##
## .. code-block:: Nim
## 1'i32 shl 4 == 0x0000_0010
## 1'i64 shl 4 == 0x0000_0000_0000_0010
else:
proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int64): int64 {.magic: "ShrI", noSideEffect.}
proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int64): int64 {.magic: "ShlI", noSideEffect.}
proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
## computes the `bitwise and` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0xffff'i16 and 0x0010'i16) == 0x0010
proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
## computes the `bitwise or` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0x0005'i16 or 0x0010'i16) == 0x0015
proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
## computes the `bitwise xor` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0x1011'i16 xor 0x0101'i16) == 0x1110
proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int64): bool {.magic: "EqI", noSideEffect.}
## Compares two integers for equality.
proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int64): bool {.magic: "LeI", noSideEffect.}
## Returns true iff `x` is less than or equal to `y`.
proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int64): bool {.magic: "LtI", noSideEffect.}
## Returns true iff `x` is less than `y`.
type
IntMax32 = int|int8|int16|int32
proc `+%` *(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
## treats `x` and `y` as unsigned and adds them. The result is truncated to
## fit into the result. This implements modulo arithmetic. No overflow
## errors are possible.
proc `-%` *(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
## treats `x` and `y` as unsigned and subtracts them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `*%` *(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
## treats `x` and `y` as unsigned and multiplies them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `/%` *(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
## treats `x` and `y` as unsigned and divides them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `%%` *(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
## The result is truncated to fit into the result.
## This implements modulo arithmetic.
## No overflow errors are possible.
proc `<=%` *(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) <= unsigned(y)``.
proc `<%` *(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) < unsigned(y)``.
# unsigned integer operations:
proc `not`*[T: SomeUnsignedInt](x: T): T {.magic: "BitnotI", noSideEffect.}
## computes the `bitwise complement` of the integer `x`.
when defined(nimNewShiftOps):
proc `shr`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
else:
proc `shr`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
proc `and`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitandI", noSideEffect.}
## computes the `bitwise and` of numbers `x` and `y`.
proc `or`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitorI", noSideEffect.}
## computes the `bitwise or` of numbers `x` and `y`.
proc `xor`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitxorI", noSideEffect.}
## computes the `bitwise xor` of numbers `x` and `y`.
proc `==`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "EqI", noSideEffect.}
## Compares two unsigned integers for equality.
proc `+`*[T: SomeUnsignedInt](x, y: T): T {.magic: "AddU", noSideEffect.}
## Binary `+` operator for unsigned integers.
proc `-`*[T: SomeUnsignedInt](x, y: T): T {.magic: "SubU", noSideEffect.}
## Binary `-` operator for unsigned integers.
proc `*`*[T: SomeUnsignedInt](x, y: T): T {.magic: "MulU", noSideEffect.}
## Binary `*` operator for unsigned integers.
proc `div`*[T: SomeUnsignedInt](x, y: T): T {.magic: "DivU", noSideEffect.}
## computes the integer division. This is roughly the same as
## ``floor(x/y)``.
##
## .. code-block:: Nim
## (7 div 5) == 2
proc `mod`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ModU", noSideEffect.}
## computes the integer modulo operation (remainder).
## This is the same as
## ``x - (x div y) * y``.
##
## .. code-block:: Nim
## (7 mod 5) == 2
proc `<=`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LeU", noSideEffect.}
## Returns true iff ``x <= y``.
proc `<`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LtU", noSideEffect.}
## Returns true iff ``unsigned(x) < unsigned(y)``.
# floating point operations:
proc `+` *(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.}
## computes the floating point division
proc `==` *(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.}
# set operators
proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
## This operator computes the intersection of two sets.
proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
## This operator computes the union of two sets.
proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
## This operator computes the difference of two sets.
proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
## One should overload this proc if one wants to overload the ``in`` operator.
## The parameters are in reverse order! ``a in b`` is a template for
## ``contains(b, a)``.
## This is because the unification algorithm that Nim uses for overload
## resolution works from left to right.
## But for the ``in`` operator that would be the wrong direction for this
## piece of code:
##
## .. code-block:: Nim
## var s: set[range['a'..'z']] = {'a'..'c'}
## writeLine(stdout, 'b' in s)
##
## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
## have been bound to ``char``. But ``s`` is not compatible to type
## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
## is achieved by reversing the parameters for ``contains``; ``in`` then
## passes its arguments in reverse order.
proc contains*[T](s: Slice[T], value: T): bool {.noSideEffect, inline.} =
## Checks if `value` is within the range of `s`; returns true iff
## `value >= s.a and value <= s.b`
##
## .. code-block:: Nim
## assert((1..3).contains(1) == true)
## assert((1..3).contains(2) == true)
## assert((1..3).contains(4) == false)
result = s.a <= value and value <= s.b
template `in` * (x, y: untyped): untyped {.dirty.} = contains(y, x)
## Sugar for contains
##
## .. code-block:: Nim
## assert(1 in (1..3) == true)
## assert(5 in (1..3) == false)
template `notin` * (x, y: untyped): untyped {.dirty.} = not contains(y, x)
## Sugar for not containing
##
## .. code-block:: Nim
## assert(1 notin (1..3) == false)
## assert(5 notin (1..3) == true)
proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
## Checks if T is of the same type as S
##
## .. code-block:: Nim
## proc test[T](a: T): int =
## when (T is int):
## return a
## else:
## return 0
##
## assert(test[int](3) == 3)
## assert(test[string]("xyz") == 0)
template `isnot` *(x, y: untyped): untyped = not (x is y)
## Negated version of `is`. Equivalent to ``not(x is y)``.
proc `of` *[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
## Checks if `x` has a type of `y`
##
## .. code-block:: Nim
## assert(FloatingPointError of Exception)
## assert(DivByZeroError of Exception)
proc cmp*[T](x, y: T): int {.procvar.} =
## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
## and 0 iff x == y. This is useful for writing generic algorithms without
## performance loss. This generic implementation uses the `==` and `<`
## operators.
##
## .. code-block:: Nim
## import algorithm
## echo sorted(@[4,2,6,5,8,7], cmp[int])
if x == y: return 0
if x < y: return -1
return 1
proc cmp*(x, y: string): int {.noSideEffect, procvar.}
## Compare proc for strings. More efficient than the generic version.
proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {.
magic: "ArrToSeq", nosideeffect.}
## turns an array into a sequence. This most often useful for constructing
## sequences with the array constructor: ``@[1, 2, 3]`` has the type
## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
proc setLen*[T](s: var seq[T], newlen: Natural) {.
magic: "SetLengthSeq", noSideEffect.}
## sets the length of `s` to `newlen`.
## ``T`` may be any sequence type.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a sequence with
## a size, use ``newSeq`` instead.
proc setLen*(s: var string, newlen: Natural) {.
magic: "SetLengthStr", noSideEffect.}
## sets the length of `s` to `newlen`.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a string with
## a size, use ``newString`` instead.
##
## .. code-block:: Nim
## var myS = "Nim is great!!"
## myS.setLen(3)
## echo myS, " is fantastic!!"
proc newString*(len: Natural): string {.
magic: "NewString", importc: "mnewString", noSideEffect.}
## returns a new string of length ``len`` but with uninitialized
## content. One needs to fill the string character after character
## with the index operator ``s[i]``. This procedure exists only for
## optimization purposes; the same effect can be achieved with the
## ``&`` operator or with ``add``.
proc newStringOfCap*(cap: Natural): string {.
magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
## returns a new string of length ``0`` but with capacity `cap`.This
## procedure exists only for optimization purposes; the same effect can
## be achieved with the ``&`` operator or with ``add``.
proc `&` * (x: string, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`
##
## .. code-block:: Nim
## assert("ab" & 'c' == "abc")
proc `&` * (x, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` and `y` into a string
##
## .. code-block:: Nim
## assert('a' & 'b' == "ab")
proc `&` * (x, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` and `y`
##
## .. code-block:: Nim
## assert("ab" & "cd" == "abcd")
proc `&` * (x: char, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`
##
## .. code-block:: Nim
## assert('a' & "bc" == "abc")
# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.
proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
## Appends `y` to `x` in place
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add('a')
## tmp.add('b')
## assert(tmp == "ab")
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
## Concatenates `x` and `y` in place
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add("ab")
## tmp.add("cd")
## assert(tmp == "abcd")
type
Endianness* = enum ## is a type describing the endianness of a processor.
littleEndian, bigEndian
const
isMainModule* {.magic: "IsMainModule".}: bool = false
## is true only when accessed in the main module. This works thanks to
## compiler magic. It is useful to embed testing code in a module.
CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
## is the date of compilation as a string of the form
## ``YYYY-MM-DD``. This works thanks to compiler magic.
CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
## is the time of compilation as a string of the form
## ``HH:MM:SS``. This works thanks to compiler magic.
cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
## is the endianness of the target CPU. This is a valuable piece of
## information for low-level code only. This works thanks to compiler
## magic.
hostOS* {.magic: "HostOS".}: string = ""
## a string that describes the host operating system. Possible values:
## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
## "aix", "standalone".
hostCPU* {.magic: "HostCPU".}: string = ""
## a string that describes the host CPU. Possible values:
## "i386", "alpha", "powerpc", "powerpc64", "powerpc64el", "sparc",
## "amd64", "mips", "mipsel", "arm", "arm64".
seqShallowFlag = low(int)
{.push profiler: off.}
when defined(nimKnowsNimvm):
let nimvm* {.magic: "Nimvm".}: bool = false
## may be used only in "when" expression.
## It is true in Nim VM context and false otherwise
else:
const nimvm*: bool = false
{.pop.}
proc compileOption*(option: string): bool {.
magic: "CompileOption", noSideEffect.}
## can be used to determine an on|off compile-time option. Example:
##
## .. code-block:: nim
## when compileOption("floatchecks"):
## echo "compiled with floating point NaN and Inf checks"
proc compileOption*(option, arg: string): bool {.
magic: "CompileOptionArg", noSideEffect.}
## can be used to determine an enum compile-time option. Example:
##
## .. code-block:: nim
## when compileOption("opt", "size") and compileOption("gc", "boehm"):
## echo "compiled with optimization for size and uses Boehm's GC"
const
hasThreadSupport = compileOption("threads") and not defined(nimscript)
hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
taintMode = compileOption("taintmode")
when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
# tcc doesn't support TLS
{.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}
when defined(boehmgc):
when defined(windows):
const boehmLib = "boehmgc.dll"
elif defined(macosx):
const boehmLib = "libgc.dylib"
else:
const boehmLib = "libgc.so.1"
{.pragma: boehmGC, noconv, dynlib: boehmLib.}
when taintMode:
type TaintedString* = distinct string ## a distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
proc len*(s: TaintedString): int {.borrow.}
else:
type TaintedString* = string ## a distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
when defined(profiler):
proc nimProfile() {.compilerProc, noinline.}
when hasThreadSupport:
{.pragma: rtlThreadVar, threadvar.}
else:
{.pragma: rtlThreadVar.}
const
QuitSuccess* = 0
## is the value that should be passed to `quit <#quit>`_ to indicate
## success.
QuitFailure* = 1
## is the value that should be passed to `quit <#quit>`_ to indicate
## failure.
var programResult* {.exportc: "nim_program_result".}: int
## modify this variable to specify the exit code of the program
## under normal circumstances. When the program is terminated
## prematurely using ``quit``, this value is ignored.
when defined(nimdoc):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
## Stops the program immediately with an exit code.
##
## Before stopping the program the "quit procedures" are called in the
## opposite order they were added with `addQuitProc <#addQuitProc>`_.
## ``quit`` never returns and ignores any exception that may have been raised
## by the quit procedures. It does *not* call the garbage collector to free
## all the memory, unless a quit procedure calls `GC_fullCollect
## <#GC_fullCollect>`_.
##
## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
## program finishes without incident. A raised unhandled exception is
## equivalent to calling ``quit(QuitFailure)``.
##
## Note that this is a *runtime* call and using ``quit`` inside a macro won't
## have any compile time effect. If you need to stop the compiler inside a
## macro, use the `error <manual.html#error-pragma>`_ or `fatal
## <manual.html#fatal-pragma>`_ pragmas.
elif defined(genode):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn,
importcpp: "genodeEnv->parent().exit(@)", header: "<base/env.h>".}
else:
proc quit*(errorcode: int = QuitSuccess) {.
magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}
template sysAssert(cond: bool, msg: string) =
when defined(useSysAssert):
if not cond:
echo "[SYSASSERT] ", msg
quit 1
const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)
when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
include "system/cgprocs"
when not defined(JS) and not defined(nimscript) and hasAlloc:
proc setStackBottom(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
proc addChar(s: NimString, c: char): NimString {.compilerProc, benign.}
proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
## Generic proc for adding a data item `y` to a container `x`.
## For containers that have an order, `add` means *append*. New generic
## containers should also call their adding proc `add` for consistency.
## Generic code becomes much easier to write if the Nim naming scheme is
## respected.
##
## .. code-block:: nim
## var s: seq[string] = @["test2","test2"]
## s.add("test") #=> @[test2, test2, test]
let xl = x.len
setLen(x, xl + y.len)
for i in 0..high(y): x[xl+i] = y[i]
proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
## only changes the semantics for sequences and strings (and types which
## contain those). Be careful with the changed semantics though! There
## is a reason why the default assignment does a deep copy of sequences
## and strings.
proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
## This is an O(1) operation.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.del(2) #=> @[1, 2, 5, 4]
let xl = x.len - 1
shallowCopy(x[i], x[xl])
setLen(x, xl)
proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
## This is an O(n) operation.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.delete(2) #=> @[1, 2, 4, 5]
template defaultImpl =
let xl = x.len
for j in i..xl-2: shallowCopy(x[j], x[j+1])
setLen(x, xl-1)
when nimvm:
defaultImpl()
else:
when defined(js):
{.emit: "`x`[`x`_Idx].splice(`i`, 1);".}
else:
defaultImpl()
proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
## inserts `item` into `x` at position `i`.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.insert(2, 4) #=> @[1, 2, 3, 4, 2, 5]
template defaultImpl =
let xl = x.len
setLen(x, xl+1)
var j = xl-1
while j >= i:
shallowCopy(x[j+1], x[j])
dec(j)
when nimvm:
defaultImpl()
else:
when defined(js):
var it : T
{.emit: "`x`[`x`_Idx].splice(`i`, 0, `it`);".}
else:
defaultImpl()
x[i] = item
proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
## takes any Nim variable and returns its string representation. It
## works even for complex data graphs with cycles. This is a great
## debugging tool.
##
## .. code-block:: nim
## var s: seq[string] = @["test2", "test2"]
## var i = @[1, 2, 3, 4, 5]
## repr(s) #=> 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
## repr(i) #=> 0x1055ed050[1, 2, 3, 4, 5]
type
ByteAddress* = int
## is the signed integer type that should be used for converting
## pointers to integer addresses for readability.
BiggestInt* = int64
## is an alias for the biggest signed integer type the Nim compiler
## supports. Currently this is ``int64``, but it is platform-dependant
## in general.
BiggestFloat* = float64
## is an alias for the biggest floating point type the Nim
## compiler supports. Currently this is ``float64``, but it is
## platform-dependant in general.
when defined(JS):
type BiggestUInt* = uint32
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
else:
type BiggestUInt* = uint64
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
{.deprecated: [TAddress: ByteAddress].}
when defined(windows):
type
clong* {.importc: "long", nodecl.} = int32
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint32
## This is the same as the type ``unsigned long`` in *C*.
else:
type
clong* {.importc: "long", nodecl.} = int
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint
## This is the same as the type ``unsigned long`` in *C*.
type # these work for most platforms:
cchar* {.importc: "char", nodecl.} = char
## This is the same as the type ``char`` in *C*.
cschar* {.importc: "signed char", nodecl.} = int8
## This is the same as the type ``signed char`` in *C*.
cshort* {.importc: "short", nodecl.} = int16
## This is the same as the type ``short`` in *C*.
cint* {.importc: "int", nodecl.} = int32
## This is the same as the type ``int`` in *C*.
csize* {.importc: "size_t", nodecl.} = int
## This is the same as the type ``size_t`` in *C*.
clonglong* {.importc: "long long", nodecl.} = int64
## This is the same as the type ``long long`` in *C*.
cfloat* {.importc: "float", nodecl.} = float32
## This is the same as the type ``float`` in *C*.
cdouble* {.importc: "double", nodecl.} = float64
## This is the same as the type ``double`` in *C*.
clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
## This is the same as the type ``long double`` in *C*.
## This C type is not supported by Nim's code generator.
cuchar* {.importc: "unsigned char", nodecl.} = char
## This is the same as the type ``unsigned char`` in *C*.
cushort* {.importc: "unsigned short", nodecl.} = uint16
## This is the same as the type ``unsigned short`` in *C*.
cuint* {.importc: "unsigned int", nodecl.} = uint32
## This is the same as the type ``unsigned int`` in *C*.
culonglong* {.importc: "unsigned long long", nodecl.} = uint64
## This is the same as the type ``unsigned long long`` in *C*.
cstringArray* {.importc: "char**", nodecl.} = ptr
array[0..ArrayDummySize, cstring]
## This is binary compatible to the type ``char**`` in *C*. The array's
## high value is large enough to disable bounds checking in practice.
## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.
PFloat32* = ptr float32 ## an alias for ``ptr float32``
PFloat64* = ptr float64 ## an alias for ``ptr float64``
PInt64* = ptr int64 ## an alias for ``ptr int64``
PInt32* = ptr int32 ## an alias for ``ptr int32``
proc toFloat*(i: int): float {.
magic: "ToFloat", noSideEffect, importc: "toFloat".}
## converts an integer `i` into a ``float``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.
magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
## converts an biggestint `i` into a ``biggestfloat``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toInt*(f: float): int {.
magic: "ToInt", noSideEffect, importc: "toInt".}
## converts a floating point number `f` into an ``int``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc toBiggestInt*(f: BiggestFloat): BiggestInt {.
magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
## converts a biggestfloat `f` into a ``biggestint``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc addQuitProc*(QuitProc: proc() {.noconv.}) {.
importc: "atexit", header: "<stdlib.h>".}
## Adds/registers a quit procedure.
##
## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
## procedures can be registered. They are executed on a last-in, first-out
## basis (that is, the last function registered is the first to be executed).
## ``addQuitProc`` raises an EOutOfIndex exception if ``QuitProc`` cannot be
## registered.
# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.
proc copy*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect, deprecated.}
proc copy*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect,
deprecated.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``.
## **Deprecated since version 0.8.12**: Use ``substr`` instead.
proc substr*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect.}
proc substr*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
## is used instead: This means ``substr`` can also be used to `cut`:idx:
## or `limit`:idx: a string's length.
when not defined(nimscript) and not defined(JS):
proc zeroMem*(p: pointer, size: Natural) {.inline, benign.}
## overwrites the contents of the memory at ``p`` with the value 0.
## Exactly ``size`` bytes will be overwritten. Like any procedure
## dealing with raw memory this is *unsafe*.
proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may not overlap. Like any procedure dealing with raw
## memory this is *unsafe*.
proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may overlap, ``moveMem`` handles this case appropriately
## and is thus somewhat more safe than ``copyMem``. Like any procedure
## dealing with raw memory this is still *unsafe*, though.
proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect, tags: [], locks: 0.}
## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
## be compared. If the blocks are equal, true is returned, false
## otherwise. Like any procedure dealing with raw memory this is
## *unsafe*.
when not defined(nimscript):
when hasAlloc:
proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
## The allocated memory belongs to its allocating thread!
## Use `allocShared` to allocate from a shared heap.
proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
## allocates a new memory block with at least ``T.sizeof * size``
## bytes. The block has to be freed with ``resize(block, 0)`` or
## ``free(block)``. The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
## The allocated memory belongs to its allocating thread!
## Use `createSharedU` to allocate from a shared heap.
cast[ptr T](alloc(T.sizeof * size))
proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``alloc``.
## The allocated memory belongs to its allocating thread!
## Use `allocShared0` to allocate from a shared heap.
proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
## allocates a new memory block with at least ``T.sizeof * size``
## bytes. The block has to be freed with ``resize(block, 0)`` or
## ``free(block)``. The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``createU``.
## The allocated memory belongs to its allocating thread!
## Use `createShared` to allocate from a shared heap.
cast[ptr T](alloc0(sizeof(T) * size))
proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
benign.}
## grows or shrinks a given memory block. If p is **nil** then a new
## memory block is returned. In either way the block has at least
## ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
## be freed with ``dealloc``.
## The allocated memory belongs to its allocating thread!
## Use `reallocShared` to reallocate from a shared heap.
proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign.} =
## grows or shrinks a given memory block. If p is **nil** then a new
## memory block is returned. In either way the block has at least
## ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is not
## **nil** ``resize`` calls ``free(p)``. In other cases the block
## has to be freed with ``free``. The allocated memory belongs to
## its allocating thread!
## Use `resizeShared` to reallocate from a shared heap.
cast[ptr T](realloc(p, T.sizeof * newSize))
proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign.}
## frees the memory allocated with ``alloc``, ``alloc0`` or
## ``realloc``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
## The freed memory must belong to its allocating thread!
## Use `deallocShared` to deallocate from a shared heap.
proc allocShared*(size: Natural): pointer {.noconv, rtl, benign.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
## is not initialized, so reading from it before writing to it is
## undefined behaviour!
proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
benign.} =
## allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes. The block has to be freed with
## ``resizeShared(block, 0)`` or ``freeShared(block)``. The block
## is not initialized, so reading from it before writing to it is
## undefined behaviour!
cast[ptr T](allocShared(T.sizeof * size))
proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``allocShared``.
proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
## allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes. The block has to be freed with
## ``resizeShared(block, 0)`` or ``freeShared(block)``.
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``createSharedU``.
cast[ptr T](allocShared0(T.sizeof * size))
proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
benign.}
## grows or shrinks a given memory block on the heap. If p is **nil**
## then a new memory block is returned. In either way the block has at
## least ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
## block has to be freed with ``deallocShared``.
proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline.} =
## grows or shrinks a given memory block on the heap. If p is **nil**
## then a new memory block is returned. In either way the block has at
## least ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is
## not **nil** ``resizeShared`` calls ``freeShared(p)``. In other
## cases the block has to be freed with ``freeShared``.
cast[ptr T](reallocShared(p, T.sizeof * newSize))
proc deallocShared*(p: pointer) {.noconv, rtl, benign.}
## frees the memory allocated with ``allocShared``, ``allocShared0`` or
## ``reallocShared``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
proc freeShared*[T](p: ptr T) {.inline, benign.} =
## frees the memory allocated with ``createShared``, ``createSharedU`` or
## ``resizeShared``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
deallocShared(p)
proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
## swaps the values `a` and `b`. This is often more efficient than
## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.
when not defined(js) and not defined(booting) and defined(nimTrMacros):
template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openarray[ref], a, b: int) =
# Optimize swapping of array elements if they are refs. Default swap
# implementation will cause unsureAsgnRef to be emitted which causes
# unnecessary slow down in this case.
swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])
template `>=%` *(x, y: untyped): untyped = y <=% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) >= unsigned(y)``.
template `>%` *(x, y: untyped): untyped = y <% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) > unsigned(y)``.
proc `$`*(x: int): string {.magic: "IntToStr", noSideEffect.}
## The stringify operator for an integer argument. Returns `x`
## converted to a decimal string. ``$`` is Nim's general way of
## spelling `toString`:idx:.
proc `$`*(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
## The stringify operator for an integer argument. Returns `x`
## converted to a decimal string.
when not defined(nimscript):
when not defined(JS) and hasAlloc:
proc `$` *(x: uint64): string {.noSideEffect.}
## The stringify operator for an unsigned integer argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.}
## The stringify operator for a float argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.}
## The stringify operator for a boolean argument. Returns `x`
## converted to the string "false" or "true".
proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.}
## The stringify operator for a character argument. Returns `x`
## converted to a string.
proc `$` *(x: cstring): string {.magic: "CStrToStr", noSideEffect.}
## The stringify operator for a CString argument. Returns `x`
## converted to a string.
proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.}
## The stringify operator for a string argument. Returns `x`
## as it is. This operator is useful for generic code, so
## that ``$expr`` also works if ``expr`` is already a string.
proc `$` *[Enum: enum](x: Enum): string {.magic: "EnumToStr", noSideEffect.}
## The stringify operator for an enumeration argument. This works for
## any enumeration type thanks to compiler magic. If
## a ``$`` operator for a concrete enumeration is provided, this is
## used instead. (In other words: *Overwriting* is possible.)
# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect.}
## retrieves the reference count of an heap-allocated object. The
## value is implementation-dependent.
const
Inf* {.magic: "Inf".} = 1.0 / 0.0
## contains the IEEE floating point value of positive infinity.
NegInf* {.magic: "NegInf".} = -Inf
## contains the IEEE floating point value of negative infinity.
NaN* {.magic: "NaN".} = 0.0 / 0.0
## contains an IEEE floating point value of *Not A Number*. Note
## that you cannot compare a floating point value to this value
## and expect a reasonable result - use the `classify` procedure
## in the module ``math`` for checking for NaN.
NimMajor*: int = 0
## is the major number of Nim's version.
NimMinor*: int = 16
## is the minor number of Nim's version.
NimPatch*: int = 1
## is the patch number of Nim's version.
NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
## is the version of Nim as a string.
# GC interface:
when not defined(nimscript) and hasAlloc:
proc getOccupiedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process and hold data.
proc getFreeMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process, but do not
## hold any meaningful data.
proc getTotalMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process.
when hasThreadSupport:
proc getOccupiedSharedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process
## on the shared heap and hold data. This is only available when
## threads are enabled.
proc getFreeSharedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the
## process on the shared heap, but do not hold any meaningful data.
## This is only available when threads are enabled.
proc getTotalSharedMem*(): int {.rtl.}
## returns the number of bytes on the shared heap that are owned by the
## process. This is only available when threads are enabled.
when sizeof(int) <= 2:
type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
else:
type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum
iterator countdown*[T](a, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` down to `b` (inclusive) with the given
## step count. `T` may be any ordinal type, `step` may only
## be positive. **Note**: This fails to count to ``low(int)`` if T = int for
## efficiency reasons.
when T is IntLikeForCount:
var res = int(a)
while res >= int(b):
yield T(res)
dec(res, step)
else:
var res = a
while res >= b:
yield res
dec(res, step)
template countupImpl(incr: untyped) {.oldimmediate, dirty.} =
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
incr
else:
var res: T = T(a)
while res <= b:
yield res
incr
iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` up to `b` (inclusive) with the given
## step count. `S`, `T` may be any ordinal type, `step` may only
## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
## efficiency reasons.
countupImpl:
inc(res, step)
iterator `..`*[S, T](a: S, b: T): T {.inline.} =
## An alias for `countup`.
countupImpl:
inc(res)
iterator `||`*[S, T](a: S, b: T, annotation=""): T {.
inline, magic: "OmpParFor", sideEffect.} =
## parallel loop iterator. Same as `..` but the loop may run in parallel.
## `annotation` is an additional annotation for the code generator to use.
## Note that the compiler maps that to
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
## such isn't aware of the parallelism in your code! Be careful! Later
## versions of ``||`` will get proper support by Nim's code generator
## and GC.
discard
{.push stackTrace:off.}
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
## The minimum value of two integers.
if x <= y: x else: y
proc min*[T](x: openArray[T]): T =
## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if x[i] < result: result = x[i]
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
## The maximum value of two integers.
if y <= x: x else: y
proc max*[T](x: openArray[T]): T =
## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if result < x[i]: result = x[i]
proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} =
if x < 0.0: -x else: x
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} =
if x <= y: x else: y
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} =
if y <= x: x else: y
{.pop.}
proc clamp*[T](x, a, b: T): T =
## limits the value ``x`` within the interval [a, b]
##
## .. code-block:: Nim
## assert((1.4).clamp(0.0, 1.0) == 1.0)
## assert((0.5).clamp(0.0, 1.0) == 0.5)
if x < a: return a
if x > b: return b
return x
iterator items*[T](a: openArray[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator mitems*[T](a: var openArray[T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
## iterates over each item of `a`.
var i = low(IX)
if i <= high(IX):
while true:
yield a[i]
if i >= high(IX): break
inc(i)
iterator mitems*[IX, T](a: var array[IX, T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = low(IX)
if i <= high(IX):
while true:
yield a[i]
if i >= high(IX): break
inc(i)
iterator items*[T](a: set[T]): T {.inline.} =
## iterates over each element of `a`. `items` iterates only over the
## elements that are really in the set (and not over the ones the set is
## able to hold).
var i = low(T).int
while i <= high(T).int:
if T(i) in a: yield T(i)
inc(i)
iterator items*(a: cstring): char {.inline.} =
## iterates over each item of `a`.
var i = 0
while a[i] != '\0':
yield a[i]
inc(i)
iterator mitems*(a: var cstring): var char {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
while a[i] != '\0':
yield a[i]
inc(i)
iterator items*(E: typedesc[enum]): E =
## iterates over the values of the enum ``E``.
for v in low(E)..high(E):
yield v
iterator items*[T](s: Slice[T]): T =
## iterates over the slice `s`, yielding each value between `s.a` and `s.b`
## (inclusively).
for x in s.a..s.b:
yield x
iterator pairs*[T](a: openArray[T]): tuple[key: int, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*[T](a: var openArray[T]): tuple[key:int, val:var T]{.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = low(IX)
if i <= high(IX):
while true:
yield (i, a[i])
if i >= high(IX): break
inc(i)
iterator mpairs*[IX, T](a:var array[IX, T]):tuple[key:IX,val:var T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = low(IX)
if i <= high(IX):
while true:
yield (i, a[i])
if i >= high(IX): break
inc(i)
iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*[T](a: var seq[T]): tuple[key: int, val: var T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*(a: var string): tuple[key: int, val: var char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*(a: cstring): tuple[key: int, val: char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while a[i] != '\0':
yield (i, a[i])
inc(i)
iterator mpairs*(a: var cstring): tuple[key: int, val: var char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while a[i] != '\0':
yield (i, a[i])
inc(i)
proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
## Fast check whether `x` is nil. This is sometimes more efficient than
## ``== nil``.
proc `==` *[I, T](x, y: array[I, T]): bool =
for f in low(x)..high(x):
if x[f] != y[f]:
return
result = true
proc `@`*[T](a: openArray[T]): seq[T] =
## turns an openarray into a sequence. This is not as efficient as turning
## a fixed length array into a sequence as it always copies every element
## of `a`.
newSeq(result, a.len)
for i in 0..a.len-1: result[i] = a[i]
proc `&` *[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
## Concatenates two sequences.
## Requires copying of the sequences.
##
## .. code-block:: Nim
## assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
newSeq(result, x.len + y.len)
for i in 0..x.len-1:
result[i] = x[i]
for i in 0..y.len-1:
result[i+x.len] = y[i]
proc `&` *[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
## Appends element y to the end of the sequence.
## Requires copying of the sequence
##
## .. code-block:: Nim
## assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
newSeq(result, x.len + 1)
for i in 0..x.len-1:
result[i] = x[i]
result[x.len] = y
proc `&` *[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
## Prepends the element x to the beginning of the sequence.
## Requires copying of the sequence
##
## .. code-block:: Nim
## assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
newSeq(result, y.len + 1)
result[0] = x
for i in 0..y.len-1:
result[i+1] = y[i]
proc `==` *[T](x, y: seq[T]): bool {.noSideEffect.} =
## Generic equals operator for sequences: relies on a equals operator for
## the element type `T`.
when nimvm:
if x.isNil and y.isNil:
return true
else:
when not defined(JS) or defined(nimphp):
proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
result = cast[pointer](x)
else:
proc seqToPtr[T](x: seq[T]): pointer {.asmNoStackFrame, nosideeffect.} =
asm """return `x`"""
if seqToPtr(x) == seqToPtr(y):
return true
if x.isNil or y.isNil:
return false
if x.len != y.len:
return false
for i in 0..x.len-1:
if x[i] != y[i]:
return false
return true
proc find*[T, S](a: T, item: S): int {.inline.}=
## Returns the first index of `item` in `a` or -1 if not found. This requires
## appropriate `items` and `==` operations to work.
for i in items(a):
if i == item: return
inc(result)
result = -1
proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
## Returns true if `item` is in `a` or false if not found. This is a shortcut
## for ``find(a, item) >= 0``.
return find(a, item) >= 0
proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
## returns the last item of `s` and decreases ``s.len`` by one. This treats
## `s` as a stack and implements the common *pop* operation.
var L = s.len-1
result = s[L]
setLen(s, L)
iterator fields*[T: tuple|object](x: T): RootObj {.
magic: "Fields", noSideEffect.}
## iterates over every field of `x`. Warning: This really transforms
## the 'for' and unrolls the loop. The current implementation also has a bug
## that affects symbol binding in the loop body.
iterator fields*[S:tuple|object, T:tuple|object](x: S, y: T): tuple[a,b: untyped] {.
magic: "Fields", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This is really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
iterator fieldPairs*[T: tuple|object](x: T): RootObj {.
magic: "FieldPairs", noSideEffect.}
## Iterates over every field of `x` returning their name and value.
##
## When you iterate over objects with different field types you have to use
## the compile time ``when`` instead of a runtime ``if`` to select the code
## you want to run for each type. To perform the comparison use the `is
## operator <manual.html#is-operator>`_. Example:
##
## .. code-block:: Nim
##
## type
## Custom = object
## foo: string
## bar: bool
##
## proc `$`(x: Custom): string =
## result = "Custom:"
## for name, value in x.fieldPairs:
## when value is bool:
## result.add("\n\t" & name & " is " & $value)
## else:
## if value.isNil:
## result.add("\n\t" & name & " (nil)")
## else:
## result.add("\n\t" & name & " '" & value & "'")
##
## Another way to do the same without ``when`` is to leave the task of
## picking the appropriate code to a secondary proc which you overload for
## each field type and pass the `value` to.
##
## Warning: This really transforms the 'for' and unrolls the loop. The
## current implementation also has a bug that affects symbol binding in the
## loop body.
iterator fieldPairs*[S: tuple|object, T: tuple|object](x: S, y: T): tuple[
a, b: untyped] {.
magic: "FieldPairs", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
proc `==`*[T: tuple|object](x, y: T): bool =
## generic ``==`` operator for tuples that is lifted from the components
## of `x` and `y`.
for a, b in fields(x, y):
if a != b: return false
return true
proc `<=`*[T: tuple](x, y: T): bool =
## generic ``<=`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return true
proc `<`*[T: tuple](x, y: T): bool =
## generic ``<`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return false
proc `$`*[T: tuple|object](x: T): string =
## generic ``$`` operator for tuples that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## $(23, 45) == "(23, 45)"
## $() == "()"
result = "("
var firstElement = true
for name, value in fieldPairs(x):
if not firstElement: result.add(", ")
result.add(name)
result.add(": ")
when compiles($value):
when compiles(value.isNil):
if value.isNil: result.add "nil"
else: result.add($value)
else:
result.add($value)
firstElement = false
else:
result.add("...")
result.add(")")
proc collectionToString[T: set | seq](x: T, b, e: string): string =
when x is seq:
if x.isNil: return "nil"
result = b
var firstElement = true
for value in items(x):
if not firstElement: result.add(", ")
when compiles(value.isNil):
if value.isNil: result.add "nil"
else: result.add($value)
else:
result.add($value)
firstElement = false
result.add(e)
proc `$`*[T](x: set[T]): string =
## generic ``$`` operator for sets that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## ${23, 45} == "{23, 45}"
collectionToString(x, "{", "}")
proc `$`*[T](x: seq[T]): string =
## generic ``$`` operator for seqs that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## $(@[23, 45]) == "@[23, 45]"
collectionToString(x, "@[", "]")
when false:
# causes bootstrapping to fail as we use array of chars and cstring should
# match better ...
proc `$`*[T, IDX](x: array[IDX, T]): string =
collectionToString(x, "[", "]")
# ----------------- GC interface ---------------------------------------------
when not defined(nimscript) and hasAlloc:
proc GC_disable*() {.rtl, inl, benign.}
## disables the GC. If called n-times, n calls to `GC_enable` are needed to
## reactivate the GC. Note that in most circumstances one should only disable
## the mark and sweep phase with `GC_disableMarkAndSweep`.
proc GC_enable*() {.rtl, inl, benign.}
## enables the GC again.
proc GC_fullCollect*() {.rtl, benign.}
## forces a full garbage collection pass.
## Ordinary code does not need to call this (and should not).
type
GC_Strategy* = enum ## the strategy the GC should use for the application
gcThroughput, ## optimize for throughput
gcResponsiveness, ## optimize for responsiveness (default)
gcOptimizeTime, ## optimize for speed
gcOptimizeSpace ## optimize for memory footprint
{.deprecated: [TGC_Strategy: GC_Strategy].}
proc GC_setStrategy*(strategy: GC_Strategy) {.rtl, deprecated, benign.}
## tells the GC the desired strategy for the application.
## **Deprecated** since version 0.8.14. This has always been a nop.
proc GC_enableMarkAndSweep*() {.rtl, benign.}
proc GC_disableMarkAndSweep*() {.rtl, benign.}
## the current implementation uses a reference counting garbage collector
## with a seldomly run mark and sweep phase to free cycles. The mark and
## sweep phase may take a long time and is not needed if the application
## does not create cycles. Thus the mark and sweep phase can be deactivated
## and activated separately from the rest of the GC.
proc GC_getStatistics*(): string {.rtl, benign.}
## returns an informative string about the GC's activity. This may be useful
## for tweaking.
proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
proc GC_ref*(x: string) {.magic: "GCref", benign.}
## marks the object `x` as referenced, so that it will not be freed until
## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
## n calls to `GC_unref` are needed to unmark `x`.
proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
proc GC_unref*(x: string) {.magic: "GCunref", benign.}
## see the documentation of `GC_ref`.
template accumulateResult*(iter: untyped) =
## helps to convert an iterator to a proc.
result = @[]
for x in iter: add(result, x)
# we have to compute this here before turning it off in except.nim anyway ...
const NimStackTrace = compileOption("stacktrace")
template coroutinesSupportedPlatform(): bool =
when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcStack) or
defined(gcMarkAndSweep):
false
else:
true
when defined(nimCoroutines):
# Explicit opt-in.
when not coroutinesSupportedPlatform():
{.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
const nimCoroutines* = true
elif defined(noNimCoroutines):
# Explicit opt-out.
const nimCoroutines* = false
else:
# Autodetect coroutine support.
const nimCoroutines* = false
{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code
var
globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
## with this hook you can influence exception handling on a global level.
## If not nil, every 'raise' statement ends up calling this hook. Ordinary
## application code should never set this hook! You better know what you
## do when setting this. If ``globalRaiseHook`` returns false, the
## exception is caught and does not propagate further through the call
## stack.
localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
## with this hook you can influence exception handling on a
## thread local level.
## If not nil, every 'raise' statement ends up calling this hook. Ordinary
## application code should never set this hook! You better know what you
## do when setting this. If ``localRaiseHook`` returns false, the exception
## is caught and does not propagate further through the call stack.
outOfMemHook*: proc () {.nimcall, tags: [], benign.}
## set this variable to provide a procedure that should be called
## in case of an `out of memory`:idx: event. The standard handler
## writes an error message and terminates the program. `outOfMemHook` can
## be used to raise an exception in case of OOM like so:
##
## .. code-block:: nim
##
## var gOutOfMem: ref EOutOfMemory
## new(gOutOfMem) # need to be allocated *before* OOM really happened!
## gOutOfMem.msg = "out of memory"
##
## proc handleOOM() =
## raise gOutOfMem
##
## system.outOfMemHook = handleOOM
##
## If the handler does not raise an exception, ordinary control flow
## continues and the program is terminated.
type
PFrame* = ptr TFrame ## represents a runtime frame of the call stack;
## part of the debugger API.
TFrame* {.importc, nodecl, final.} = object ## the frame itself
prev*: PFrame ## previous frame; used for chaining the call stack
procname*: cstring ## name of the proc that is currently executing
line*: int ## line number of the proc that is currently executing
filename*: cstring ## filename of the proc that is currently executing
len*: int16 ## length of the inspectable slots
calldepth*: int16 ## used for max call depth checking
#{.deprecated: [TFrame: Frame].}
when defined(JS):
proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
when defined(nimphp):
asm """`x` .= `y`;"""
else:
asm """
var len = `x`[0].length-1;
for (var i = 0; i < `y`.length; ++i) {
`x`[0][len] = `y`.charCodeAt(i);
++len;
}
`x`[0][len] = 0
"""
proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}
elif hasAlloc:
{.push stack_trace:off, profiler:off.}
proc add*(x: var string, y: cstring) =
var i = 0
while y[i] != '\0':
add(x, y[i])
inc(i)
{.pop.}
when defined(nimvarargstyped):
proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
## Writes and flushes the parameters to the standard output.
##
## Special built-in that takes a variable number of arguments. Each argument
## is converted to a string via ``$``, so it works for user-defined
## types that have an overloaded ``$`` operator.
## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
## available for the JavaScript target too.
##
## Unlike other IO operations this is guaranteed to be thread-safe as
## ``echo`` is very often used for debugging convenience. If you want to use
## ``echo`` inside a `proc without side effects
## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho <#debugEcho>`_
## instead.
proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
## Same as `echo <#echo>`_, but as a special semantic rule, ``debugEcho``
## pretends to be free of side effects, so that it can be used for debugging
## routines marked as `noSideEffect <manual.html#pragmas-nosideeffect-pragma>`_.
else:
proc echo*(x: varargs[expr, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
proc debugEcho*(x: varargs[expr, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
template newException*(exceptn: typedesc, message: string;
parentException: ref Exception = nil): untyped =
## creates an exception object of type ``exceptn`` and sets its ``msg`` field
## to `message`. Returns the new exception object.
var
e: ref exceptn
new(e)
e.msg = message
e.parent = parentException
e
when hostOS == "standalone":
include "$projectpath/panicoverride"
when not declared(sysFatal):
{.push profiler: off.}
when hostOS == "standalone":
proc sysFatal(exceptn: typedesc, message: string) {.inline.} =
panic(message)
proc sysFatal(exceptn: typedesc, message, arg: string) {.inline.} =
rawoutput(message)
panic(arg)
else:
proc sysFatal(exceptn: typedesc, message: string) {.inline, noReturn.} =
var e: ref exceptn
new(e)
e.msg = message
raise e
proc sysFatal(exceptn: typedesc, message, arg: string) {.inline, noReturn.} =
var e: ref exceptn
new(e)
e.msg = message & arg
raise e
{.pop.}
proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
## get type information for `x`. Ordinary code should not use this, but
## the `typeinfo` module instead.
{.push stackTrace: off.}
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
when defined(nimnomagic64):
proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
## returns the absolute value of `x`. If `x` is ``low(x)`` (that
## is -MININT for its type), an overflow exception is thrown (if overflow
## checking is turned on).
if x < 0: -x else: x
else:
proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} =
## returns the absolute value of `x`. If `x` is ``low(x)`` (that
## is -MININT for its type), an overflow exception is thrown (if overflow
## checking is turned on).
if x < 0: -x else: x
{.pop.}
type
FileSeekPos* = enum ## Position relative to which seek should happen
# The values are ordered so that they match with stdio
# SEEK_SET, SEEK_CUR and SEEK_END respectively.
fspSet ## Seek to absolute value
fspCur ## Seek relative to current position
fspEnd ## Seek relative to end
when not defined(JS): #and not defined(nimscript):
{.push stack_trace: off, profiler:off.}
when hasAlloc:
when not defined(gcStack):
proc initGC() {.gcsafe.}
when not defined(boehmgc) and not defined(useMalloc) and
not defined(gogc) and not defined(gcStack):
proc initAllocator() {.inline.}
proc initStackBottom() {.inline, compilerproc.} =
# WARNING: This is very fragile! An array size of 8 does not work on my
# Linux 64bit system. -- That's because the stack direction is the other
# way round.
when declared(setStackBottom):
var locals {.volatile.}: pointer
locals = addr(locals)
setStackBottom(locals)
proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
# We need to keep initStackBottom around for now to avoid
# bootstrapping problems.
when declared(setStackBottom):
setStackBottom(locals)
{.push profiler: off.}
var
strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
{.pop.}
# ----------------- IO Part ------------------------------------------------
type
CFile {.importc: "FILE", header: "<stdio.h>",
final, incompletestruct.} = object
File* = ptr CFile ## The type representing a file handle.
FileMode* = enum ## The file mode when opening a file.
fmRead, ## Open the file for read access only.
fmWrite, ## Open the file for write access only.
## If the file does not exist, it will be
## created.
fmReadWrite, ## Open the file for read and write access.
## If the file does not exist, it will be
## created. Existing files will be cleared!
fmReadWriteExisting, ## Open the file for read and write access.
## If the file does not exist, it will not be
## created. The existing file will not be cleared.
fmAppend ## Open the file for writing only; append data
## at the end.
FileHandle* = cint ## type that represents an OS file handle; this is
## useful for low-level file access
{.deprecated: [TFile: File, TFileHandle: FileHandle, TFileMode: FileMode].}
include "system/ansi_c"
proc cmp(x, y: string): int =
when nimvm:
if x < y: result = -1
elif x > y: result = 1
else: result = 0
else:
result = int(c_strcmp(x, y))
when defined(nimscript):
proc readFile*(filename: string): string {.tags: [ReadIOEffect], benign.}
## Opens a file named `filename` for reading, calls `readAll
## <#readAll>`_ and closes the file afterwards. Returns the string.
## Raises an IO exception in case of an error. If # you need to call
## this inside a compile time macro you can use `staticRead
## <#staticRead>`_.
proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
## Opens a file named `filename` for writing. Then writes the
## `content` completely to the file and closes the file afterwards.
## Raises an IO exception in case of an error.
when not defined(nimscript) and hostOS != "standalone":
# text file handling:
var
stdin* {.importc: "stdin", header: "<stdio.h>".}: File
## The standard input stream.
stdout* {.importc: "stdout", header: "<stdio.h>".}: File
## The standard output stream.
stderr* {.importc: "stderr", header: "<stdio.h>".}: File
## The standard error stream.
when defined(windows):
# work-around C's sucking abstraction:
# BUGFIX: stdin and stdout should be binary files!
proc c_setmode(handle, mode: cint) {.
importc: when defined(bcc): "setmode" else: "_setmode",
header: "<io.h>".}
var
O_BINARY {.importc: "O_BINARY", nodecl.}: cint
# we use binary mode on Windows:
c_setmode(c_fileno(stdin), O_BINARY)
c_setmode(c_fileno(stdout), O_BINARY)
c_setmode(c_fileno(stderr), O_BINARY)
when defined(endb):
proc endbStep()
when defined(useStdoutAsStdmsg):
template stdmsg*: File = stdout
else:
template stdmsg*: File = stderr
## Template which expands to either stdout or stderr depending on
## `useStdoutAsStdmsg` compile-time switch.
proc open*(f: var File, filename: string,
mode: FileMode = fmRead, bufSize: int = -1): bool {.tags: [],
benign.}
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
## This throws no exception if the file could not be opened.
proc open*(f: var File, filehandle: FileHandle,
mode: FileMode = fmRead): bool {.tags: [], benign.}
## Creates a ``File`` from a `filehandle` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
proc open*(filename: string,
mode: FileMode = fmRead, bufSize: int = -1): File =
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Raises an ``IO`` exception if the file
## could not be opened.
if not open(result, filename, mode, bufSize):
sysFatal(IOError, "cannot open: ", filename)
proc reopen*(f: File, filename: string, mode: FileMode = fmRead): bool {.
tags: [], benign.}
## reopens the file `f` with given `filename` and `mode`. This
## is often used to redirect the `stdin`, `stdout` or `stderr`
## file variables.
##
## Default mode is readonly. Returns true iff the file could be reopened.
proc setStdIoUnbuffered*() {.tags: [], benign.}
## Configures `stdin`, `stdout` and `stderr` to be unbuffered.
proc close*(f: File) {.tags: [], gcsafe.}
## Closes the file.
proc endOfFile*(f: File): bool {.tags: [], benign.}
## Returns true iff `f` is at the end.
proc readChar*(f: File): char {.tags: [ReadIOEffect], deprecated.}
## Reads a single character from the stream `f`. **Deprecated** since
## version 0.16.2. Use some variant of ``readBuffer`` instead.
proc flushFile*(f: File) {.tags: [WriteIOEffect].}
## Flushes `f`'s buffer.
proc readAll*(file: File): TaintedString {.tags: [ReadIOEffect], benign.}
## Reads all data from the stream `file`.
##
## Raises an IO exception in case of an error. It is an error if the
## current file position is not at the beginning of the file.
proc readFile*(filename: string): TaintedString {.tags: [ReadIOEffect], benign.}
## Opens a file named `filename` for reading.
##
## Then calls `readAll <#readAll>`_ and closes the file afterwards.
## Returns the string. Raises an IO exception in case of an error. If
## you need to call this inside a compile time macro you can use
## `staticRead <#staticRead>`_.
proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
## Opens a file named `filename` for writing. Then writes the
## `content` completely to the file and closes the file afterwards.
## Raises an IO exception in case of an error.
proc write*(f: File, r: float32) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, i: int) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, i: BiggestInt) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, r: BiggestFloat) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, s: string) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, b: bool) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, c: char) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, c: cstring) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, a: varargs[string, `$`]) {.tags: [WriteIOEffect], benign.}
## Writes a value to the file `f`. May throw an IO exception.
proc readLine*(f: File): TaintedString {.tags: [ReadIOEffect], benign.}
## reads a line of text from the file `f`. May throw an IO exception.
## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
## character(s) are not part of the returned string.
proc readLine*(f: File, line: var TaintedString): bool {.tags: [ReadIOEffect],
benign.}
## reads a line of text from the file `f` into `line`. `line` must not be
## ``nil``! May throw an IO exception.
## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
## character(s) are not part of the returned string. Returns ``false``
## if the end of the file has been reached, ``true`` otherwise. If
## ``false`` is returned `line` contains no new data.
proc writeLn*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
tags: [WriteIOEffect], benign, deprecated.}
## **Deprecated since version 0.11.4:** Use **writeLine** instead.
proc writeLine*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
tags: [WriteIOEffect], benign.}
## writes the values `x` to `f` and then writes "\\n".
## May throw an IO exception.
proc getFileSize*(f: File): int64 {.tags: [ReadIOEffect], benign.}
## retrieves the file size (in bytes) of `f`.
proc readBytes*(f: File, a: var openArray[int8|uint8], start, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc readChars*(f: File, a: var openArray[char], start, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
##
## **Warning:** The buffer `a` must be pre-allocated. This can be done
## using, for example, ``newString``.
proc readBuffer*(f: File, buffer: pointer, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer pointed to by `buffer`. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc writeBytes*(f: File, a: openArray[int8|uint8], start, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeChars*(f: File, a: openArray[char], start, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeBuffer*(f: File, buffer: pointer, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of buffer pointed to by the parameter `buffer` to the
## file `f`. Returns the number of actual written bytes, which may be less
## than `len` in case of an error.
proc setFilePos*(f: File, pos: int64, relativeTo: FileSeekPos = fspSet) {.benign.}
## sets the position of the file pointer that is used for read/write
## operations. The file's first byte has the index zero.
proc getFilePos*(f: File): int64 {.benign.}
## retrieves the current position of the file pointer that is used to
## read from the file `f`. The file's first byte has the index zero.
proc getFileHandle*(f: File): FileHandle
## returns the OS file handle of the file ``f``. This is only useful for
## platform specific programming.
when not defined(nimfix):
{.deprecated: [fileHandle: getFileHandle].}
when declared(newSeq):
proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## of length ``len``.
newSeq(result, len)
for i in 0..len-1: result[i] = $a[i]
proc cstringArrayToSeq*(a: cstringArray): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## terminated by ``nil``.
var L = 0
while a[L] != nil: inc(L)
result = cstringArrayToSeq(a, L)
# -------------------------------------------------------------------------
when declared(alloc0) and declared(dealloc):
proc allocCStringArray*(a: openArray[string]): cstringArray =
## creates a NULL terminated cstringArray from `a`. The result has to
## be freed with `deallocCStringArray` after it's not needed anymore.
result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
let x = cast[ptr array[0..ArrayDummySize, string]](a)
for i in 0 .. a.high:
result[i] = cast[cstring](alloc0(x[i].len+1))
copyMem(result[i], addr(x[i][0]), x[i].len)
proc deallocCStringArray*(a: cstringArray) =
## frees a NULL terminated cstringArray.
var i = 0
while a[i] != nil:
dealloc(a[i])
inc(i)
dealloc(a)
when not defined(nimscript):
proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## atomic increment of `memLoc`. Returns the value after the operation.
proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## atomic decrement of `memLoc`. Returns the value after the operation.
include "system/atomics"
type
PSafePoint = ptr TSafePoint
TSafePoint {.compilerproc, final.} = object
prev: PSafePoint # points to next safe point ON THE STACK
status: int
context: C_JmpBuf
hasRaiseAction: bool
raiseAction: proc (e: ref Exception): bool {.closure.}
SafePoint = TSafePoint
# {.deprecated: [TSafePoint: SafePoint].}
when declared(initAllocator):
initAllocator()
when hasThreadSupport:
const insideRLocksModule = false
include "system/syslocks"
when hostOS != "standalone": include "system/threads"
elif not defined(nogc) and not defined(nimscript):
when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
when declared(initGC): initGC()
when not defined(nimscript):
proc setControlCHook*(hook: proc () {.noconv.} not nil)
## allows you to override the behaviour of your application when CTRL+C
## is pressed. Only one such hook is supported.
proc writeStackTrace*() {.tags: [WriteIOEffect], gcsafe.}
## writes the current stack trace to ``stderr``. This is only works
## for debug builds.
when hostOS != "standalone":
proc getStackTrace*(): string {.gcsafe.}
## gets the current stack trace. This only works for debug builds.
proc getStackTrace*(e: ref Exception): string {.gcsafe.}
## gets the stack trace associated with `e`, which is the stack that
## lead to the ``raise`` statement. This only works for debug builds.
{.push stack_trace: off, profiler:off.}
when defined(memtracker):
include "system/memtracker"
when not defined(nimscript):
proc zeroMem(p: pointer, size: Natural) =
c_memset(p, 0, size)
when declared(memTrackerOp):
memTrackerOp("zeroMem", p, size)
proc copyMem(dest, source: pointer, size: Natural) =
c_memcpy(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("copyMem", dest, size)
proc moveMem(dest, source: pointer, size: Natural) =
c_memmove(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("moveMem", dest, size)
proc equalMem(a, b: pointer, size: Natural): bool =
c_memcmp(a, b, size) == 0
when hostOS == "standalone":
include "system/embedded"
else:
include "system/excpt"
include "system/chcks"
# we cannot compile this with stack tracing on
# as it would recurse endlessly!
include "system/arithm"
{.pop.} # stack trace
{.pop.} # stack trace
when hostOS != "standalone" and not defined(nimscript):
include "system/dyncalls"
when not defined(nimscript):
include "system/sets"
when defined(gogc):
const GenericSeqSize = (3 * sizeof(int))
else:
const GenericSeqSize = (2 * sizeof(int))
proc getDiscriminant(aa: pointer, n: ptr TNimNode): int =
sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
var d: int
var a = cast[ByteAddress](aa)
case n.typ.size
of 1: d = ze(cast[ptr int8](a +% n.offset)[])
of 2: d = ze(cast[ptr int16](a +% n.offset)[])
of 4: d = int(cast[ptr int32](a +% n.offset)[])
else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
return d
proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
var discr = getDiscriminant(aa, n)
if discr <% n.len:
result = n.sons[discr]
if result == nil: result = n.sons[n.len]
# n.sons[n.len] contains the ``else`` part (but may be nil)
else:
result = n.sons[n.len]
{.push profiler:off.}
when hasAlloc: include "system/mmdisp"
{.pop.}
{.push stack_trace: off, profiler:off.}
when hasAlloc: include "system/sysstr"
{.pop.}
when hostOS != "standalone": include "system/sysio"
when hasThreadSupport:
when hostOS != "standalone": include "system/channels"
else:
include "system/sysio"
when not defined(nimscript) and hostOS != "standalone":
iterator lines*(filename: string): TaintedString {.tags: [ReadIOEffect].} =
## Iterates over any line in the file named `filename`.
##
## If the file does not exist `EIO` is raised. The trailing newline
## character(s) are removed from the iterated lines. Example:
##
## .. code-block:: nim
## import strutils
##
## proc transformLetters(filename: string) =
## var buffer = ""
## for line in filename.lines:
## buffer.add(line.replace("a", "0") & '\x0A')
## writeFile(filename, buffer)
var f = open(filename, bufSize=8000)
defer: close(f)
var res = TaintedString(newStringOfCap(80))
while f.readLine(res): yield res
iterator lines*(f: File): TaintedString {.tags: [ReadIOEffect].} =
## Iterate over any line in the file `f`.
##
## The trailing newline character(s) are removed from the iterated lines.
## Example:
##
## .. code-block:: nim
## proc countZeros(filename: File): tuple[lines, zeros: int] =
## for line in filename.lines:
## for letter in line:
## if letter == '0':
## result.zeros += 1
## result.lines += 1
var res = TaintedString(newStringOfCap(80))
while f.readLine(res): yield res
when not defined(nimscript) and hasAlloc:
include "system/assign"
include "system/repr"
when hostOS != "standalone" and not defined(nimscript):
proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
## retrieves the current exception; if there is none, nil is returned.
result = currException
proc getCurrentExceptionMsg*(): string {.inline, benign.} =
## retrieves the error message that was attached to the current
## exception; if there is none, "" is returned.
var e = getCurrentException()
return if e == nil: "" else: e.msg
proc onRaise*(action: proc(e: ref Exception): bool{.closure.}) =
## can be used in a ``try`` statement to setup a Lisp-like
## `condition system`:idx:\: This prevents the 'raise' statement to
## raise an exception but instead calls ``action``.
## If ``action`` returns false, the exception has been handled and
## does not propagate further through the call stack.
if not isNil(excHandler):
excHandler.hasRaiseAction = true
excHandler.raiseAction = action
proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
## sets the current exception.
##
## **Warning**: Only use this if you know what you are doing.
currException = exc
{.push stack_trace: off, profiler:off.}
when defined(endb) and not defined(nimscript):
include "system/debugger"
when defined(profiler) or defined(memProfiler):
include "system/profiler"
{.pop.} # stacktrace
when not defined(nimscript):
proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## retrieves the raw proc pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClP_0;
""".}
proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## retrieves the raw environment pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClE_0;
""".}
proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
## can be used to determine if a first class iterator has finished.
{.emit: """
`result` = *((NI*) `x`.ClE_0) < 0;
""".}
elif defined(JS):
# Stubs:
proc nimGCvisit(d: pointer, op: int) {.compilerRtl.} = discard
proc GC_disable() = discard
proc GC_enable() = discard
proc GC_fullCollect() = discard
proc GC_setStrategy(strategy: GC_Strategy) = discard
proc GC_enableMarkAndSweep() = discard
proc GC_disableMarkAndSweep() = discard
proc GC_getStatistics(): string = return ""
proc getOccupiedMem(): int = return -1
proc getFreeMem(): int = return -1
proc getTotalMem(): int = return -1
proc dealloc(p: pointer) = discard
proc alloc(size: Natural): pointer = discard
proc alloc0(size: Natural): pointer = discard
proc realloc(p: pointer, newsize: Natural): pointer = discard
proc allocShared(size: Natural): pointer = discard
proc allocShared0(size: Natural): pointer = discard
proc deallocShared(p: pointer) = discard
proc reallocShared(p: pointer, newsize: Natural): pointer = discard
when defined(JS):
include "system/jssys"
include "system/reprjs"
elif defined(nimscript):
proc cmp(x, y: string): int =
if x == y: return 0
if x < y: return -1
return 1
when defined(nimffi):
include "system/sysio"
proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
## a shorthand for ``echo(errormsg); quit(errorcode)``.
echo(errormsg)
quit(errorcode)
{.pop.} # checks
{.pop.} # hints
when not defined(JS):
proc likely_proc(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
proc unlikely_proc(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}
template likely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be true.
##
## You can use this template to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: nim
## for value in inputValues:
## if likely(value <= 100):
## process(value)
## else:
## echo "Value too big!"
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
likely_proc(val)
template unlikely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be false.
##
## You can use this proc to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: nim
## for value in inputValues:
## if unlikely(value > 100):
## echo "Value too big!"
## else:
## process(value)
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
unlikely_proc(val)
proc `/`*(x, y: int): float {.inline, noSideEffect.} =
## integer division that results in a float.
result = toFloat(x) / toFloat(y)
template spliceImpl(s, a, L, b: untyped): untyped =
# make room for additional elements or cut:
var shift = b.len - max(0,L) # ignore negative slice size
var newLen = s.len + shift
if shift > 0:
# enlarge:
setLen(s, newLen)
for i in countdown(newLen-1, a+b.len): shallowCopy(s[i], s[i-shift])
else:
for i in countup(a+b.len, newLen-1): shallowCopy(s[i], s[i-shift])
# cut down:
setLen(s, newLen)
# fill the hole:
for i in 0 .. <b.len: s[a+i] = b[i]
when hasAlloc or defined(nimscript):
proc `[]`*(s: string, x: Slice[int]): string {.inline.} =
## slice operation for strings.
result = s.substr(x.a, x.b)
proc `[]=`*(s: var string, x: Slice[int], b: string) =
## slice assignment for strings. If
## ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed:
##
## .. code-block:: nim
## var s = "abcdef"
## s[1 .. ^2] = "xyz"
## assert s == "axyzf"
var a = x.a
var L = x.b - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc `[]`*[Idx, T](a: array[Idx, T], x: Slice[int]): seq[T] =
## slice operation for arrays.
when low(a) < 0:
{.error: "Slicing for arrays with negative indices is unsupported.".}
var L = x.b - x.a + 1
result = newSeq[T](L)
for i in 0.. <L: result[i] = a[i + x.a]
proc `[]=`*[Idx, T](a: var array[Idx, T], x: Slice[int], b: openArray[T]) =
## slice assignment for arrays.
when low(a) < 0:
{.error: "Slicing for arrays with negative indices is unsupported.".}
var L = x.b - x.a + 1
if L == b.len:
for i in 0 .. <L: a[i+x.a] = b[i]
else:
sysFatal(RangeError, "different lengths for slice assignment")
proc `[]`*[Idx, T](a: array[Idx, T], x: Slice[Idx]): seq[T] =
## slice operation for arrays.
var L = ord(x.b) - ord(x.a) + 1
newSeq(result, L)
for i in 0.. <L:
result[i] = a[Idx(ord(x.a) + i)]
proc `[]=`*[Idx, T](a: var array[Idx, T], x: Slice[Idx], b: openArray[T]) =
## slice assignment for arrays.
var L = ord(x.b) - ord(x.a) + 1
if L == b.len:
for i in 0 .. <L:
a[Idx(ord(x.a) + i)] = b[i]
else:
sysFatal(RangeError, "different lengths for slice assignment")
proc `[]`*[T](s: seq[T], x: Slice[int]): seq[T] =
## slice operation for sequences.
var a = x.a
var L = x.b - a + 1
newSeq(result, L)
for i in 0.. <L: result[i] = s[i + a]
proc `[]=`*[T](s: var seq[T], x: Slice[int], b: openArray[T]) =
## slice assignment for sequences. If
## ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed.
var a = x.a
var L = x.b - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc slurp*(filename: string): string {.magic: "Slurp".}
## This is an alias for `staticRead <#staticRead>`_.
proc staticRead*(filename: string): string {.magic: "Slurp".}
## Compile-time `readFile <#readFile>`_ proc for easy `resource`:idx:
## embedding:
##
## .. code-block:: nim
## const myResource = staticRead"mydatafile.bin"
##
## `slurp <#slurp>`_ is an alias for ``staticRead``.
proc gorge*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## This is an alias for `staticExec <#staticExec>`_.
proc staticExec*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## Executes an external process at compile-time.
## if `input` is not an empty string, it will be passed as a standard input
## to the executed program.
##
## .. code-block:: nim
## const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
## "\nCompiled on " & staticExec("uname -v")
##
## `gorge <#gorge>`_ is an alias for ``staticExec``. Note that you can use
## this proc inside a pragma like `passC <nimc.html#passc-pragma>`_ or `passL
## <nimc.html#passl-pragma>`_.
##
## If ``cache`` is not empty, the results of ``staticExec`` are cached within
## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
## behaviour then. ``command & input & cache`` (the concatenated string) is
## used to determine whether the entry in the cache is still valid. You can
## use versioning information for ``cache``:
##
## .. code-block:: nim
## const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")
proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
exitCode: int] =
## Same as `gorge` but also returns the precious exit code.
discard
proc `+=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
magic: "Inc", noSideEffect.}
## Increments an ordinal
proc `-=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
magic: "Dec", noSideEffect.}
## Decrements an ordinal
proc `*=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
inline, noSideEffect.} =
## Binary `*=` operator for ordinals
x = x * y
proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Increments in placee a floating point number
x = x + y
proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Decrements in place a floating point number
x = x - y
proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Multiplies in place a floating point number
x = x * y
proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
## Divides in place a floating point number
x = x / y
proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
## Divides in place a floating point number
x = x / y
proc `&=`* (x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
template `&=`*(x, y: typed) =
## generic 'sink' operator for Nim. For files an alias for ``write``.
## If not specialized further an alias for ``add``.
add(x, y)
when declared(File):
template `&=`*(f: File, x: typed) = write(f, x)
proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
## converts the AST of `x` into a string representation. This is very useful
## for debugging.
proc instantiationInfo*(index = -1, fullPaths = false): tuple[
filename: string, line: int] {. magic: "InstantiationInfo", noSideEffect.}
## provides access to the compiler's instantiation stack line information
## of a template.
##
## While similar to the `caller info`:idx: of other languages, it is determined
## at compile time.
##
## This proc is mostly useful for meta programming (eg. ``assert`` template)
## to retrieve information about the current filename and line number.
## Example:
##
## .. code-block:: nim
## import strutils
##
## template testException(exception, code: expr): stmt =
## try:
## let pos = instantiationInfo()
## discard(code)
## echo "Test failure at $1:$2 with '$3'" % [pos.filename,
## $pos.line, astToStr(code)]
## assert false, "A test expecting failure succeeded?"
## except exception:
## discard
##
## proc tester(pos: int): int =
## let
## a = @[1, 2, 3]
## result = a[pos]
##
## when isMainModule:
## testException(IndexError, tester(30))
## testException(IndexError, tester(1))
## # --> Test failure at example.nim:20 with 'tester(1)'
template currentSourcePath*: string = instantiationInfo(-1, true).filename
## returns the full file-system path of the current source
proc raiseAssert*(msg: string) {.noinline.} =
sysFatal(AssertionError, msg)
proc failedAssertImpl*(msg: string) {.raises: [], tags: [].} =
# trick the compiler to not list ``AssertionError`` when called
# by ``assert``.
type Hide = proc (msg: string) {.noinline, raises: [], noSideEffect,
tags: [].}
{.deprecated: [THide: Hide].}
Hide(raiseAssert)(msg)
template assert*(cond: bool, msg = "") =
## Raises ``AssertionError`` with `msg` if `cond` is false. Note
## that ``AssertionError`` is hidden from the effect system, so it doesn't
## produce ``{.raises: [AssertionError].}``. This exception is only supposed
## to be caught by unit testing frameworks.
## The compiler may not generate any code at all for ``assert`` if it is
## advised to do so through the ``-d:release`` or ``--assertions:off``
## `command line switches <nimc.html#command-line-switches>`_.
bind instantiationInfo
mixin failedAssertImpl
when compileOption("assertions"):
{.line.}:
if not cond: failedAssertImpl(astToStr(cond) & ' ' & msg)
template doAssert*(cond: bool, msg = "") =
## same as `assert` but is always turned on and not affected by the
## ``--assertions`` command line switch.
bind instantiationInfo
{.line: instantiationInfo().}:
if not cond:
raiseAssert(astToStr(cond) & ' ' & msg)
iterator items*[T](a: seq[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "seq modified while iterating over it")
iterator mitems*[T](a: var seq[T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "seq modified while iterating over it")
iterator items*(a: string): char {.inline.} =
## iterates over each item of `a`.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "string modified while iterating over it")
iterator mitems*(a: var string): var char {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "string modified while iterating over it")
when not defined(nimhygiene):
{.pragma: inject.}
template onFailedAssert*(msg, code: untyped): untyped {.dirty.} =
## Sets an assertion failure handler that will intercept any assert
## statements following `onFailedAssert` in the current module scope.
##
## .. code-block:: nim
## # module-wide policy to change the failed assert
## # exception type in order to include a lineinfo
## onFailedAssert(msg):
## var e = new(TMyError)
## e.msg = msg
## e.lineinfo = instantiationInfo(-2)
## raise e
##
template failedAssertImpl(msgIMPL: string): untyped {.dirty.} =
let msg = msgIMPL
code
proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`. This is only useful for optimization
## purposes.
when not defined(JS) and not defined(nimscript):
var s = cast[PGenericSeq](s)
s.reserved = s.reserved or seqShallowFlag
proc shallow*(s: var string) {.noSideEffect, inline.} =
## marks a string `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`. This is only useful for optimization
## purposes.
when not defined(JS) and not defined(nimscript):
var s = cast[PGenericSeq](s)
s.reserved = s.reserved or seqShallowFlag
type
NimNodeObj = object
NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
## represents a Nim AST node. Macros operate on this type.
{.deprecated: [PNimrodNode: NimNode].}
when false:
template eval*(blk: stmt): stmt =
## executes a block of code at compile time just as if it was a macro
## optionally, the block can return an AST tree that will replace the
## eval expression
macro payload: stmt {.gensym.} = blk
payload()
when hasAlloc:
proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
## inserts `item` into `x` at position `i`.
var xl = x.len
setLen(x, xl+item.len)
var j = xl-1
while j >= i:
shallowCopy(x[j+item.len], x[j])
dec(j)
j = 0
while j < item.len:
x[j+i] = item[j]
inc(j)
proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
## Special compile-time procedure that checks whether `x` can be compiled
## without any semantic error.
## This can be used to check whether a type supports some operation:
##
## .. code-block:: Nim
## when compiles(3 + 4):
## echo "'+' for integers is available"
discard
when declared(initDebugger):
initDebugger()
when hasAlloc:
# XXX: make these the default (or implement the NilObject optimization)
proc safeAdd*[T](x: var seq[T], y: T) {.noSideEffect.} =
## Adds ``y`` to ``x`` unless ``x`` is not yet initialized; in that case,
## ``x`` becomes ``@[y]``
if x == nil: x = @[y]
else: x.add(y)
proc safeAdd*(x: var string, y: char) =
## Adds ``y`` to ``x``. If ``x`` is ``nil`` it is initialized to ``""``
if x == nil: x = ""
x.add(y)
proc safeAdd*(x: var string, y: string) =
## Adds ``y`` to ``x`` unless ``x`` is not yet initalized; in that
## case, ``x`` becomes ``y``
if x == nil: x = y
else: x.add(y)
proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
## generates a tuple constructor expression listing all the local variables
## in the current scope. This is quite fast as it does not rely
## on any debug or runtime information. Note that in constrast to what
## the official signature says, the return type is not ``RootObj`` but a
## tuple of a structure that depends on the current scope. Example:
##
## .. code-block:: nim
## proc testLocals() =
## var
## a = "something"
## b = 4
## c = locals()
## d = "super!"
##
## b = 1
## for name, value in fieldPairs(c):
## echo "name ", name, " with value ", value
## echo "B is ", b
## # -> name a with value something
## # -> name b with value 4
## # -> B is 1
discard
when hasAlloc and not defined(nimscript) and not defined(JS):
proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
## performs a deep copy of `x`. This is also used by the code generator
## for the implementation of ``spawn``.
discard
include "system/deepcopy"
proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
## special magic to prohibit dynamic binding for `method`:idx: calls.
## This is similar to `super`:idx: in ordinary OO languages.
##
## .. code-block:: nim
## # 'someMethod' will be resolved fully statically:
## procCall someMethod(a, b)
discard
proc `^`*[T](x: int; y: openArray[T]): int {.noSideEffect, magic: "Roof".}
proc `^`*(x: int): int {.noSideEffect, magic: "Roof".} =
## builtin `roof`:idx: operator that can be used for convenient array access.
## ``a[^x]`` is rewritten to ``a[a.len-x]``. However currently the ``a``
## expression must not have side effects for this to compile. Note that since
## this is a builtin, it automatically works for all kinds of
## overloaded ``[]`` or ``[]=`` accessors.
discard
template `..^`*(a, b: untyped): untyped =
## a shortcut for '.. ^' to avoid the common gotcha that a space between
## '..' and '^' is required.
a .. ^b
template `..<`*(a, b: untyped): untyped {.dirty.} =
## a shortcut for '.. <' to avoid the common gotcha that a space between
## '..' and '<' is required.
a .. <b
iterator `..<`*[S,T](a: S, b: T): T =
var i = T(a)
while i < b:
yield i
inc i
proc xlen*(x: string): int {.magic: "XLenStr", noSideEffect.} = discard
proc xlen*[T](x: seq[T]): int {.magic: "XLenSeq", noSideEffect.} =
## returns the length of a sequence or a string without testing for 'nil'.
## This is an optimization that rarely makes sense.
discard
proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
inline.} =
## Checks for equality between two `cstring` variables.
proc strcmp(a, b: cstring): cint {.noSideEffect,
importc, header: "<string.h>".}
if pointer(x) == pointer(y): result = true
elif x.isNil or y.isNil: result = false
else: result = strcmp(x, y) == 0
template closureScope*(body: untyped): untyped =
## Useful when creating a closure in a loop to capture local loop variables by
## their current iteration values. Example:
##
## .. code-block:: nim
## var myClosure : proc()
## # without closureScope:
## for i in 0 .. 5:
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 5. `j` is changed after closure creation
## # with closureScope:
## for i in 0 .. 5:
## closureScope: # Everything in this scope is locked after closure creation
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 3
(proc() = body)()
{.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}
when defined(nimconfig):
include "system/nimscript"
when defined(windows) and appType == "console" and defined(nimSetUtf8CodePage):
proc setConsoleOutputCP(codepage: cint): cint {.stdcall, dynlib: "kernel32",
importc: "SetConsoleOutputCP".}
discard setConsoleOutputCP(65001) # 65001 - utf-8 codepage
|